首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surfactants are used to increase the efficiency of herbicide formulations mainly because they wet out leaf surfaces, thereby stabilising and increasing the contact area of droplets on the surface. Herbicide penetration through the cuticle may also be facilitated. The work described eliminates effects on wetting and contact area in order to study the effect of surfactants on the penetration and movement of paraquat in cocksfoot. Surfactants were various types of alcohols and amine oxides condensed with 2 to 30 moles of ethylene oxide used at 0.1 to 0.5%. An adult leaf of cocksfoot (Dactylis glomerata) was immersed briefly to constant area in paraquat solutions containing surfactant and uptake and movement of paraquat is recorded. Uptake was little affected by differences in surfactant structure except where surface activity was low and solutions failed to wet out the leaf surface. Percentage movement with 0.5% surfactant was often less than that with 0.1% and a high ethylene oxide content also reduced percentage movement. Paraquat activity was influenced by both the degree of uptake and movement, but movement was the greater influence. Amine oxide surfactants reduced movement less than those based on alcohols. The action of surfactants is discussed in terms of a hydrophobic/hydrophilic balance in the surfactant molecule.  相似文献   

2.
Surfactant and salt affect glyphosate retention and absorption   总被引:1,自引:0,他引:1  
The influence of nonylphenoxy surfactants and glyphosate salt formulation on spray retention, phytotoxicity and [14C]glyphosate uptake was investigated in wheat (Triticum aestivum L). and Kochia scoparia L. The amount of spray retained, and uptake of [14C]glyphosate increased with increasing hydrophilic-lipophilic balance (HLB) value of surfactants. The volume of spray delivered to the plant treatment area and retained by wheat and K. scoparia plants increased with increasing surfactant HLB values, but this only partly accounted for the higher spray retention. Spray retention by leaves of plants was not affected by calcium chloride, either alone or with ammonium sulphate in the glyphosate spray solution. [14C]Glyphosate absorption by wheat and K. scoparia was reduced by calcium chloride alone, but not in mixtures with ammonium sulphate, regardless of surfactant. Phytotoxicity and uptake of glyphosate salt formulations for wheat was: isopropylamine > ammonium > sodium > calcium; these results indicate that the surfactant selected is important to maintain glyphosate efficacy and that sodium and calcium cations antagonize glyphosate by forming salts that are absorbed less than commercial isopropylamine formulations.  相似文献   

3.
The influence of a number of commercial nonionic polyoxyethylene surfactants on the foliar penetration and movement of two systemic fungicides, ethirimol and diclobutrazol, was studied in outdoor-grown wheat plants at different growth stages and post-treatment temperatures in two consecutive growing seasons. Both fungicides were applied as ca 0·2 μl droplets of aqueous suspension formulations containing 0·5 g litre?1 of 14C-labelled active ingredient; surfactants were added to these suspensions at concentrations ranging from 0·2-10 g litre?1. To achieve optimum uptake of each fungicide the use of surfactants with different physicochemical properties was required. For diclobutrazol, a lipophilic compound, uptake of radiolabel was best with surfactants of low mean molar ethylene oxide (E) content (5-6) but it was necessary to use concentrations of ca 5 g litre?1 to attain this. The surfactant threshold concentration for uptake enhancement of radiolabel from ethirimol formulations (< 2 g litre?1) was much lower than that for diclobutrazol but surfactants with E contents > 10 induced the greatest amount of uptake. For both fungicides, surfactants with an aliphatic alcohol hydrophobe were generally more efficient in promoting their uptake than those with a nonylphenol moiety. The sorbitan-based surfactant ‘Tween 20’ proved to be an effective adjuvant only for the ethirimol formulation; the uptake enhancing properties of the block copolymer ‘Synperonic PE/F68’ were weak. Uptake performance could not be related to the spreading properties of the respective formulations on the wheat leaf surface or to differences in solubilisation of the two fungicides by the surfactants. Although surfactants could substantially increase the amount of acropetal transport of radiolabel from both fungicides, none of those tested specifically promoted it; a constant proportion of the radioactive dose absorbed by a treated leaf was usually exported away from the site of application. The results are discussed in the light of current theories about the mode of action of surfactants as spray adjuvants.  相似文献   

4.
Composition-concentration relationships between a series of C13/C14 polyoxyethylene primary alcohol (AE) surfactants and the foliar uptake enhancement of five model neutral organic compounds were examined in factorially designed experiments on wheat (Triticum aestivum L.) and field bean (Vicia faba L.) plants grown under controlled environment conditions. Model compounds were applied to leaves as c.0.2-μl droplets of 0.5 g litre?1 solutions in aqueous acetone in the absence or presence of surfactants at 0.2, 1 and 5g litre?1. Uptake of the highly water-soluble compound, methylglucose (log octanol-water partition coefficient (P) = - 3.0) was best enhanced by surfactants with high E (ethylene oxide) contents (AE15, AE20), whereas those of the lipophilic compounds, WL110547 (log P = 3.5) and permethrin (log P = 6.5), were increased more by surfactants of lower E contents, especially AE6. However, there was little difference between AE6, AE11, AE15 and AE20 in their ability to promote uptake of the two model compounds of intermediate polarity, phenylurea (log P = 0.8) and cyanazine (log P = 2.1). Absolute amounts of compound uptake were also influenced strongly by both surfactant concentration and plant species. Greatest amounts of uptake enhancement were often observed at high surfactant concentration (5 g litre?1) and on the waxy wheat leaves compared with the less waxy field bean leaves. The latter needed higher surfactant thresholds to produce significant improvements in uptake. Data from our experiments were used to construct a simple response surface model relating uptake enhancement to the E content of the surfactant added and to the physicochemical properties of the compound to be taken up. Qualitative predictions from this model might be useful in rationalising the design of agrochemical formulations.  相似文献   

5.
The effects of octylphenol (OP) and four of its ethoxylated derivatives on uptake into, and distribution within, maize leaf of 2-deoxy-glucose (2D-glucose), atrazine and o, p′-DDT are reported. The surfactants and OP (2 g litre?1 in aqueous acetone) increased the uptake, at both 1.5 and 24 h, of the three model compounds (applied at 1 g litre?1) having water solubilities in the g, mg and μg litre?1 ranges. The uptake of 2D-glucose was positively correlated with the hygroscopicity of the surfactants. The uptake of DDT and atrazine increased with the uptake of the surfactants, being inversely related to their hydrophile:lipophile balance (HLB). Uptake of 2D-glucose and atrazine was enhanced at high humidity, the relative enhancement for atrazine increasing with increasing ethylene oxide (EO) content of the surfactants. A significant proportion of the atrazine and DDT entering the leaf was recovered from the epicuticular wax, the amount of atrazine recovered from the wax increasing with the EO content of the surfactants. The proportion of the surfactants taken up which was recovered from the epicuticular wax was minimal at an EO content of 12.5–16 mole equivalents. The appearance of the deposits on the leaf surface differed markedly among the surfactants, with similar trends for all three chemicals and without visible evidence for infiltration of the stomatal pores. The total quantities of glucose and atrazine translocated were increased by all surfactants but that of DDT was not, despite increases in uptake of up to 7.5-fold. Relative translocation (export from treated region of leaf as a percentage of chemical penetrating beyond the epicuticular wax) was reduced in all cases in the presence of surfactant. Up to 30% of the applied [14C]chemicals was not recovered from the treated leaf after 24 h. The reduced recovery of 2D-glucose, but not that of atrazine and DDT, was largely attributable to movement out of the treated leaf, with approximately 70% of the chemical taken up being translocated basipetally. Loss of atrazine and DDT was a result of volatilisation. There was no evidence that either [14C]2 D-glucose or [14C]atrazine was metabolised to [14C]carbon dioxide.  相似文献   

6.
BACKGROUND: Surfactants are very often used for more efficient pesticide spraying, but knowledge about their influence on the leaching potential for pesticides is very limited. In the present study, the leaching of the herbicide bentazone [3‐isopropyl‐1H‐2, 1,3‐benzothiadiazin‐4(3H)‐one 2,2‐dioxide] was measured in columns with sandy loam soil with or without the addition of a non‐ionic surfactant, octylphenol ethylene oxide condensate (Triton X‐100, Triton), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), and in the presence of both surfactants (SDBS + Triton). RESULTS: The mobility of bentazone (B) increased in the following order: B + Triton (slowest) < B + SDBS + Triton < B < B + SDBS (fastest). When Triton X‐100 was applied to the soil together with bentazone, the leaching of bentazone in the soil decreased significantly compared with leaching of bentazone without the addition of surfactant. SDBS and Triton X‐100 neutralised their influence on the leaching speed of bentazone in the soil columns when both surfactants were applied with bentazone. CONCLUSION: From the study it can be concluded that, depending on their properties, surfactants can enhance or reduce the mobility of bentazone. By choosing a non‐ionic surfactant, bentazone mobility can be reduced, giving time for degradation and thereby reducing the risk of groundwater pollution. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
Foliar uptake into eleven plant species, grown under controlled environment, has been determined for spray deposits of glyphosate, 2, 4-D and prochloraz applied as solutions in aqueous solvents in the presence and absence of an ethoxylated nonylphenol surfactant. Over 24 h, uptake of glyphosate did not exceed 6% of applied chemical into any species whereas uptake of 2, 4-D and prochloraz differed between species and was modified significantly by the addition of surfactant. Uptake of prochloraz was increased consistently by adding surfactant, but the response of 2, 4-D was variable. Increased uptake was attributed mainly to surfactant-enhanced wetting of the leaf surfaces. Uptake of prochloraz per unit wetted area increased in the presence of surfactant but that of 2, 4-D decreased. Uptake of either chemical did not correlate with the presence of specialised leaf surface structures, cuticular morphology or distribution of the chemicals within the dried deposits. The dried chemicals were distributed either uniformly or as annuli as a result of complex interactions between the active ingredient, surfactant and the leaf surfaces. Regression analysis indicated that the epicuticular wax and cuticular membrane were the major sinks for both 2, 4-D and prochloraz during the 24-h period.  相似文献   

8.
The effect of non-ionic nonylphenol (NP) surfactants containing 4–14 ethylene oxide (EO) molecules on the distribution of asulam and diflufenican was investigated in Pteridium aquilinum L. Kuhn and Avena fatua L. The distribution of the herbicides was dependent on the EO content and concentration of surfactant and differed between plant species and herbicide. The surface properties of contact angle, droplet diameter and surface tension were examined. For solutions of asulam, the greatest reductions in contact angle, surface tension and greatest droplet diameter were obtained with surfactants of EO 6.5–10 (at 0.001–0.1%). For solutions of diflufenican, these responses were greatest when applied with surfactant of EO 4. Surfactants of EO 6.5–10 increased the uptake and translocation of [14C]asulam in P. aquilinum, particularly at surfactant concentrations of 0.01 % and 0.1 %. All surfactants increased uptake of [14C]asulam in A. fatua with no significant effects of surfactant EO number or concentration. For both species, there was a positive correlation between the optimum surface characteristics of the herbicide droplets and the uptake of asulam. With diflufenican, greatest uptake and translocation by mature frond tissue of P. aquilinum occurred at the highest concentration of surfactant EO 4; in A. fatua, however, uptake and translocation were not significantly affected by any of the surfactants.  相似文献   

9.
Structure-concentration–foliar uptake enhancement relationships between commercial polyoxyethylene primary aliphatic alcohol (A), nonylphenol (NP), primary aliphatic amine (AM) surfactants and the herbicide glyphosatemono(isopropylammonium) were studied in experiments with wheat (Triticum aestivum L.) and field bean (Vicia faba L.) plants growing under controlled-environment conditions. Candidate surfactants had mean molar ethylene oxide (EO) contents ranging from 5 to 20 and were added at concentrations varying from 0·2 to 10 g litre?-1 to [14C]glyphosate formulations in acetone–water. Rates and total amounts of herbicide uptake from c. 0·2–μl droplet applications of formulations to leaves were influenced by surfactant EO content, surfactant hydrophobe composition, surfactant concentration, glyphosate concentration and plant species, in a complex manner. Surfactant effects were most pronounced at 0·5 g acid equivalent (a.e.) glyphosate litre?-1 where, for both target species, surfactants of high EO content (15–20) were most effective at enhancing herbicide uptake: surfactants of lower EO content (5–10) frequently reduced, or failed to improve, glyphosate absorption. Whereas, at optimal EO content, AM surfactants caused greatest uptake enhancement on wheat, A surfactants gave the best overall performance on field bean; NP surfactants were generally the least efficient class of adjuvants on both species. Threshold concentrations of surfactants needed to increase glyphosate uptake were much higher in field bean than wheat (c. 2 g litre?-1 and < 1 g litre?-1, respectively); less herbicide was taken up by both species at high AM surfactant concentrations. At 5 and 10 g a.e. glyphosate litre?-1, there were substantial increases in herbicide absorption and surfactant addition could cause effects on uptake that were different from those observed at lower herbicide doses. In particular, the influence of EO content on glyphosate uptake was now much less marked in both species, especially with AM surfactants. The fundamental importance of glyphosate concentration for its uptake was further emphasised by experiments using formulations with constant a.i./surfactant weight ratios. Any increased foliar penetration resulting from inclusion of surfactants in 0·5 g litre?-1 [14C]glyphosate formulations gave concomitant increases in the amounts of radiolabel that were translocated away from the site of application. At these low herbicide doses, translocation of absorbed [14C]glyphosate in wheat was c. twice that in field bean; surfactant addition to the formulation did not increase the proportion transported in wheat but substantially enhanced it in field bean.  相似文献   

10.
Summary. Several alkylphenol ethylene oxide ether non-ionic surfactants were tested in aqueous foliar sprays with dalapon, amitrole and paraquat for (heir enhancement of phytocidal activity against Zea mays L. With three homologous series of surfactants studied (octyl-, nonyl- and laurylphenol types), the herbicide, the surfactant concentration and the hydrophilic constitution (ethylene oxide content) of the surfactant molecule all markedly influenced maximum toxicity. Smaller apparent differences in effectiveness were also attributable to the hydrophobic (alkylphenol) portion of the surfactant. The results arc discussed in relation to possible cuticle-spray solution interactions and their influence on herbicide penetration.
Relations entre la structure et l'activite de produits tensio-actifs non ionigues, a base d'éther d'oxyde éthylénique et d'alkylphénol, en présence de trois herbicides hydrosolubles  相似文献   

11.
Surfactants are still considered to be agents which either increase spray coverage of leaves with herbicidal solutions and/or increase herbicide penetration into the leaves. Experiments where the method of application largely eliminates leaf wetting as a factor in paraquat uptake show that this is an over-simplification. Its efficiency in the plant is influenced by penetration and most of all by the degree of movement down the plant into untreated leaves. Results on the uptake, movement and biological activity of paraquat are reported using cocksfoot and wheat. A relation is found between paraquat movement and the hydrophilic nature of the surfactant. It moves most when the number of ethylene oxide residues is less than six and it is minimal when the number is 10 to 15. Leaf penetration, however, is at a maximum when movement under the influence of surfactant is least. Partition studies in which surfactants are distributed between leaf wax and water are described. There is a direct correlation between the degree of partition of the surfactant into the wax and the degree of movement of paraquat in cocksfoot and wheat. Surfactants are essential components of a paraquat formulation to wet the leaf surface and increase penetration but, when the surfactant also penetrates into the leaf, it reduces the mobility of paraquat and hence its efficiency.  相似文献   

12.
It is well known that environmental conditions have an important influence on herbicide efficacy. In particular, the effect of humidity on herbicide uptake has been attributed to changes in cuticle hydration and droplet drying. As early as the 1950s, it was hypothesized that humectants such as glycerol would enhance herbicide uptake by not letting droplets dry, thus maintaining the herbicide in solution, and hence making it available for uptake. Shortly thereafter, evidence was found to support this hypothesis and humectants were used successfully in warm, dry areas to increase herbicide efficacy. However, by the mid-1980s, there was little use of humectants as research on humectants gave way to investigations on the effect of ethylene oxide (EO) content on surfactant performance to improve herbicide uptake and efficacy. While ethoxylated surfactants effectively increase the uptake of both lipophilic and hydrophilic herbicides, the suggestion that long EO chains have humectant properties is misleading, since the studies that led to this suggestion were performed at high humidity, which would prevent rapid droplet drying. Furthermore, current evidence suggests that highly water-soluble, ionic herbicides may be more sensitive to low humidity and rapid drop drying than lipophilic herbicides. Therefore, an overview is presented on the interaction of water-soluble herbicides with surfactants, the cuticle, and humidity, with particular emphasis on the impact of low humidity and humectants on herbicide uptake. It was found that when one focuses on research performed at low humidity the importance of humectants emerges, which is not in keeping with what is now commonly accepted.  相似文献   

13.
In several pot and field experiments additions of 1–10% w/v ammonium sulphate and/or 0.1–2.5% w/v surfactant increased the phytotoxicity to A. repens of sprays containing 0.2–0.5 kg/ha glyphosate. There were similar results with technical glyphosate-isopropylamine salt and formulated ‘Roundup’. Higher ammonium sulphate concentrations were sometimes antagonistic. Additions of ammonium sulphate without surfactant generally had less effect on phytotoxicity. While several surfactants increased glyphosate activity the order of effectiveness of these products varied according to whether or not ammonium sulphate was also present. When used alone, relatively hydrophilic non-ionic or cationic products had more effect. In mixtures with ammonium sulphate, however more lipophilic surfactants gave superior results. Ammonium sulphate (5%) with a lipophilic cationic surfactant (0.5% Ethomeen C12) enhanced the effects of very low volume controlled-drop applications as well as conventional medium volume sprays. In a field trial 0.25 kg/ha glyphosate applied with those additives in 20 l/ha of spray had as much effect on bud viability as l kg/ha applied conventionally.  相似文献   

14.
This study determined the uptake of three model compounds, applied in the presence and absence of surfactants, into the leaves of three plant species (Chenopodium album L, Hedera helix L and Stephanotis floribunda Brongn). The results with 2-deoxy-D-glucose, 2,4-dichlorophenoxyacetic acid and epoxiconazole in the presence ofsurfactants (the polyethylene glycol monododecyl ethers C12EO3, C12EO6, C12EO10 and a trisiloxane ethoxylate with mean EO of 7.5, all used at one equimolar concentration and therefore different percentage concentrations) illustrate that the initial dose (nmol mm(-2)) of xenobiotic applied to plant foliage is a strong positive determinant of uptake. This held true for all the xenobiotics studied over a wide concentration range in the presence of these surfactants. Uptake on a unit area basis (nmol mm(-2)) could be related to the initial dose of xenobiotic applied per unit area (ID) by an equation of the form: Uptake = a [ID]b at time t = 24h. ID is given by the mass of xenobiotic applied, M divided by the droplet spread area, A. Total mass uptake is then calculated from an equation of the form: Total Uptake = a [ID]b x A.  相似文献   

15.
The effects of several nonionic surfactants on [14C]glyphosate mono(isopropylammonium) diffusion across isolated tomato fruit cuticles (Lycopersicon esculentum Mill.) were compared under controlled atmospheric conditions (25°C; 65% R.H.) using a model system consisting of 1-μl droplets applied to isolated cuticles on agar blocks. Rates of diffusion for glyphosate (10 g acid equivalent litre?1 in the applied solution) and overall amounts recovered in underlying agar blocks were influenced by the ethylene oxide (EO) chain length for a homologous nonylphenol surfactant series (10 g litre?1). Glyphosate uptake increased with EO content, reaching an optimum at a mean of 17 EO, then decreasing below control values for surfactants with 40 EO. There was a strong influence of the hydrophobe on glyphosate penetration for different surfactants with similar mean EO content (10 EO). The primary aliphatic amine enhanced penetration the most, followed by the nonylphenol while the aliphatic alcohol showed no improvement on glyphosate transfer across cuticles. Water soprtion was greatly enhanced by a primary aliphatic amine (10 EO) and by a nonylphenol (17 EO). The aliphatic alcohol (10 EO) and a shorter-chained nonylphenol (4 EO) did not significantly enhance water sorption. Comparison of water sorption with glyphosate diffusion across cuticles suggests a strong relationship between the two. Change in solution pH over a limited range had no significant effect. Promotion of cuticular hydration by surfactants may thus play an important role in the enhancement of foliar uptake of water-soluble herbicides such as glyphosate.  相似文献   

16.
Surfactants increase the uptake of some foliar-applied chemicals to a greater extent than would be expected from their effects on surface tension and spray coverage. This study of the uptake of 2, 4-D [(2, 4-dichlorophenoxy)acetic acid] evaluated the effect of surfactants on penetration through and sorption by isolated cuticles of apple leaves. [14C]2, 4-D was placed in glass chambers affixed to enzymatically isolated adaxial apple leaf cuticles after the cuticle segments had been treated with various surfactants. The same surfactant pretreatments were included in sorption studies in which cuticle segments were immersed in [14C]2, 4-D for 96 h. Quantities of 2, 4-D passing through or sorbed by the cuticle were determined. Similar experiments were conducted with unaltered cuticles and cuticles dewaxed with chloroform. The hydrophile-lipophile balance (HLB) of polyethylene-glycol-based surfactants was inversely related to the sorption of those surfactants by the cuticles and penetration of 2, 4-D. Sorption of 2, 4-D by apple leaf cuticles was unaffected by surfactant pretreatment. Dewaxed cuticle membranes showed a similar response to 2, 4-D penetration and sorption following the surfactant pretreatment.  相似文献   

17.
18.
Ellman's method of cholinesterase assay which is often used for residue analysis of organophosphorus insecticides has been modified by adding the protein denaturant, sodium dodecyl sulphate, to control the duration of the reaction. In doing so, the reaction time can be standardised to facilitate the measurement in a field laboratory of residues of water-soluble organophosphates, particularly on plant surfaces that have been subjected to sprays. Thirty samples can be analysed in 1 h by timing each step of the procedure for a series of 30 reaction tubes at 1-min intervals from the incubation of the enzyme with the insecticide to the final addition of the sodium dodecyl sulphate. Results from a series of aerial spray trials are presented and discussed briefly as an example of a field application of the method.  相似文献   

19.
This study has determined the uptake of three pesticides, applied as commercial or model formulations in the presence of a wide range of surfactants, into the leaves of three plant species (bentazone into Chenopodium album L. and Sinapis alba L., epoxiconazole and pyraclostrobin into Triticum aestivum L.). The results have confirmed previous findings that the initial dose (nmol mm(-2)) of xenobiotic applied to plant foliage is a strong, positive determinant of uptake. This held true for all the pesticide formulations studied, although surfactant concentration was found to have an effect. The lower surfactant concentrations studied showed an inferior relationship between the amount of xenobiotic applied and uptake. High molecular mass surfactants also produced much lower uptake than expected from the dose uptake equations in specific situations.  相似文献   

20.
BACKGROUND: The efficacy enhancement of dimethomorph formulation by several adjuvants is thought to be through increased foliar uptake. In order to identify the most effective adjuvants, the adjuvancy of 36 additives was examined in aqueous formulations in relation to the absorption of dimethomorph by cucumber leaves. RESULTS: Polyethylene glycol monohexadecyl ethers with ethylene oxide (EO) contents of between 7 and 20, polyethylene glycol monooctadecyl ethers with EO contents of between 10 and 20 and polyethylene glycol monooctadecenyl ethers with EO contents of between 6 and 20 were effective adjuvants for promoting dimethomorph uptake from both aqueous acetone solutions and aqueous wettable powder (WP) suspensions into cucumber leaves. Polyethylene glycol monododecyl ethers with EO contents of between 7 and 9 were effective in promoting dimethomorph uptake from aqueous WP suspensions but less effective relative to the other adjuvants tested with aqueous acetone solutions. Foliar uptake of dimethomorph was also facilitated by the addition of methyl hexadecanoate, methyl octadecenoate and methyl octadecadienoate. CONCLUSIONS: Although the foliar uptake of dimethomorph from both aqueous WP suspensions and aqueous acetone solutions was greatest in the presence of fatty alcohol ethoxylates generally having a C16 or C18 lipophile, uptake from aqueous surfactant–acetone solutions was, on average, 7.6‐fold greater than that from aqueous WP suspensions containing surfactant. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号