首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cake shortening contents were replaced with Nutrim oat bran (OB) and flaxseed powder, and the effects of these substitutions on the physical and rheological properties of cakes were investigated. Cakes with shortening replaced up to 40% by weight possessed a volume similar to that of the control cake produced with shortening. Replacement using Nutrim OB and flaxseed powder revealed significant color changes in both the cake crust and crumb. At high levels of substitution, the cake crust became lighter, while the crumb darkened. At >40% by weight substitution with either Nutrim OB or flaxseed, the cakes displayed increased hardness; however, cohesiveness and springiness increased gradually with increasing substitution. Increased substitution with Nutrim OB caused an increase in the measured shear viscosity and oscillatory storage and loss moduli of the cakes. Increased substitution with flaxseed caused decreases in these rheological parameters. Additional rheological experiments were performed to elucidate changes in the formulations during the baking process and indicated an increase in the elasticity of the baked batter with decreasing shortening.  相似文献   

2.
A new oat hydrocolloid containing 20% β‐glucan, called C‐trim20, was obtained from oat bran concentrate through steam jet‐cooking and fractionations. The rheological characterization of the C‐trim20 was conducted using steady and dynamic shear measurements. The C‐trim20 suspension exhibited a shear‐thinning behavior that was more pronounced at high shear rates and high concentrations. Its dynamic viscoelastic moduli increased with increasing concentration while the frequency at which G′ and G″ crossover decreased. The C‐trim20 suspension at various concentrations followed the Cox‐Merz rule. C‐trim20 was also evaluated for potential use in baked products, specifically cakes. The baking performance of C‐trim20 was tested by incorporating it into cake formulations. The inclusion of this hydrocolloid gave increased elastic properties to cake batters and produced cakes containing 1 g of β‐glucan per serving with volume and textural properties similar to those of the control cake.  相似文献   

3.
Starch and protein separated from oat were chemically modified using cross‐linking and acetylation protocols for starch, and deamidation and succinylation for protein isolate. Cross‐linking decreased swelling power of starch, whereas syneresis increased, but cross‐linking does not have a significant effect on gelatinization temperature. Acetylation increased swelling power, but gelatinization temperature and syneresis diminished. Deamidation and succinylation increased nitrogen solubility index, emulsion activity, foaming capacity, and water and oil binding capacity. Emulsion stability did not change with deamidation and it diminished with succinylation, while foaming stability decreased with both treatments. Acetylated starch and two types of modified proteins were substituted for 5, 10, 15, and 20% of oat flour to bake cake samples and then physical properties of the cakes were measured. Acetylated starch increased batter viscosity, cake volume, and whiteness of cake crust. Increased level of deamidated protein produced cakes with lower batter viscosity, higher volume, and darker color (increase in redness). Application of higher levels of succinylated protein led to higher batter viscosity and lightness, and lower cake volume. Therefore, substitution of deamidated protein and acetylated starch can improve cake properties.  相似文献   

4.
Shortening in a conventional yellow layer cake was replaced by maltodextrin (MD), amylodextrin (AD), octenyl succinylated amylodextrin (OSAD), or mixtures (MD+AD and MD+OSAD). The physical and sensory characteristics of the shortening‐free cakes were investigated. The specific gravity and viscosity of the cake batter, and the volume index of the baked cake were significantly reduced by MD, whereas the cake with added AD or OSAD showed a higher volume index than the control cake containing the shortening. An equivalent mixture of MD and AD, or MD and OSAD, however, produced cakes with a volume index and color defined as ΔE*(ab) that was similar to the control cake. Sensory evaluation revealed that the cakes containing AD or OSAD had significantly higher firmness than the control, but the cakes containing a mixture of MD and AD had firmness, springiness, and overall flavor scores similar to that of the control cake. According to instrumental texture profile analysis (TPA), MD addition, either alone or mixed with AD or OSAD, reduced firmness, whereas AD addition made the cake significantly firmer. When the shortening‐free cakes were stored for eight days at 4°C, TPA revealed greater changes in cake firmness and adhesiveness for MD alone. Cakes made from mixtures of dextrins (MD+AD and MD+OSAD) showed textural change with storage similar to that of the control cake, although the MD+AD cake remained softer than the control.  相似文献   

5.
Starch and gluten were isolated from 10 wheat cultivars or lines with varied amylose content. The rheological properties of 30% wheat flour gel, starch gel, and the gel of isolated gluten mixed with common starch were determined in dynamic mechanical testing under shear deformation, creep‐recovery, and compression tests under uniaxial compression. Variation of wheat samples measured as storage shear modulus (G′), loss shear modulus (G″), and loss tangent (tan δ = G″/G′) was similar between flour and starch gels and correlated significantly between flour and starch gel. The proportion of acetic acid soluble glutenin exhibited a significant relationship with tan δ of gluten‐starch mixture gel. The small difference in amylose content strongly affected the rheological parameters of flour gels in creep‐recovery measurement. Wheat flour gel with lower amylose content showed higher creep and recovery compliance that corresponded to the trend in starch gel. Compressive force of flour gel at 50 and 95% strain correlated significantly with that of starch gel. Gel mixed with the isolated gluten from waxy wheat lines appeared to have a weaker gel structure in dynamic viscoelasticity, creep‐recovery, and compression tests. Starch properties of were primarily responsible for rheological changes in wheat flour gel.  相似文献   

6.
A process was described for creating puffed wheat starch based or hybrid starch and rice snack foods processed in a rice cake puffing machine. Puffed cakes consisting of wheat starch and whole grain brown rice, created by mixing wheat starch beads with brown rice before processing and puffing for 10 sec (cooking time) at 210°C, exhibited greater flexibility and fracture strength than traditional rice cakes. The density of puffed wheat starch cakes decreased with increasing moisture content independent of particle size for particles 0.8–5 mm in diameter. The addition of sucrose and shortening promoted the formation of lower density puffed cakes at lower moistures, while salt had little effect.  相似文献   

7.
目前蒸饼的制作大多采用传统的半烫面工艺,工序较为复杂,为解决这一问题,该研究采用不同热处理方式(蒸汽处理、微波处理、干热处理)对小麦粉进行热处理,研究了不同处理方式对小麦粉的糊化特性、热机械学特性、微观结构等的影响,并将处理后的小麦粉添加到未处理的小麦粉中制成蒸饼,考察了所制得的蒸饼的水分分布、质构特性及感官品质。结果表明:3种热处理的适当处理时间都可以提高小麦粉的黏度和回生值;经干热处理和微波处理后的小麦粉的破损淀粉含量高于经蒸汽处理的小麦粉。3种热处理小麦粉的添加均可以提高面团的吸水率,蒸汽处理小麦粉的添加使面团耐揉性降低、蒸煮稳定性提高,微波和干热处理小麦粉的添加使面团的耐揉性和内部结构稳定性提高。适当处理时间的热处理小麦粉的添加可以提高蒸饼的结合水含量、硬度、弹性和咀嚼性等。其中,经蒸汽处理40 min、微波处理2 min和干热处理30 min后的小麦粉的添加制得的蒸饼有相对适中的强韧性、较高的结合水含量和感官评分。该研究结果表明添加热处理后的小麦粉代替传统的烫面工艺制作高品质蒸饼具有可行性,同时能够为蒸饼的工业化生产提供相应的基础数据和一定的理论指导。  相似文献   

8.
The effects of citric acid on the rheological properties of cornstarch pastes were studied by steady shear and dynamic oscillatory viscoelasticity, intrinsic viscosity measurements and microscopic observation. The pH of cornstarch dispersion was adjusted between 6.0 and 3.0. The viscosity of the pastes was increased by lowering the pH (between 5.5 and 3.6), while the viscosity of samples with pH below 3.5 decreased further than that of the control (pH = 6.3). Citric acid promoted the collapse of starch granules; however, adding excessive citric acid led to the hydrolysis of glucose chains. No decrease in the viscoelasticity was observed for cornstarch pastes by adding acid at 25 degrees C after gelatinization.  相似文献   

9.
Waxy and normal maize starches were damaged to different extents by ball milling, with waxy starch notably more susceptible to damage. Starch damage caused substantial decreases in shear stress or apparent viscosity in both waxy and normal maize starch pastes at a wide range of shear rates (5.6 to 400 1/sec). Shear stress or apparent viscosity decreases were more evident in waxy than in normal maize starch pastes at the same ball milling times. Values of storage moduli were much higher than values of loss moduli, and storage moduli decreased with increase in starch damage in both waxy and normal maize starches, indicating decrease in elastic property. The study showed that starch damage causes substantial rheological changes in gelatinized pastes and that waxy starch undergoes more pronounced changes than normal starch. These results can be used to understand the general behavior of damaged normal and waxy starches in processed foods.  相似文献   

10.
The effect of annealing temperature (Ta) on the rheological behavior of 10 wt % rice starch suspension was investigated by the dynamic viscoelasticity, the differential scanning calorimetry (DSC), and the amount of leached out amylose and the swelling ratio of starch suspension. The rheological behaviors of the annealed samples are classified into three types in terms of Ta: Ta1, 48 and 55 degrees C, which are much lower than the gelatinization temperature, Tgel (=62 degrees C); Ta2, 58, 60, and 62 degrees C, which are almost the same as Tgel; and Ta3, 65, 68, 70, and 73 degrees C, which are much higher than Tgel. For the samples annealed at Ta2, the onset temperature of the storage and the loss moduli, G' and G', increased with increasing T(a), and G' and G" in the temperature range from 65 to 90 degrees C gradually increased though smaller than those for the nonannealed sample, the control. This can be understood by the partial gelatinization; i.e., the leached out amylose prevents further amylose from leaching out. The rheological property of the samples annealed at Ta1 is not so different from that of the control, and the samples annealed at Ta3 are almost gelatinized. The rheological behavior of starch suspension can be controlled by Ta.  相似文献   

11.
The gelatinization, pasting, and dynamic rheological parameters of rice starch dispersions from Kaoshiung Sen 7 (KSS7), Taichung Waxy 70 (TCW70), and their blends were examined in relation to total starch concentration (Ct) and the property of starch components. Mixing the rice starches, especially at equivalent ratios, resulted in decreasing onset temperature for gelatinization or developing viscosity and in cold‐paste viscosity, accompanied by a synergistically increased peak viscosity. The logarithmic of storage moduli, G′, for all starch dispersions except the retrograded systems of Ct = 20–30 wt%, showed two linear dependencies on the weight‐average amylose content (AC) of the blends separating at a critical AC of 20 wt% (i.e., TCW70 = 25 wt%). Interestingly, the temperatures at which G′ started to increase drastically maximized on heating, and the exponent n of G′ ∝ Ctn also maximized at the same TCW70 starch concentration Generally, the elasticity of the systems after complete gelatinization and retrogradation followed the isostress models of Takayanagi's blending laws at Ct = 10 wt%, but changed to the intermediates of isostress and isostrain at Ct = 20–30 wt%. The changes in these parameters can be explained by competitive swelling behavior, the strengthening effect of swollen granules, and shear disintegration.  相似文献   

12.
The differences in pasting properties involving gelatinization and retrogradation of rice starches from IR24 and Sinandomeng cultivars during heating‐cooling processes were investigated using a Rapid Visco Analyser (RVA)and a dynamic rheometer. The results were discussed in relation to the molecular structure, actual amylose content (AC), and concentration of the starches. Generally, both starches possessed a comparable AC (≈11 wt%), amylose average chain length (CL), iodine absorption properties, and dynamic rheological parameters on heating to 95°C at 10 wt% and on cooling to 10°C at higher concentrations. In contrast to Sinandomeng, IR24 amylose had a greater proportion of high molecular weight species and number‐average degree of polymerization (DPn). IR24 amylopectin possessed a lower DPn and greater CL, exterior CL (ECL), and interior CL (ICL). Comparing the results of RVA analysis and dynamic rheology, the gelatinization properties and higher retrogradation tendencies of IR24 starch can be related to the structural properties and depend on starch concentration. In addition, the exponent n of starch concentration for storage moduli at 25°C (G25Cn) increased linearly with increasing AC.  相似文献   

13.
The sum of wheat flour and corn starch was replaced by 10, 20, or 30% whole amaranth flour in both conventional (C) and reduced fat (RF) pound cakes, and the effects on physical and sensory properties of the cakes were investigated. RF presented 33% fat reduction. The increasing amaranth levels darkened crust and crumb of cakes, which decreased color acceptability. Fresh amaranth‐containing cakes had similar texture characteristics to the controls, evaluated both instrumentally and sensorially. Sensory evaluation revealed that replacement by 30% amaranth flour decreased C cakes overall acceptability scores, due to its lower specific volume and darker color. Amaranth flour levels had no significant effect on overall acceptability of RF cakes. Hence, the sum of wheat flour and corn starch could be successfully replaced by up to 20% amaranth flour in C and up to 30% in RF pound cakes without negatively affecting sensory quality in fresh cakes. Moisture losses for all the cakes were similar, ≈1% per day during storage. After six days of storage, both C and RF amaranth‐containing cakes had higher hardness and chewiness values than control cakes. Further experiments involving sensory evaluation during storage are necessary to determine the exact limit of amaranth flour replacement.  相似文献   

14.
The effects of oxido-reductants on the rheological properties of wheat flour dough were evaluated by using a capillary rheometer and an oscillatory rheometer at three temperatures. The oxidants potassium iodate (KIO3) and l -ascorbic acid (l -AA) significantly increased the apparent viscosity and G′ and decreased loss tangent at low temperatures of 30 and 60°C due to enhanced formation of disulfide bonds. The reductant glutathione (GSH) had the opposite effect. Heating caused the gelatinization of starch, which diminished the effects of the oxido-reductants and produced doughs with similar rheological properties at 80°C. The correlation between dough rheology and characteristics of extruded noodles was also studied.  相似文献   

15.
Flavored rice cakes are produced commercially by spraying a flavor coating on the cake surface. This study describes a method of making a flavored coating that is applied to individual rice grains before puffing and results in a more uniform flavor distribution. Rice was coated at 5% or 10% levels with coating materials made of jet‐cooked (JC) starch or starch cooked in a water bath (WB), corn starch powder, salt, and a flavor compound. The viscosity of coating materials made with WB starch was twice that of coatings made of JC starch. Rice coated at 10% level had decreased specific density of rice cakes. Rice cakes made from coated grain were similar in appearance to cakes made from uncoated rice but had higher flexural strength. Retention of flavor volatiles after puffing the coated grain was 82.8–56.8% for apple, 72.5–40.3% for anise, and 52.5–24.8% for onion flavor. The flavor volatiles measured in the rice cakes decreased during a three‐month storage period to 49.3% for apple, 25.8% for anise, and 10.1% for onion flavor. Slightly higher retention of flavor volatiles was observed in cakes made with WB starch than in cakes made with JC starch. The difference in retention of flavor volatiles between starch slurry or starch‐oil emulsion treatments was small.  相似文献   

16.
We investigated the impact of temperature and moisture gradients on starch gelatinization and egg denaturation, and on protein extractabilities during cake baking. Differences in crumb structure in the center, top, and bottom zones of cake as measured with X‐ray microfocus‐computed tomography were successfully related to the moment at which starch gelatinized and protein aggregated during baking, which stiffened the cell walls. The temperature in the top and bottom zones of cake increased faster than in the center of the cake due to facilitated heat transfer. This resulted in lower water availability in top and bottom zones, leading to incomplete gelatinization of starch after baking in these zones. In the top zone, extended starch gelatinization and protein polymerization led to later cell wall formation, resulting in a broader cell size distribution. The bottom zone of cake reached the highest temperatures during baking with more substantial starch gelatinization and egg denaturation within the first 25 min of baking. During the final 20 min of baking, little if any change in gelatinization enthalpy and protein extractability was found due to the very low water availability in this region. The bottom zone of the crumb showed a broader cell wall size distribution, which was associated with more collapse. All in all, the results illustrate that cake crumb is not a homogeneous material.  相似文献   

17.
Sponge cakes were formulated using isomaltooligosaccharide (IMO) syrup as a sweetener to replace 0, 25, 50, 75, and 100% sucrose. The qualities of cakes were evaluated by physicochemical, microbiological, and sensory evaluation analyses. The viscosity in cake batter, cake volume, crumb Hunter a value, and IMO contents of baked cakes increased with increasing IMO syrup level, whereas the specific gravity in cake batter, crust L a b, and crumb L and b values, and hardness of baked cakes showed a reverse trend. The crust and crumb of cakes became darker and less yellow and had a better tender and less sweet texture as IMO syrup level increased and sucrose decreased. The degree of overall liking of cakes increased with increasing IMO syrup level. Total plate counts exceeded 105 CFU/g for cakes stored at 25°C for three days and <103 CFU/g for the samples stored at 5°C for seven days. The changes in the moisture content, water activity, L a b values, and IMO contents of samples did not differ during storage. Overall, sucrose in the formulation of sponge cakes could be partially or fully replaced with IMO syrup.  相似文献   

18.
The undeveloped doughs of two wheat flours differing in technological performance were characterized at the supramolecular level, by fundamental small-deformation oscillatory rheology and shear viscometry, and at the molecular level, by nuclear magnetic resonance (NMR) spectroscopy. For the harder variety, the higher storage moduli indicated lower mobility of the protein/water matrix in the 0.001-100 s range. Conversely, 1H NMR indicated higher molecular mobility in the sub-microsecond range for protein/water, whereas starch was found to be generally more hindered. It is suggested that faster protein/water motions are at the basis of the higher structural rearrangement indicated by tan delta for the harder variety. Rheological effects of heating-cooling reflect mainly starch behavior, whereas 1H NMR spectra and relaxation times give additional information on component mixing and molecular mobility. The heated softer variety dough formed a rigid lattice and, although a similar tendency was seen for the hard variety, all of its components remained more mobile. About 60% of starch crystallizes in both varieties, which may explain their similar rheological behaviors upon cooling.  相似文献   

19.
Some rheological properties of sodium caseinate-starch gels   总被引:3,自引:0,他引:3  
The influence of sodium caseinate on the thermal and rheological properties of starch gels at different concentrations and from different botanical sources was evaluated. In sodium caseinate-starch gels, for all starches with the exception of potato starch, the sodium caseinate promoted an increase in the storage modulus and in the viscosity of the composite gel when compared with starch gels. The addition of sodium caseinate resulted in an increase in the onset temperature, the gelatinization temperature, and the end temperature, and there was a significant interaction between starch and sodium caseinate for the onset temperature, the peak temperature, and the end temperature. Microscopy results suggested that sodium caseinate promoted an increase in the homogeneity in the matrix of cereal starch gels.  相似文献   

20.
Starches were isolated from grains of waxy, heterowaxy, and normal sorghum. To study the relationship between starch structure and functionality and guide applications of these starches, amylose content, amylopectin chain-length distributions, gelatinization and retrogradation, pasting properties, dynamic rheological properties, and in vitro enzyme digestion of raw starches were analyzed. Heterowaxy sorghum starch had intermediate amylose content, pasting properties, and dynamic rheological properties. Stress relaxation was a useful indicator of cooked starch cohesiveness. Cooked heterowaxy sorghum starch (10% solids) had a viscoelastic-solid type of character, whereas cooked waxy sorghum starch behaved like a viscoelastic liquid. Amylopectin of normal sorghum starch had a slightly higher proportion of chains with degree of polymerization (DP) of 6-15 (45.5%) compared with amylopectin of heterowaxy starch (44.1%), which had a gelatinization peak temperature 2 degrees C higher than normal sorghum starch. Heterowaxy sorghum starch contained significantly lower rapidly digestible starch (RDS) and higher resistant starch (RS) than waxy sorghum starch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号