首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In experimental grasslands, a positive relationship between biomass production and plant diversity has often been found. Here, we compared a moderately species‐rich old sward with its grass‐dominated counterpart (12 vs. 8 species per 2.5 m2, or 8.3 vs. 0.7% yield proportion of dicots at the start of the experiment) established by herbicide application. We hypothesized an increased N, P and K uptake in the diverse sward related to a higher colonization rate with arbuscular mycorrhizal fungi (AMF), the presence of legumes, and complementary nutrient use of plant species. Phosphorus or N fertilizer application (according to contributions of AMF or legumes) were expected to balance the assumed smaller biomass production of the grass compared to the diverse sward. In two experimental years, N, P and K uptake, biomass production, N2 fixation, and intra‐ and extraradical AMF colonization were investigated in an untreated control and plots that were fertilized with P and N in a low (P1: 20 kg P ha?1; N1: 50 kg N ha?1) or a high dose (P2: 100 kg P ha?1; N2: 500 kg N ha?1) in both swards. Biomass production was larger in the grass compared to the diverse sward. The N, P and K uptake, accumulated over three harvests (or 1.5 years), was also larger in the grass sward. The biomass production ranged from 5.3 to 10.0 t ha?1 and accumulated nutrient uptake from 82 to191 kg N ha?1, 19 to 31 kg P ha?1 and 112 to 221 kg K ha?1. Small legume proportions resulted in an accumulated N2 fixation between 0 and 3 kg ha?1. In the second year, the root length colonized with AMF structures was larger in the diverse compared to the grass sward, and the root length colonized with arbuscules and coils was larger in the N2 treatment compared to the control in the diverse sward. There were hints to higher AMF abundance under conditions of limited P availability (low soil P content, high N:P ratio in plant biomass). We conclude that in semi‐natural grassland of moderate species richness several factors may affect the relationship between plant diversity and productivity, i.e., management, plant species identity, and the number of the plant species of the low‐diversity level.  相似文献   

2.
A field trial was carried out during 1993–94 and 1994–95 winter seasons on Udic Ustochrept to evaluate the performance of dryland barley under varying profile moisture status and nitrogen levels. Three levels of initial moisture status of the root zone profile were: wet (100% field capacity), moderately wet (50% field capacity) and dry (rainfed) as the main treatment. The sub treatments were 0, 40, 60 and 80 kg N ha?1. During 15 to 60 days after sowing (DAS) availability of soil nitrogen and its uptake by the crop attained the highest values under wet regime. However, at 105 and 130 DAS dry moisture regime resulted in maximum values of both available soil nitrogen and plant nitrogen contents. In the same tune biomass production attained the higher values under wet regime as compared to the dry regime during 15 to 60 DAS and the trend was reverse at 105 DAS. Grain yield attained the highest value under dry regime followed by wet and moderately wet regimes. Irrespective of the profile moisture status both productivity and nitrogen use efficiency enhanced with the increase in nitrogen doses from 0 to 80 kg ha?1. Role of nitrogen was more pronounced under wet regime.  相似文献   

3.
In the present work, the efficiency of different nitrogen doses (0, 50, 100, 150, and 200 kg ha?1) on growth, yield, and quality of stevia (Stevia rebaudiana Bert.) was investigated in 2011–2013. The study was conducted in Antalya located in the Mediterranean Region of Turkey. Terra rossa type soil (LVx, FAO) characteristics of the experimental field were clay loam, with high amounts of lime (33,9%) and slightly alkaline (pH 7.7). The experiment was carried out in randomized block design with four replications. All the results were summarized as mean of three years. The highest fresh and dry biomass yields (26.75 t ha?1 and 7.5 ha?1, respectively) were obtained from 150 kg ha?1 N dose and followed by 100 kg ha?1 N dose (26.29 t ha?1 and 7.24 ha?1, respectively). Whereas the highest fresh and dry leaf yields (13.27 t ha?1 and 3.82 t ha?1, respectively) were realized in 100 kg ha?1 N dose. Actually, all nitrogen doses gave higher biomass and leaf yields compared to the control. On the hand, major steviol glycosides (stevioside and rebaudioside A) in the leaf were not influenced by nitrogen levels. In conclusion, 100 kg ha?1 N dose was found to be suitable for cultivation of stevia under field conditions.  相似文献   

4.
Results are presented from a 3 year investigation into nitrate leaching from isolated 0.4 ha grassland plots fertilized with 250, 500 and 900 kg N ha?1 a?1. Cumulative nitrate leaching over the 3 years was equivalent to 1.5%, 5.4% and 16.7% of the fertilizer applied at 250, 500 and 900 kg N ha?1 rates respectively. Over a whole drainage season, mean nitrate leachate concentrations at 250 kg N ha?1 did not exceed 4 mgl?1, although maximum values of 13.3 mgl?1 were observed. In contrast, at 900 kg N ha?1, the mean nitrate leachate concentration in two of the years exceeded 90 mgl?1. Mineral nitrogen balances constructed for the 1979 growing season indicated that leaching at 250 kg N ha?1 was low because net mineralization of soil organic nitrogen was small, and crop nitrogen uptake almost balanced fertilizer application. Although the pattern of nitrate leaching suggested that by-passing occurred in the movement of water down the soil profile, it was not possible to confirm this using simulation models of leaching. Possible reasons for this, including the occurrence of rapid water flow down gravitationally drained macropores, are discussed.  相似文献   

5.
Nutrient fluxes from a soil treatment process for pig slurry   总被引:3,自引:0,他引:3  
Abstract. The effects of pig slurry applications to a hydrologically isolated field treatment plant (at Solepur) were studied over a period of eight years. Thirty repeated doses, averaging 160 m3 ha?1 were applied from April to October of each year (1991–1995), to reach a total application of 4930 m3 ha?1. All slurry samples were analysed for their total solids (TS), macronutrient (C, N, P, K, Ca) and micronutrient (Cu, Zn) content. In total, 284 tonnes of total solids (57 t TS ha?1 yr?1), 115 tonnes of carbon (23 t C ha?1yr?1), 24.5 tonnes of nitrogen (4900 kg N ha?1 yr?1), 7964 kg of phosphorus (1593 kg P ha?1 yr?1), 16 518 kg of potassium (3304 kg K ha?1 yr?1), 183 kg copper (37 kg Cu ha?1 yr?1) and 266 kg zinc (53 kg Zn ha?1 yr?1) were applied to the soil. Thus, this site provides an opportunity to assess the balance and to examine the long‐term behaviour of nutrients under conditions of intensive land application of pig slurries or similar effluents. The main nutrient fluxes through the soil‐water system were determined for each element. Over 40% of the total carbon applied was retained by the soil. About 25% of the slurry nitrogen applied remained in the soil profile and 12.5% was leached through the drainage water as nitrate. Most of the slurry phosphorus applied was retained in the soil profile either as P‐Dyer extractable (83%), or as total soil phosphorus (112%); <0.01% was found in the drainage water. Forty‐three per cent of the potassium applied in the slurry was recovered from the soil profile and 15% was recovered in the drainage water. Most of the copper (62%) and zinc (74%) applied in the slurry remained in the soil as EDTA extractractable forms; very low percentages (0.05% and 0.6% respectively) were found in the drainage water.  相似文献   

6.
The effects of ammonium sulphate (NS) on the accumulation of nutrients in above and below ground biomass and soil were studied in a Norway spruce stand in south-west Sweden during 1988–1993. Ammonium sulphate addition resulted in nitrogen accumulation with 326 and 16 kg ha?1 in above and below ground biomass, respectively. Corresponding figures for the control plots (C) were 34 and 3 kg ha?1. Nitrogen accumulation in forest floor of NS was 266 kg ha?1 and 47 kg ha?1 in mineral soil. About 70% of added sulphate by fertiliser was retained in NS plots (482 kg S ha?1) of which 274 kg ha?1 was adsorbed in the mineral soil. The sulphate addition resulted in increased leaching of nitrogen, magnesium, calcium and sulphur. It is suggested that the spruce stand at the study site has a high capacity to accumulate nitrogen with a high above ground production. The high input of ammonium sulphate may in the long run result in increased losses of cations to ground water.  相似文献   

7.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   

8.
Summary Blue-green algal (Nostoc muscorum) or bryophyte (Barbula recurvirostra) growth on the surface of a brown earth silt loam contained in flooded columns significantly increased soil C (+20.9% and ±23.0%, respectively) and soil N (+25.1% and +9.6%, respectively) after 5 weeks in the surface 0.7-cm soil layer. Differences in the lower layers were not significant since there was no movement of C or N metabolites down the profile, even after 21 weeks. The input of C by the inoculated blue-green algae was estimated at 0.48 Mg C 100-1 g soil or 0.45g C ha-1; the bryophyte growth gave 0.5 Mg C ha-1. N fixation by the blue-green algae alone was estimated at 60 kg N ha-1 after 5 weeks of growth. Blue-green algae associated with bryophyte growth had fixed 23 kg N ha-1 after 5 weeks, rising to 40 kg ha-1 after 21 weeks. Decomposition of the bryophyte biomass led to a significant increase in the dry weight (+16.8%) and the N uptake (+27.5%) of spring oil-seed rape planted in homogenised soil. In contrast, soil incorporation of the blue-green algal biomass had no significant effect on yield. The equivalent mineralized N from the blue-green algal and bryophyte incorporation was estimated as 24 and 58 kg N ha-1, respectively.  相似文献   

9.
The quantities of residual mulch film in the soil will further increase with the wide application of agricultural plastic mulch film, and the pollution of residual mulch film, which is a continuous pollutant and the one that is difficult to degrade, is a major limiting factor for the sustainable development of agriculture in China. Residual mulch film in the soil inevitably affects soil hydrodynamic parameters, destroys the homogeneity of the soil texture, seriously impedes the movement of soil water and solutes, and thus greatly influences crop growth and fruit quality. To unravel the effects of residual mulch film on tomato growth and fruit quality, pot experiments in the greenhouse were carried out in 2015 and 2016 in Northwest China. Six levels of residual mulch film were applied: 0 kg ha?1 (CK), 80 kg ha?1 (T1), 160 kg ha?1 (T2), 320 kg ha?1 (T3), 640 kg ha?1 (T4), and 1280 kg ha?1 (T5). Plant height, stem diameter, dry biomass, yield, root length, root surface area, fruit shape index (FSI), soluble sugar content (SSC), organic acid (OA), vitamin C (VC), lycopene, and nitrate content (NC) were measured. Plant height, stem diameter, dry biomass, and yield of tomato had a downward trend as the residual mulch film amount increased. Root length and root surface area were significantly decreased with an increasing amount of residual mulch film, but root volume and root diameter showed an inconspicuous decrease. When the amount of residual mulch film was more than 80 kg ha?1, growth indexes, dry biomass, and yield of tomato showed a sharp decline. FSI, OA, and lycopene decreased as the residual mulch film amount increased, whereas SSC, VC, and NC showed an increase trend. With the increase in residual mulch film amount, the F and membership function values (X μ ) all showed a declining trend in comparison to the CK. Therefore, residual mulch film can aggravate the negative effects on the comprehensive fruit quality of tomato.  相似文献   

10.
Regional air pollution in northeast Asia is an emerging environmental problem requiring long-term impact assessment of acidic deposition. In this study, the gridded distribution of nitrogen uptake led by both growing forests and harvested biomass for eight tree species: Japanese Larch, Red pine, Korean pine, Oak tree, Chestnut, Other Conifers, Other broad leaved trees, and Mixed forest was identified to estimate critical loads for nitrogen over South Korea. The gridded spatial distribution of averaged nitrogen uptake was mapped by 0.125° Latitude × 0.125° Longitude resolution. The results showed that net uptake of nitrogen led by both growth and harvested biomass was totaled at 438 molc ha?1 year?1 among which harvested biomass contribution was estimated to be 25 molc ha?1 year?1, yielding a very small fraction of total nitrogen uptake presumably due to the younger stages of forest in South Korea.  相似文献   

11.
Natural and mutant strains of A. chroococcum were isolated from Indian soils. Their ability to dissolve phosphate and their phytohormone production were tested under in vitro conditions. In addition the effect of bacterial inoculation of Azotobacter on N, P, K uptake by three P responsive wheat genotypes (Triticum aestivum L.) under greenhouse conditions at five nutrient levels (Control, 90 kg N ha—1, 90 kg N + 26 kg P ha—1, 120 kg N ha—1 and 120 kg N + 26 kg P ha—1) was studied. In vitro phosphate solubilization and growth hormone production by mutant strains was more than by the soil isolates. Inoculation of wheat varieties with the soil isolates and mutant strains of A. chroococcum showed greater NPK uptakes as compared with parent soil isolates. Mutant strains M15 and M37 were proved to be the most effective for all three wheat varieties with regard to NPK uptake as well as root biomass production under greenhouse conditions.  相似文献   

12.
Since the 1950s, large areas of upland peat have been afforested in northern European countries. Due to the poor phosphorus (P) adsorption capacity and low hydraulic permeability in blanket peat soil and increased labile P sources, harvesting these blanket peat forests can significantly increase P concentrations in the receiving aquatic systems. This paper briefly reviews the current management practices on the control of P releases from forestry in Ireland and the UK, and proposes a possible novel practice??grass seeding clearfelled areas immediately after harvesting, which should reduce P release from blanket peat forest harvesting. The study was conducted in the Burrishoole Catchment in the west of Ireland. A field trial was carried out to identify the successful native grass species that could grow quickly in the blanket peat forest. The two successful grass species??Holcus lanatus and Agrostis capillaris??were sown in three blanket peat forest study plots with areas of 100, 360, and 660 m2 immediately after harvesting. Areas without grass seeding were used as controls. One year later, the P content in the aboveground vegetation biomass of the three study plots were 2.83, 0.65, and 3.07 kg P?ha?1, respectively, which were significantly higher than the value of 0.02 kg P?ha?1 in the control areas. The water extractable phosphorus in the three study plots were 8.44, 9.83, and 6.04 mg?(kg dry soil)?1, respectively, which were lower than the value of 25.72 mg?(kg dry soil)?1 in the control sites. The results indicate that grass seeding of the peatland immediately after harvesting can quickly immobilize significant amounts of P and warrants additional research as a new Best Management Practice following harvesting in the blanket peatland forest to mitigate P release.  相似文献   

13.
Alternative use of poultry litter (PL) for forest rather than pasture fertilization would improve forest soil fertility and reduce nutrient build-up in pasture. Yield and nutrient uptake of Alamo switchgrass (Panicum virgatum L.) in a loblolly pine (Pinus taeda L.) silvopasture annually fertilized with PL or urea at 80 and 160 kg N ha?1 for four years, and without fertilization were compared. Treatment effects on soil fertility and effect of PL on runoff water quality were also determined. Fertilization with N increased yields 120% to an average of 3.8 Mg ha?1 yr?1. Since nutrient removal was small, P, base cations and pH increased in the ≤30 cm depth soil with PL. Total P in edge-of-plot runoff was increased by 0.31 kg ha?1 y?1 at the higher PL rate. Two applications at this rate per tree rotation might be justified based on increased soil fertility and infrequently increased P load.  相似文献   

14.
A field experiment was conducted during 2008 and 2009 at the Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India, to study the effect of organic sources of nutrient on yield, nutrient uptake, fertility status of soil, and quality of stevia crop in the western Himalayan region. The experiment comprised eight different combinations of organic manure [farmyard manure (FYM), vermicompost (VC), and apple pomace manure (AP)]. Total leaf dry biomass increased by 149% over the control with application of VC 1.5 t ha?1 + AP 5 t ha?1. Application of organic manures enhanced organic carbon and available nutrient status of soil more than the control. Nitrogen (N) and phosphorus (P) content in stem were significantly affected by the application of organic manures over the control. Stevia plants supplied with FYM 10 t ha?1 + AP 2.5 t ha?1 recorded more total glycoside than other treatments. Stevioside yield (kg ha?1) was greater with application of FYM 10 t ha?1 + AP 2.5 t ha?1.  相似文献   

15.
Unground 15N-labelled medic material (Medicago littoralis) was mixed with topsoils at 3 field sites in South Australia, allowed to decompose for about 8 months before sowing wheat, and then for a further 7 months until crop maturity. The site locations were chosen to permit comparisons of recoveries and distribution of 15N in soils (organic N and inorganic N to 90 cm depth) and wheat (grain, straw and roots to 20 cm depth) in areas where rainfall (and wheat yields) differed greatly. Soils differed also in their texture and organic matter contents. Recoveries of applied 15N in wheat plus soil were 93.1% from a sandy loam (Caliph) and 92.3% from a sandy soil (Roseworthy) despite differences in rainfall and extent of leaching of the 15NO3? formed from the decomposing medic residues. From a heavy clay soil (Northfield), which received the highest rainfall, the 15N recovery was 87.7%. The loss of 15N at this site was not due to leaching, as judged by 15NO3? distribution in the soil profile at seeding and crop maturity.Wheat plants took up only 10.9–17.3% of the 15N added as legume material. Percentage uptakes of 15N were not related to grain yields. The proportions of wheat N derived from decomposing medic residues were 9.2% at Caliph (input medic, N, 38 kg N ha?1), 10.5% at Roseworthy (input medic N, 57 kg N ha?1), and only 4.6% at Northfield (input medic N, 57 kg N ha?1). Most (51–70%) of the 15N recovered in wheat was accounted for in the grain. Inorganic 15N in the soil profiles was depleted during the cropping phase, and at wheat harvest represented from 0.6 to 3.1% only of 15N inputs. The major 15N pool was soil organic 15N accounting for 71.9–77.7% of 15N inputs.We conclude that, in the context of N supply from decomposing medic tissues to wheat crops, the main value of the legume is long-term, i.e. in maintaining soil organic N concentrations to ensure adequate delivery of N to future cereal crops.The N of the wheat was not uniformly labelled, root N being generally of the highest atom% enrichmensts, and straw N of the lowest. Nevertheless, at the Roseworthy site, the enrichments of wheat N were similar to those of NO3? N in the profile at seeding, indicating that the proportions of 14N and 15N in the inorganic N pool did not change appreciably during the cropping period. By assuming equilibrium at this site, we calculate that during 15 months decomposition the soil plus legume delivered about 189 kg N ha?1, of which 93.2 kg ha?1 (49.3%) was taken up by the wheat, 37.2 kg ha?1 (19.7%) was immobilized or remained as fine root residues, and 17.3 kg ha?1 (9.2%) remained as inorganic N in the soil profile; 41.7 kg ha?1 (22.1%) was unaccounted for in the soil-plant system, and was probably lost via inorganic N. Thus about 6.5 kg inorganic N ha?1 was supplied by the soil plus medic residues per 100 kg dry matter ha?1 removed as wheat grain.  相似文献   

16.
Dissolved organic matter (DOM) dynamics in spruce forested sites - examinations by analytical DOM fractionation Dissolved organic matter from two spruce forested sites in the Fichtelgebirge (Germany) was divided into different chemical and functional fractions, and the budgets of the fractions obtained were calculated. For both sites hydrophobic acids (HoS), hydrophilic acids (HiS), hydrophobic neutrals (HoN), hydrophilic neutrals (HiN), and hydrophilic bases (HiB) are discriminated concerning their dynamics in the compartments. Most of the HiN and HoN are mobilized by leaching from the forest canopy. Both neutral fractions are netto retained in the forest floor as well as in the mineral soil. In contrast, HoS and HiS are mainly released in the organic layers with a total input of organic acids from the forest floor into the mineral soil of ca 100 kg C (HoS) ha?1 a?1, and 50 kg C (HiS) ha?1 a?1, respectively. HoS are selectively better retained in the mineral horizons, leading to a mineral soil output of 2.4 – 4.4 kg C (HoS) ha?1 a?1, and 2.7 – 6.5 kg C (HiS) ha?1 a?1, respectively. It is concluded that the different mobility of the DOM fractions has implications for the mobilization and transport of organic pollutants and heavy metals.  相似文献   

17.
We lack an understanding of nitrogen (N) cycles in tropical forests of Africa, although the environmental conditions in this region, such as soil type, vegetation, and climate, are distinct when compared with other tropical forests. Herein, we simultaneously quantified N fluxes through precipitation, throughfall, and 0-, 15-, and 30-cm soil solutions, as well as litterfall, in two forests with different soil acidity (Ultisols at the MV village (exchangeable Al3+ in 0–30 cm, 126 kmolc ha–1) and Oxisols at the AD village (exchangeable Al3+ in 0–30 cm, 59.8 kmolc ha–1)) over 2 years in Cameroon. The N fluxes to the O horizon via litterfall plus throughfall were similar for both sites (MV and AD, 243 and 273 kg N ha–1 yr–1, respectively). Those values were remarkably large relative to other tropical forests, reflecting the dominance of legumes in this region. The total dissolved N flux from the O horizon at the MV was 28 kg N ha–1 yr–1, while it was 127 kg N ha–1 yr–1 mainly as NO3-N (~80%) at the AD. The distinctly different pattern of N cycles could be caused by stronger soil acidity at the MV, which was considered to promote a superficial root mat formation in the O horizon despite the marked dry season (fine root biomass in the O horizon and its proportion to the 1-m-soil profile: 1.5 Mg ha–1 and 31% at the MV; 0.3 Mg ha–1 and 9% at the AD). Combined with the published data for N fluxes in tropical forests, we have shown that Oxisols, in combination with N-fixing species, have large N fluxes from the O horizon; meanwhile, Ultisols do not have large fluxes because of plant uptake through the root mat in the O horizon. Consequently, our results suggest that soil type can be a major factor influencing the pattern of N fluxes from the O horizon via the effects of soil acidity, thereby determining the contrasting plant–soil N cycles in the tropical forests of Africa.  相似文献   

18.
The primary aims of the present investigation were to determine the proportion of microbial driven soil processes associated with acidification in coniferous forest soils, and the response of microbial communities with respect to soil acidification and to acidification processes. Lysimeters containing undisturbed soil columns from five forest sites in Europe were installed in a spruce forest in the Soiling (northern Germany) and exposed to the same input and climatic conditions. In the present study root uptake was excluded. Under these conditions, during the 21 months of the experiment, acid load by microbial N-transformations especially mineralization and subsequent nitrification were the most important processes ranging from 50.2% to 79.1%. Except for one soil the balances showed, that increasing levels of soil acidity decreased the potential of mineralization. This agreed with the observation that microbial biomass Cmic decreased. The biomass Cmic (kg ha?1 a?1) was significantly correlated to N-output. The caloric quotient qW increased parallel to decreasing pH. During the experiment the PH in all mineral soil horizons decreased significantly. This change in soil chemical conditions did not affect the microbial biomass Cmic but the caloric quotient increased during the experiment, especially in the upper mineral soil.  相似文献   

19.
Rising soil salinity has been a major problem in the soils of Egypt in recent decades. Potassium fertilization and salicylic acid (SA) play an important role in promoting plants to tolerate salt stress and increased the yield of sugar beet crop. A field experiment on sugar beet (Beta vulgaris L.) grown on saline soil was carried out during 2014 growing season in Port Said Governorate, Egypt, to study the effect of potassium fertilization of the soil at applications of 0, 100, 150, and 200 kg potassium (K) ha?1 and foliar spray of SA by solution of 1000 mg L?1, twice (1200 L ha?1 each time) on yield and nutrient uptake. Application of 200 kg K ha?1 in combination with salicylic foliar spray gave the highest root length, root diameter, shoot and root yield, sucrose, juice purity percentage, gross sugar yield, and white possible extractable sugar, nitrogen (N), phosphorus (P), and potassium (K) content, and uptake of sugar beet. The highest increase in sucrose (20%) as well as white possible extractable sugar (184%) was obtained by 200 kg K ha?1 in combination with salicylic foliar spray compared with untreated soil with potassium fertilization and without salicylic foliar spray.  相似文献   

20.
ABSTRACT

AquaCrop applies an automatic calibration procedure through semi-quantitative approach to determine degree of soil fertility stress on crop production and water productivity. The objective of this study was to assess this capability of AquaCrop to simulate maize grain yield and biomass production, canopy cover and soil water content in the root zone under different nitrogen (N) applications in a semi-arid environment. The field experiments were conducted at the research farm located in Tehran, over the 2015 and 2016 growing seasons. Five N treatments were investigated including no nitrogen (N0), 50(N1), 100(N2), 150(N3) and 200 kg N. ha?1 (N4) for each year. Calibration was carried out using the data of N0 and N4 in 2015 and validation in the field was performed with remaining data. The results indicated that the range of relative root-mean-square error (RRMSE), coefficient of determination (R2) and mean bias error (MBE), for estimating final biomass production were obtained as 5.16%, 0.966, 0.28 ton. ha?1, and for final grain yield were 14.64%, 0.939, 0.56 ton. ha?1, respectively. The AquaCrop simulated canopy cover and biomass production development with RRMSE of 16.23–24.12% and 6.09–32.39%, respectively. The performance of the model for simulating soil water content was also good with RRMSE< 10.78%. Over all, these results confirmed that the AquaCrop model could be an applicable tool for managing maize production under different N stresses in a semi-arid environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号