首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Forty-two seronegative cats received an initial vaccination at 8 weeks of age and a booster vaccination at 12 weeks. All cats were kept in strict isolation for 3 years after the second vaccination and then were challenged with feline calicivirus (FCV) or sequentially challenged with feline rhinotracheitis virus (FRV) followed by feline panleukopenia virus (FPV). For each viral challenge, a separate group of 10 age-matched, nonvaccinated control cats was also challenged. Vaccinated cats showed a statistically significant reduction in virulent FRV-associated clinical signs (P = .015), 100% protection against oral ulcerations associated with FCV infection (P < .001), and 100% protection against disease associated with virulent FPV challenge (P < .005). These results demonstrated that the vaccine provided protection against virulent FRV, FCV, and FPV challenge in cats 8 weeks of age or older for a minimum of 3 years following second vaccination.  相似文献   

3.
4.
OBJECTIVE: To evaluate duration of immunity in cats vaccinated with an inactivated vaccine of feline panleukopenia virus (FPV), feline herpesvirus (FHV), and feline calicivirus (FCV). ANIMALS: 17 cats. PROCEDURE: Immunity of 9 vaccinated and 8 unvaccinated cats (of an original 15 vaccinated and 17 unvaccinated cats) was challenged 7.5 years after vaccination. Specific-pathogen-free (SPF) cats were vaccinated at 8 and 12 weeks old and housed in isolation facilities. Offspring of vaccinated cats served as unvaccinated contact control cats. Virus neutralization tests were used to determine antibody titers yearly. Clinical responses were recorded, and titers were determined weekly after viral challenge. RESULTS: Control cats remained free of antibodies against FPV, FHV, and FCV and did not have infection before viral challenge. Vaccinated cats had high FPV titers throughout the study and solid protection against virulent FPV 7.5 years after vaccination. Vaccinated cats were seropositive against FHV and FCV for 3 to 4 years after vaccination, with gradually declining titers. Vaccinated cats were protected partially against viral challenge with virulent FHV. Relative efficacy of the vaccine, on the basis of reduction of clinical signs of disease, was 52%. Results were similar after FCV challenge, with relative efficacy of 63%. Vaccination did not prevent local mild infection or shedding of FHV or FCV. CONCLUSIONS: Duration of immunity after vaccination with an inactivated, adjuvanted vaccine was > 7 years. Protection against FPV was better than for FHV and FCV. CLINICAL IMPLICATIONS: Persistence of antibody titers against all 3 viruses for > 3 years supports recommendations that cats may be revaccinated against FPV-FHV-FCV at 3-year intervals.  相似文献   

5.
Recently, in the USA, virulent mutants of feline calicivirus (FCV) have been identified as the cause of a severe and acute virulent systemic disease, characterised by jaundice, oedema and high mortality in groups of cats. This severe manifestation of FCV disease has so far only been reported in the USA. However, in 2003, an outbreak of disease affected a household of four adult cats and an adult cat from a neighbouring household in the UK. Three of the adult cats in the household and the neighbouring cat developed clinical signs including pyrexia (39.5 to 40.5 degrees C), lameness, voice loss, inappetence and jaundice. One cat was euthanased in extremis, two died and one recovered. A postmortem examination of one of the cats revealed focal cellulitis around the right hock and right elbow joints. The principal finding of histopathological examinations of selected organs from two of the cats was disseminated hepatocellular necrosis with mild inflammatory infiltration. Immunohistology identified FCV antigen in parenchymal and Kupffer cells in the liver of both animals and in alveolar macrophages of one of them. In addition, calicivirus-like particles were observed by electron microscopy within the hepatocytes of one cat. FCV was isolated from two of the dead cats and from the two surviving cats. Sequence analysis showed that they were all infected with the same strain of virus, but that it was different from strains of FCV associated with the virulent systemic disease in cats in the USA. The outbreak was successfully controlled by quarantine in the owner's house.  相似文献   

6.
Over the last years, several outbreaks of virulent systemic feline calicivirus (VS-FCV) infection have been described in the USA and several European countries. The paper describes two outbreaks of VS-FCV infection in cats in Germany. Data concerning clinical, laboratory, and histopathological features ofVS-FCV infection were collected from two outbreaks affecting 55 and 4 cats, respectively. Presence of feline calicivirus was confirmed by PCR followed by sequencing of the PCR-products. Clinical signs were variable, including severe upper respiratory tract infection, dyspnoea, oral and footpad ulceration, facial oedema, enteritis, pneumonia, bleeding disorder, high fever, and icterus. Both outbreaks were characterized by a high mortality rate.The present report describes the first documented outbreaks of VS-FCV infection in cats in Germany. Clinical and histopathological features are comparable to outbreaks described in the USA and Europe. However, phylogenetic analysis of the virus genome suggests that virus strains involved in these outbreaks were different from each other and from virulent strains isolated before, confirming the known genetic variability of FCV.  相似文献   

7.
Feline calicivirus (FCV) is a highly infectious respiratory pathogen of domestic cats. The prevalence of FCV in the general cat population is high, particularly in multi-cat households, largely because many clinically recovered cats remain persistently infected carriers. In order to assess how FCV circulates in such groups and to assess the contribution that each individual animal makes to the epidemiology of the disease, we have carried out the first detailed analysis of long-term shedding patterns of FCV in individual cats within naturally infected colonies. The prevalence of FCV in each of the groups on individual sampling occasions ranged from 0% to 91%, with averages for the individual colonies ranging from 6% to 75%. Within each of the colonies, one to three distinct strains of FCV were identified. Individual cats showed a spectrum of FCV shedding patterns over the sampling period which broadly grouped into three categories: those that shed virus relatively consistently, those that shed virus intermittently, and those that appeared never to shed virus. This is the first report identifying non-shedder cats that appear resistant to FCV infection over long periods of time, despite being continually exposed to virus. Such resistance appeared to be age related, which may have been immune-mediated, although by analogy with other caliciviruses, factors such as host genetic resistance may play a role. Given that a proportion of the population appears to be resistant to infection, clearly the cohort of cats that consistently shed virus are likely to provide an important mechanism whereby infection can be maintained in small populations.  相似文献   

8.
Serum antibody titers are a useful measurement of protection against infection (feline panleukopenia virus [FPV]) or clinical disease (feline herpesvirus-1 [FHV] and feline calicivirus [FCV]), and their determination has been recommended as part of disease outbreak management in animal shelters. The objective of this study was to determine the sensitivity, specificity, and inter-observer and inter-assay agreement of two semi-quantitative point-of-care assays for the detection of protective antibody titers (PAT) against FPV, FHV and FCV in shelter cats. Low sensitivity for FPV antibodies (28%) rendered a canine point-of-care assay inappropriate for use in cats. The feline point-of-care assay also had low sensitivity (49%) and low negative predictive value (74%) for FPV PAT detection, but was highly accurate in the assessment of FHV and FCV PAT. Improvements in accuracy and repeatability of FPV PAT determination could make this tool a valuable component of a disease outbreak response in animal shelters.  相似文献   

9.
OBJECTIVE: To determine whether detection of virus-specific serum antibodies correlates with resistance to challenge with virulent feline herpesvirus 1 (FHV-1), feline calicivirus (FCV), and feline parvovirus (FPV) in cats and to determine percentages of client-owned cats with serum antibodies to FHV-1, FCV, and FPV. DESIGN: Prospective experimental study. ANIMALS: 72 laboratory-reared cats and 276 client-owned cats. PROCEDURES: Laboratory-reared cats were vaccinated against FHV-1, FCV, and FPV, using 1 of 3 commercial vaccines, or maintained as unvaccinated controls. Between 9 and 36 months after vaccination, cats were challenged with virulent virus. Recombinant-antigen ELISA for detection of FHV-1-, FCV-, and FPV-specific antibodies were developed, and results were compared with results of hemagglutination inhibition (FPV) and virus neutralization (FHV-1 and FCV) assays and with resistance to viral challenge. RESULTS: For vaccinated laboratory-reared cats, predictive values of positive results were 100% for the FPV and FCV ELISA and 90% for the FHV-1 ELISA. Results of the FHV-1, FCV, and FPV ELISA were positive for 195 (70.7%), 255 (92.4%), and 189 (68.5%), respectively, of the 276 client-owned cats. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that for cats that have been vaccinated, detection of FHV-1-, FCV-, and FPV-specific antibodies is predictive of whether cats are susceptible to disease, regardless of vaccine type or vaccination interval. Because most client-owned cats had detectable serum antibodies suggestive of resistance to infection, use of arbitrary booster vaccination intervals is likely to lead to unnecessary vaccination of some cats.  相似文献   

10.
Two hundred and twenty-six cats from the Veterinary Medical Teaching Hospital (VMTH), a cat shelter, and a purebred cattery were tested for chronic feline calicivirus (FCV), feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) infections. Chronic oral carriage of FCV was present in about one-fifth of the cats in each of the groups. FIV infection was not present in the purebred cattery, was moderately prevalent (8%) in the pet population of cats examined at the VMTH for various complaints and was rampant in the cat shelter (21%). Unexpectedly high FeLV infection rates were found in the hospital cat population (28%) and in the purebred cattery (36%), but not in the cat shelter (1.4%). FCV and FeLV infections tended to occur early in life, whereas FIV infections tended to occur in older animals. From 43 to 100% of the cats in these environments had oral cavity disease ranging from mild gingivitis (23-46%), proliferative gingivitis (18-20%), periodontitis (3-32%) and periodontitis with involvement of extra-gingival tissues (7-27%). Cats infected solely with FCV did not have a greater likelihood of oral lesions, or more severe oral disease, than cats that were totally virus free. This was also true for cats infected solely with FeLV, or for cats dually infected with FeLV and FCV. Cats infected solely with FIV appeared to have a greater prevalence of oral cavity infections and their oral cavity disease tended to be more severe than cats without FIV infection. FIV-infected cats that were coinfected with either FCV, or with FCV and FeLV, had the highest prevalence of oral cavity infections and the most severe oral lesions.  相似文献   

11.
An attenuated respiratory disease vaccine against feline viral rhinotracheitis (FVR) and feline calicivirus (FCV) disease was evaluated for safety and efficacy in specific-pathogen-free cats. Twenty cats were vaccinated twice intramuscularly, with 28 days between vaccinations. Ten unvaccinated cats were used as contact controls. Adverse effects were not noticed after vaccination, and the vaccinal virus did not spread to contact controls. Arithmetical mean serum-neutralizing titers against vaccinal FCV strain F9 and challenge FCV strain 255 were 1:13 and 1:15 at 28 days after the 1st inoculation. These titers increased to 1:45 and 1:196 after the 2nd inoculation. After challenge exposure of vaccinated cats to virulent FCV 255 virus, mean titers increased to 1:129 and 1:865, respectively for F9 and 255 viruses. The F9 postchallenge mean titer for vaccinated cats was 21.5 times higher than that for the 8 contact controls that survived challenge exposure. The arithmetical mean serum neutralizing titer for FVR was low (1:2) after the 1st vaccination, but increased to 1:35 after the 2nd vaccination. Challenge exposure to virulent FVR virus resulted in a marked anamnestic immune response (mean titer of 1:207, compared with 1:12 for contact controls). In general, vaccinated cats remained alert and healthy after challenge exposure with FCV-255, whereas unvaccinated contact control cats developed definite signs of FCV disease, including central nervous system (CNS) depression (6 of 10) and dyspnea indicative of pneumonia (5 of 10). Two controls died of severe pneumonia. A mild fibrile response was detected in 28% of vaccinated cats, compared with a more severe febrile response in 78% of control cats. Some vaccinated cats developed minute lingual ulcers that did not appear to be detrimental to the health of the cat. After FVR challenge exposure, vaccinated cats were free of serious clinical signs. Five of 18 vaccinated cats had mild signs of FVR, including an occasional sneeze, low temperature, and mild serous lacrimation for 1 or 2 days. Contact controls developed definite clinical signs of FVR. The combined FVR-FCV vaccine appears to be safe and reasonably efficacious. Vaccination against FCV disease and FVR should be part of the routine feline immunization program.  相似文献   

12.
Two groups of cats were inoculated oro-nasally with one of two isolates of feline calicivirus (FCV) from clinical cases of chronic stomatitis. All cats developed signs typical of acute FCV infection; namely, ocular and nasal discharge, conjunctivitis, and marked oral ulceration. None of the cats shed virus beyond 28 days. Seronegative control cats were then infected with a lower dose of one isolate, but again only acute signs were seen and no carriers produced. The original cats were then re-infected with the heterologous isolate. As before, only signs of acute disease were seen, but the range of clinical signs and severity was reduced. Virus shedding patterns in one group were similar to those seen originally, but in the other the duration was reduced. No chronic stomatitis developed over the 10 months of the study. Serum virus neutralising and serum and salivary class specific immunoglobulin responses were investigated. Although long-term carriers were not induced, no relationship between cessation of virus shedding in an individual animal and systemic and local antibody responses was seen.  相似文献   

13.
On the basis of repeated isolation of feline calicivirus (FCV) from oropharyngeal swabs four to eight months after exposure to FCV strain 255, four carrier queen cats were identified. These cats gave birth to 16 kittens. Litters were individually housed with their mothers until nine weeks of age and were monitored virologically and serologically from birth until 15 weeks old. All kittens became infected between three and nine weeks old and shed FCV consistently for periods of three to 11 weeks. Clinical signs of FCV were observed in 11 kittens but none developed severe respiratory disease. At the time of initial infection maternal antibody titres in the kittens ranged from 1:4 to 1:24. Within one to three weeks of infection titres began to rise. The results indicated that kittens of queen cats persistently infected with FCV frequently experience mild or subclinical immunising infections.  相似文献   

14.
An isolated epizootic of a highly fatal feline calicivirus (FCV) infection, manifested in its severest form by a systemic hemorrhagic-like fever, occurred over a 1-month period among six cats owned by two different employees and a client of a private veterinary practice. The infection may have started with an unowned shelter kitten that was hospitalized during this same period for a severe atypical upper respiratory infection. The causative agent was isolated from blood and nasal swabs from two cats; the electron microscopic appearance was typical for FCV and capsid gene sequencing showed it to be genetically similar to other less pathogenic field strains. An identical disease syndrome was recreated in laboratory cats through oral inoculation with tissue culture grown virus. During the course of transmission studies in experimental cats, the agent was inadvertently spread by caretakers to an adjoining room containing a group of four normal adult cats. One of the four older cats was found dead and a second was moribund within 48-72h in spite of symptomatic treatment; lesions in these animals were similar to those of the field cats but with the added feature of severe pancreatitis. The mortality in field cats, deliberately infected laboratory cats, and inadvertently infected laboratory cats ranged from 33-50%. This new isolate of calicivirus, named FCV-Ari, was neutralized at negligible to low titer by antiserum against the universal FCV-F9 vaccine strain. Cats orally immunized with FCV-F9, and then challenge-exposed shortly thereafter with FCV-Ari, developed a milder self-limiting form of disease, indicating partial protection. However, all of the field cats, including the three that died, had been previously immunized with parenteral FCV-F9 vaccine. FCV-Ari caused a disease that was reminiscent of Rabbit Hemorrhagic Disease, a highly fatal calicivirus infection of older rabbits.  相似文献   

15.
This study examined a panel of 110 UK field isolates of feline calicivirus (FCV) for susceptibility to cross-neutralisation by a panel of eight antisera raised in cats infected with FCV strains F9, 255, FCVG1 and FCV431. The pairs of antisera raised against F9 or 255, neutralised 20 and 21 per cent or 37 and 56 per cent of field strains of virus respectively. In contrast, the pairs of antisera raised against the newer vaccine strains FCVG1 or FCV431 neutralised 29 and 70 per cent or 67 and 87 per cent of field strains respectively. Antisera raised against the two newer strains, namely FCVG1 and FCV431, neutralised a greater proportion of field strains of calicivirus than antisera raised against the older FCV vaccine strains F9 and 255.  相似文献   

16.
Infection with feline calicivirus (FCV) is a common cause of upper respiratory and oral disease in cats. FCV infection is rarely fatal, however, virulent, systemic strains of FCV (VS-FCV) that cause alopecia, cutaneous ulcers, subcutaneous edema, and high mortality in affected cats have recently been described. Seven cats with natural VS-FCV infection all had subcutaneous edema and ulceration of the oral cavity, with variable ulceration of the pinnae, pawpads, nares, and skin. Other lesions that were present in some affected cats included bronchointerstitial pneumonia, and pancreatic, hepatic, and splenic necrosis. Viral antigen was present within endothelial and epithelial cells in affected tissues as determined by immunohistochemical staining with a monoclonal antibody to FCV. Mature intranuclear and intracytoplasmic virions in necrotic epithelial cells were identified by transmission electron microscopy. VS-FCV infection causes epithelial cell cytolysis and systemic vascular compromise in susceptible cats, leading to cutaneous ulceration, severe edema, and high mortality.  相似文献   

17.
Feline calicivirus (FCV) has been shown to evolve within individual cats and in the environment of colonies. This evolution and the diversity it creates has important clinical implications, not only for the disease in cats, but also for attempts to control disease by vaccination. Generally speaking, existing vaccines appear to be very effective at controlling the majority of clinical disease. However, some concerns remain including a failure to induce sterilising immunity, occasional vaccine breakdowns, and for live vaccines, occasional vaccine-induced disease. Key areas for future vaccine development include monitoring and broadening the cross-reactivity of vaccine immunity to field viruses, especially the recently evolved highly virulent strains, and attempting to reduce/eliminate field virus shedding by vaccinated cats.  相似文献   

18.
Kittens vaccinated with an avirulent biotype of the Black strain of feline infectious peritonitis virus (FIPV; given oronasally) developed both indirect fluorescent and virus-neutralizing antibodies, but were not protected against oronasal challenge exposure with virulent virus. In fact, kittens vaccinated with avirulent virus were more readily infected than were nonvaccinated cats. A proportion of kittens could be immunized to FIPV by giving sublethal amounts of virulent virus. This technique, however, was too inconsistent and hazardous to have clinical relevance. The results of these studies indicated that humoral immunity was not protective in FIPV infection. There was no correlation between fluorescent and virus-neutralizing antibodies and either disease or immunity. Immune serum from FIPV-resistant cats failed to passively protect susceptible animals against virulent virus given intraperitoneally or oronasally, and as expected, actually sensitized them to infection. It was concluded that cell-mediated immunity was probably responsible for protection.  相似文献   

19.
OBJECTIVE: To determine whether administration of inactivated virus or modified-live virus (MLV) vaccines to feral cats at the time of neutering induces protective serum antiviral antibody titers. DESIGN: Prospective study. ANIMALS: 61 feral cats included in a trap-neuter-return program in Florida. PROCEDURES: Each cat received vaccines against feline panleukopenia virus (FPV), feline herpes virus (FHV), feline calicivirus (FCV), FeLV, and rabies virus (RV). Immediately on completion of surgery, vaccines that contained inactivated RV and FeLV antigens and either MLV or inactivated FPV, FHV, and FCV antigens were administered. Titers of antiviral antibodies (except those against FeLV) were assessed in serum samples obtained immediately prior to surgery and approximately 10 weeks later. RESULTS: Prior to vaccination, some of the cats had protective serum antibody titers against FPV (33%), FHV (21%), FCV (64%), and RV (3%). Following vaccination, the overall proportion of cats with protective serum antiviral antibody titers increased (FPV [90%], FHV [56%], FCV [93%], and RV [98%]). With the exception of the FHV vaccine, there were no differences in the proportions of cats protected with inactivated virus versus MLV vaccines. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that exposure to FPV, FHV, and FCV is common among feral cats and that a high proportion of cats are susceptible to RV infection. Feral cats appeared to have an excellent immune response following vaccination at the time of neutering. Incorporation of vaccination into trap-neuter-return programs is likely to protect the health of individual cats and possibly reduce the disease burden in the community.  相似文献   

20.
Cats that are persistently infected with FeLV or feline immunodeficiency virus but are not manifesting clinical signs of disease are at risk for developing a wide variety of immunosuppressive, degenerative, or neoplastic diseases. Infected cats should be isolated to prevent transmission of virus to healthy cats, and to protect infected cats from exposure to pathogens that can cause life-threatening secondary infections. Iatrogenic transmission of virus from infected cats in isolation to healthy cats may be reduced by strict adherence to handling, sanitation, and disinfection procedures. Husbandry practices that may delay the complications of infection include regular vaccination, provision of high-quality diets, reduction of stress, control of endoparasites and ectoparasites, and early and aggressive treatment of clinical signs of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号