首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used the average fork length of age‐3 returning coho (Oncorhynchus kisutch) and age‐3 ocean‐type and age‐4 stream‐type Chinook (Oncorhynchus tshawytscha) salmon along the northeast Pacific coast to assess the covariability between established oceanic environmental indices and growth. These indices included the Multivariate El Niño‐Southern Oscillation Index (MEI), Pacific Decadal Oscillation (PDO), Northern Oscillation Index, and Aleutian Low Pressure Index. Washington, Oregon, and California (WOC) salmon sizes were negatively correlated with the MEI values indicating that ultimate fish size was affected negatively by El Niño‐like events. Further, we show that the growth trajectory of WOC salmon was set following the first ocean winter. Returning ocean‐type British Columbia‐Puget Sound Chinook salmon average fork length was positively correlated with the MEI values during the summer and autumn of return year, which was possibly a result of a shallower mixed layer and improved food‐web productivity of subarctic Pacific waters. Size variation of coho salmon stocks south of Alaska was synchronous and negatively correlated with warm conditions (positive PDO) and weak North Pacific high pressure during ocean residence.  相似文献   

2.
Estuarine habitats provide rearing opportunities for the juvenile life stage of anadromous fishes. Because survival is positively correlated with juvenile performance, these estuarine habitats play an important role in population abundance and productivity. To provide information for the recovery of several depressed stocks of Chinook salmon in the Columbia River Basin, we sought to identify the factors that explain variability in performance. Using otolith‐derived estimates of juvenile somatic growth rate as an index of recent performance, we observed a negative nonlinear relationship between growth rate and day of year, and a decreasing and increasing trend of growth rate over the 8 years of this study and distance from the river mouth respectively. Using a generalised linear modelling approach, we found that variability in juvenile somatic growth rate was best explained by where and when individuals were collected, their body size, contaminant loads, stock of origin, and whether a fish was hatchery produced or unmarked. Lastly, we argue that a considerable improvement to the growth rate of juveniles in estuarine habitats is physiologically possible. The results of this 8‐year study provide a baseline of the performance of juvenile Chinook salmon to evaluate habitat restoration programs and to compare against future anthropogenic conditions.  相似文献   

3.
Environmental change is occurring at unprecedented rates in many marine ecosystems. Yet, environmental effects on fish populations are commonly assumed to be constant across time. In this study, I tested whether relationships between ocean conditions and productivity of North American sockeye salmon (Oncorhynchus nerka) stocks have changed over the past six decades. Specifically, I evaluated the evidence for non‐stationary relationships between three widely used ocean indices and productivity of 45 sockeye salmon stocks using hierarchical Bayesian models. The ocean indices investigated were the Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), and sea surface temperature (SST). I found partial support for time‐varying salmon–ocean relationships. Non‐stationary relationships were strongest for the NPGO and weaker for the SST and PDO indices. Productivity–NPGO correlations tended to shift gradually over time with opposite trends for stocks in British Columbia (B.C.) and western Alaska; for B.C. stocks, the NPGO correlations shifted from significantly negative prior to 1980 to significantly positive after 1990, whereas for western Alaska stocks, the correlations shifted from positive to negative. Productivity–SST correlations showed declining trends for B.C. and Gulf of Alaska stocks, that is, correlations became more negative (B.C.) or less positive (Gulf of Alaska) over time. For the PDO, correlations weakened during the 1980s for western Alaska and B.C. stocks. Overall, these results provide evidence for time‐varying relationships between salmon productivity and environmental conditions over six decades, highlighting the need to recognize that historical responses of salmon populations to environmental change may not be indicative of future responses.  相似文献   

4.
Microparasites play an important role in the demography, ecology and evolution of Pacific salmonids. As salmon stocks continue to decline and the impacts of global climate change on fish populations become apparent, a greater understanding of microparasites in wild salmon populations is warranted. We used high‐throughput, quantitative PCR (HT‐qRT‐PCR) to rapidly screen 82 adult Chinook salmon from five geographically or genetically distinct groups (mostly returning to tributaries of the Fraser River) for 45 microparasite taxa. We detected 20 microparasite species, four of which have not previously been documented in Chinook salmon, and four of which have not been previously detected in any salmonids in the Fraser River. Comparisons of microparasite load to blood plasma variables revealed some positive associations between Flavobacterium psychrophilum, Cryptobia salmositica and Ceratonova shasta and physiological indices suggestive of morbidity. We include a comparison of our findings for each microparasite taxa with previous knowledge of its distribution in British Columbia.  相似文献   

5.
Early ocean survival of Chinook salmon, Oncorhynchus tshawytscha, varies greatly inter‐annually and may be the period during which later spawning abundance and fishery recruitment are set. Therefore, identifying environmental drivers related to early survival may inform better models for management and sustainability of salmon in a variable environment. With this in mind, our main objectives were to (a) identify regions of high temporal variability in growth potential over a 23‐year time series, (b) determine whether the spatial distribution of growth potential was correlated with observed oceanographic conditions, and (c) determine whether these spatial patterns in growth potential could be used to estimate juvenile salmon survival. We applied this method to the fall run of the Central Valley Chinook salmon population, focusing on the spring and summer period after emigration into central California coastal waters. For the period from 1988 to 2010, juvenile salmon growth potential on the central California continental shelf was described by three spatial patterns. These three patterns were most correlated with upwelling, detrended sea level anomalies, and the strength of onshore/offshore currents, respectively. Using the annual strength of these three patterns, as well as the overall growth potential throughout central California coastal waters, in a generalized linear model we explained 82% of the variation in juvenile salmon survival estimates. We attributed the relationship between growth potential and survival to variability in environmental conditions experienced by juvenile salmon during their first year at sea, as well as potential shifts in predation pressure following out‐migration into coastal waters.  相似文献   

6.
Petrosky CE, Schaller HA. Influence of river conditions during seaward migration and ocean conditions on survival rates of Snake River Chinook salmon and steelhead.
Ecology of Freshwater Fish 2010: 19: 520–536. © 2010 John Wiley & Sons A/S Abstract – Improved understanding of the relative influence of ocean and freshwater factors on survival of at‐risk anadromous fish populations is critical to success of conservation and recovery efforts. Abundance and smolt to adult survival rates of Snake River Chinook salmon and steelhead decreased dramatically coincident with construction of hydropower dams in the 1970s. However, separating the influence of ocean and freshwater conditions is difficult because of possible confounding factors. We used long time‐series of smolt to adult survival rates for Chinook salmon and steelhead to estimate first year ocean survival rates. We constructed multiple regression models that explained the survival rate patterns using environmental indices for ocean conditions and in‐river conditions experienced during seaward migration. Survival rates during the smolt to adult and first year ocean life stages for both species were associated with both ocean and river conditions. Best‐fit, simplest models indicate that lower survival rates for Chinook salmon are associated with warmer ocean conditions, reduced upwelling in the spring, and with slower river velocity during the smolt migration or multiple passages through powerhouses at dams. Similarly, lower survival rates for steelhead are associated with warmer ocean conditions, reduced upwelling in the spring, and with slower river velocity and warmer river temperatures. Given projections for warming ocean conditions, a precautionary management approach should focus on improving in‐river migration conditions by increasing water velocity, relying on increased spill, or other actions that reduce delay of smolts through the river corridor during their seaward migration.  相似文献   

7.
Recruitment variability in many fish populations is postulated to be influenced by climatic and oceanographic variability. However, a mechanistic understanding of the influence of specific variables on recruitment is generally lacking. Feeding ecology is one possible mechanism that more directly links ocean conditions and recruitment. We test this mechanism using juvenile Chinook Salmon (Oncorhynchus tshawytscha) collected off the west coast of Vancouver Island, British Columbia, Canada, in 2000–2009. Stable isotopes of carbon (δ13C), an indicator of temperature or primary productivity, and nitrogen (δ15N), an indicator of trophic position, were taken from muscle tissues of genetically stock‐identified salmon. We also collated large‐scale climate indices (e.g., Pacific Decadal Oscillation, North Pacific Gyre Oscillation), local climate variables (e.g., sea surface temperature) and copepod community composition across these years. We used a Bayesian network to determine how ocean conditions influenced feeding ecology, and subsequent survival rates. We found that smolt survival of Chinook Salmon is predicted by their δ13C value, but not their δ15N. In turn, large‐scale climate variability determined the δ13C values of salmon, thus linking climate to survival through feeding ecology, likely through qualities propagated from the base of the food chain.  相似文献   

8.
Pacific Northwest Chinook, Oncorhynchus tshawytscha, have exhibited a high degree of variability in smolt‐to‐adult survival over the past three decades. This variability is summarized for 22 Pacific Northwest stocks and analyzed using generalized linear modeling techniques. Results indicate that survival can be grouped into eight distinct regional clusters: (1) Alaska, Northern BC and North Georgia Strait; (2) Georgia Strait; (3) Lower Fraser River and West Coast Vancouver Island; (4) Puget Sound and Hood Canal; (5) Lower Columbia Tules; (6) Columbia Upriver Brights, Willamette and Cowlitz; (7) Oregon and Washington Coastal; and (8) Klamath River and Columbia River Summers. Further analysis for stocks within each of the eight regions indicates that local ocean conditions following the outmigration of smolts from freshwater to marine areas had a significant effect on survival for the majority of the stock groups analyzed. Our analyses of the data indicate that Pacific Northwest Chinook survival covaries on a spatial scale of 350–450 km. Lagged time series models are presented that link large‐scale tropical Pacific conditions, intermediate‐basin scale northeastern Pacific conditions, and local sea surface temperatures to survival of Pacific Northwest stocks.  相似文献   

9.
Horizontal ocean transport can influence the dynamics of higher‐trophic‐level species in coastal ecosystems by altering either physical oceanographic conditions or the advection of food resources into coastal areas. In this study, we investigated whether variability in two North Pacific Current (NPC) indices was associated with changes in productivity of North American Pacific salmon stocks. Specifically, we used Bayesian hierarchical models to estimate the effects of the north‐south location of the NPC bifurcation (BI) and the NPC strength, indexed by the North Pacific Gyre Oscillation (NPGO), on the productivity of 163 pink, chum, and sockeye salmon stocks. We found that for salmon stocks located in Washington (WA) and British Columbia (BC), both the BI and NPGO had significant positive effects on productivity, indicating that a northward‐shifted bifurcation and a stronger NPC are associated with increased salmon productivity. For the WA and BC regions, the estimated NPGO effect was over two times larger than the BI effect for pink and chum salmon, whereas for sockeye salmon the BI effect was 2.4 times higher than the NPGO. In contrast to WA and BC stocks, we found weak effects of both horizontal ocean transport processes on the productivity of salmon stocks in Alaska. Our results indicated that horizontal transport pathways might strongly influence population dynamics of Pacific salmon in the southern part of their North American ranges, but not the northern part, suggesting that different environmental pathways may underlie changes in salmon productivity in northern and southern areas for the species under consideration.  相似文献   

10.
We examined spatial correlations for three coastal variables [upwelling index, sea surface temperature (SST), and sea surface salinity (SSS)] that might affect juvenile salmon ( Oncorhynchus spp.) during their early marine life. Observed correlation patterns in environmental variables were compared with those in survival rates of pink ( O. gorbuscha ), chum ( O. keta ), and sockeye ( O. nerka ) salmon stocks to help identify appropriate variables to include in models of salmon productivity. Both the upwelling index and coastal SST were characterized by strong positive correlations at short distances, which declined slowly with distance in the winter months, but much more rapidly in the summer. The SSS had much weaker and more variable correlations at all distances throughout the year. The distance at which stations were no longer correlated (spatial decorrelation scale) was largest for the upwelling index (> 1000 km), intermediate for SST (400–800 km in summer), and shortest for SSS (< 400 km). Survival rate indices of salmon showed moderate positive correlations among adjacent stocks that decreased to zero at larger distances. Spatial decorrelation scales ranged from approximately 500 km for sockeye salmon to approximately 1000 km for chum salmon. We conclude that variability in the coastal marine environment during summer, as well as variability in salmon survival rates, are dominated by regional scale variability of several hundred to 1000 km. The correlation scale for SST in the summer most closely matched the observed correlation scales for survival rates of salmon, suggesting that regional-scale variations in coastal SST can help explain the observed regional-scale covariation in survival rates among salmon stocks.  相似文献   

11.
Chinook salmon (Oncorhynchus tshawytscha) is one of several economically‐important species of salmon found in the Northeast Pacific Ocean. The first months at sea are believed to be the most critical for salmon survival, with the highest rate of mortality occurring during this period. In the present study, we examined interannual diet composition and body condition trends for late‐summer subyearling Chinook salmon caught off Oregon and Washington from 1998 to 2012. Interannual variability was observed in juvenile salmon diet composition by weight of prey consumed. Juvenile subyearling Chinook salmon were mainly piscivorous, with northern anchovy (Engraulis mordax) being especially important, making up half the diet by weight in some years. Annual diets clustered into two groups, primarily defined by their proportion of invertebrate prey (14% versus 39% on average). Diet composition was found to influence adult returns, with salmon from high‐invertebrate years returning in significantly larger numbers 2–3 yrs later. However, years that had high adult returns had overall lower stomach fullness and poorer body condition as juveniles, a counterintuitive result potentially driven by the enhanced survival of less fit individuals in better ocean conditions (top‐down effect). Ocean conditions in years with a higher percentage of invertebrates in salmon diets were significantly cooler from May to August, and bottom‐up processes may have led to a fall plankton community with a larger proportion of invertebrates. Our results suggest that the plankton community assemblage during this first fall may be critical in predicting adult returns of Chinook salmon in the Pacific Northwest.  相似文献   

12.
Fisheries bycatch impacts marine species globally and understanding the underlying ecological and behavioural mechanisms could improve bycatch mitigation and forecasts in novel conditions. Oceans are rapidly warming causing shifts in marine species distributions with unknown, but likely, bycatch consequences. We examined whether thermal and diel depth-use behaviours influenced bycatch of a keystone species (Chinook salmon; Oncorhynchus tshawytscha, Salmonidae) in the largest fishery on the US West Coast (Pacific hake; Merluccius productus, Merlucciidae) with annual consequences in a warming ocean. We used Generalized Additive Models with 20 years of data including 54,509 hauls from the at-sea hake fishery spanning Oregon and Washington coasts including genetic information for five salmon populations. Our results demonstrate that Chinook salmon bycatch rates increased in warm ocean years explained by salmon depth-use behaviours. Chinook salmon typically occupy shallower water column depths compared to hake. However, salmon moved deeper when sea surface temperatures (SSTs) were warm and at night, which increased overlap with hake and exacerbated bycatch rates. We show that night fishing reductions (a voluntary bycatch mitigation strategy) are effective in reducing salmon bycatch in cool SSTs by limiting fishing effort when diel vertical movements bring salmon deeper but becomes less effective in warm SSTs as salmon seek deeper thermal refugia during the day. Thermal and diel behaviours were more pronounced in southern compared with northern salmon populations. We provide mechanistic support that climate change may intensify Chinook salmon bycatch in the hake fishery and demonstrate how an inferential approach can inform bycatch management in a changing world.  相似文献   

13.
14.
Extreme variability in abundance of California salmon populations is often ascribed to ocean conditions, yet relatively little is known about their marine life history. To investigate which ocean conditions influence their distribution and abundance, we surveyed juvenile Chinook salmon (Oncorhynchus tshawytscha) within the California Current (central California [37°30′N) to Newport, Oregon (44°00′N]) for a 2‐week period over three summers (2010–2012). At each station, we measured chlorophyll‐a as an indicator of primary productivity, acoustic‐based metrics of zooplankton density as an indicator of potential prey availability and physical characteristics such as bottom depth, temperature and salinity. We also measured fork lengths and collected genetic samples from each salmon that was caught. Genetic stock identification revealed that the majority of juvenile salmon were from the Central Valley and the Klamath Basin (91–98%). We constructed generalized logistic‐linear negative binomial hurdle models and chose the best model(s) using Akaike's Information Criterion (AIC) to determine which covariates influenced the salmon presence and, at locations where salmon were present, determined the variables that influenced their abundance. The probability of salmon presence was highest in shallower waters with a high chlorophyll‐a concentration and close to an individual's natal river. Catch abundance was primarily influenced by year, mean fork length and proximity to natal rivers. At the scale of sampling stations, presence and abundance were not related to acoustic indices of zooplankton density. In the weeks to months after ocean entry, California's juvenile Chinook salmon population appears to be primarily constrained to coastal waters near natal river outlets.  相似文献   

15.
Changes in fish year‐class strength have been attributed to year‐to‐year variability in environmental conditions and spawning stock biomass (SSB). In particular, sea temperature has been shown to be linked to fish recruitment. In the present study, I examined the relationship between sea surface temperature (SST), SSB and recruitment for two stocks of walleye pollock (Theragra chalcogramma) around northern Japan [Japanese Pacific stock (JPS) and northern Japan Sea stock (JSS)] using a temperature‐dependent stock‐recruitment model (TDSRM). The recruitment fluctuation of JPS was successfully reproduced by the TDSRM with February and April SSTs, and February SST was a better environmental predictor than April SST. In addition, the JPS recruitment was positively related to February SST and negatively to April SST. The JSS recruitment modeled by the TDSRM incorporating February SST was also consistent with the observation, whereas the relationship between recruitment and February SST was negative, that is the opposite trend to JPS. These findings suggest that SST in February is important as a predictor of recruitment for both stocks, and that higher and lower SSTs in February act favorably on the recruitment of JPS and JSS respectively. Furthermore, Ricker‐type TDSRM was not selected for either of the stocks, suggesting that the strong density‐dependent effect as in the Ricker model does not exist for JPS and JSS. I formulate hypotheses to explain the links between SST and recruitment, and note that these relationships should be considered in any future attempts to understand the recruitment dynamics of JPS and JSS.  相似文献   

16.
Despite the popularity of barrier removal as a habitat restoration technique, there are few studies that evaluate the biological effects of restored stream crossings. An extensive post‐treatment study design was used to quantify fish populations (e.g. species, life stage, abundance) and habitat attributes (e.g. gradient, geomorphic channel units) at 32 culvert removal or replacement projects to determine their effectiveness in restoring habitat access for juvenile salmon, Oncorhynchus spp., and steelhead, O. mykiss (Walbaum), in the Columbia River Basin, USA. Anadromous fish (steelhead, Chinook salmon O. tshawytscha [Walbaum]) abundance, juvenile steelhead abundance and habitat conditions were not significantly different between paired reaches (i.e. upstream and downstream of former barrier sites), suggesting these sites are no longer full barriers to movement. This suggests that barrier removal projects on small Columbia Basin streams provide adequate fish passage, increased habitat availability and increased juvenile anadromous fish abundance immediately upstream of former barriers.  相似文献   

17.
The major wild Atlantic salmon stocks in the Baltic Sea began to recover in the late 1990s. This recovery has been partly due to strict regulations in the Gulf of Bothnia that effectively prevent salmon fisheries during the peak migration. About half of the migrating salmon, however, are reared fish that could be harvested. We simulated a limited trap-net fishery that selectively harvested reared salmon and released wild fish, and studied the survival and migration of the released salmon. We tagged and released 1970 salmon caught in the trap-nets along the coast in 2001 and 2002. The mean maximum capture and release induced mortality of salmon was 11%, ranging between 4% and 21% in different release groups by year, sea age and number of releases. The cumulative mortality for the total salmon population on their spawning migration in the Gulf of Bothnia was below 5%, and it would not increase considerably after the first capture and release events, provided fishing effort is not excessive and fish are handled properly. Survival of trap-net captured and released Baltic salmon appears high and their migration behavior is not altered due to this handling. Several preconditions, however, should be considered before selective fishing is introduced in the Gulf of Bothnia salmon fishery.  相似文献   

18.
Variation in prey quantity and quality can influence growth and survival of marine predators, including anadromous fish that migrate from freshwater systems. The objective of this study was to examine the energy dynamics of subyearling Chinook salmon (Oncorhynchus tshawytscha) following freshwater emigration. To address this objective, a population of Chinook salmon and their marine prey were repeatedly sampled from June to September over 2 years in coastal waters off Oregon and Washington. Subyearlings from the same population were also reared under laboratory conditions. Using a bioenergetics model evaluated in the laboratory, we found that growth rate variability in the field was associated more with differences in northern anchovy (Engraulis mordax) consumption and less with variation in diet energy density or ocean temperature. Highest growth rates (2.43–3.22% body weight/day) occurred in months when anchovy biomass peaked, and the timing of peak anchovy biomass varied by year. Our results support a general pattern among subyearling Chinook salmon occurring from Alaska to California that feeding rates contribute most to growth rate variability during early marine residence, although dominant prey types can differ seasonally, annually, or by ecosystem. In the northern California Current, faster growth appears to be associated with the availability of age‐0 anchovy. Identifying factors that influence the seasonal development of the prey field and regulate prey quantity and quality will improve understanding of salmon growth and survival during early marine residence.  相似文献   

19.
Chinook salmon (Oncorhynchus tschawytscha) populations within the highly modified San Francisco Estuary, California, have seen precipitous declines in recent years. To better understand this decline, a decade of coded‐wire tag release and recovery data for juvenile salmon was combined with physicochemical data to construct models that represented alternative hypotheses of estuarine conditions that influence tag recovery rate in the ocean. An information theoretic approach was used to evaluate the weight of evidence for each hypothesis and model averaging was performed to determine the level of support for variables that represented individual hypotheses. A single best model was identified for salmon released into the Sacramento River side of the estuary, whereas two competitive models were selected for salmon released into the San Joaquin River side of the estuary. Model averaging found that recovery rates were greatest for San Joaquin River releases when estuary water temperatures were lower, and salmon were released at larger sizes. Recovery rate of Sacramento releases was greatest during years with better water quality. There was little evidence that large‐scale water exports or inflows influenced recovery rates in the ocean during this time period. These results suggest that conceptual models of salmon ecology in estuaries should be quantitatively evaluated prior to implementation of recovery actions to maximise the effectiveness of management and facilitate the recovery of depressed Chinook populations.  相似文献   

20.
In recent years, returns of adult sockeye salmon Oncorhynchus nerka to the Columbia River Basin have reached numbers not observed since the 1950s. To understand factors related to these increased returns, we first looked for changes in freshwater production and survival of juvenile migrants. We then evaluated productivity changes by estimating smolt‐to‐adult return rates (SAR) for juvenile migration years 1985–2010. We found SAR varied between 0.2 and 23.5%, with the highest values coinciding with recent large adult returns. However, the largest adult return, in 2012, resulted not from increased survival, but from increased smolt production. We evaluated 19 different variables that could influence SARs, representing different facets of freshwater and ocean conditions. We used model selection criteria based on small‐sample corrected AIC to evaluate the relative performance of all two‐ and three‐variable models. The model with April upwelling, Pacific Northwest Index (PNI) in the migration year, and PNI in the year before migration had 10 times the AICc weight as the second‐best‐supported model, and R2 = 0.82. The variables of April ocean upwelling and PNI in the migration year had high weights of 0.996 and 0.927, respectively, indicating they were by far the best of the candidate variables to explain variations in SAR. While our analyses were primarily correlative and limited by the type and amount of data currently available, changes in ocean conditions in the northern California Current system, as captured by April upwelling and PNI, appeared to play a large role in the variability of SAR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号