首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
冻融循环作用对黑土有效磷含量变化的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
[目的]分析冻融循环作用和土壤含水率对土壤磷素的有效性产生的影响,为控制农业非点源污染、明确冻土区土壤的磷素循环过程和准确评估区域的磷素收支提供依据。[方法]以东北黑土为研究对象,研究冻融次数、土壤含水率和土壤有效磷背景值对黑土有效磷含量的影响。采用室内模拟冻融循环的方法,冻融循环次数为30次,冻融温差为-10~7℃,监测冻融条件下黑土有效磷含量的变化。[结果]随着冻融循环次数的增加,它对有效磷含量的影响逐渐下降,至20~30次循环中不具有显著性影响,有效磷背景值的影响在5~20和20~30次循环中占主导地位;在0~30次冻融循环中,有效磷含量的变化表现出双峰型曲线特征,相邻冻融循环次数有效磷含量的变化大多具有显著性差异,变化由剧烈到平缓;土壤含水率越高,有效磷含量变化越剧烈;土壤有效磷背景值越高,有效磷含量越稳定。[结论]冻融循环次数、土壤含水率、土壤有效磷背景值3个控制因子对有效磷含量的影响程度随冻融循环次数的增加而变化。  相似文献   

2.
以小兴安岭湿地土壤为研究对象,基于冻融模拟试验和室内分析,对比研究了不同冻融环境下土壤溶解性有机碳(DOC)含量变化趋势及其氮素矿化特征。结果表明:无论是(-5)~5℃还是(-25)~5℃冻融处理,天然兴安落叶松湿地、灌丛湿地以及2003年,1992年排水造林后兴安落叶松湿地4种土壤的DOC含量均差异显著(P0.01),且随着冻融次数的增加,土壤DOC含量均呈现先增加后减小的趋势,1次冻融循环后达到最大值,其平均含量分别为580.05 mg/kg,546.11 mg/kg,475.38 mg/kg,423.52mg/kg,表明冻融作用对土壤DOC短期效应明显。冻融次数对2003年排水造林后湿地土壤DOC含量影响极显著(P0.01),而对1992年排水造林后湿地土壤DOC含量影响显著(P0.05)。土壤铵态氮含量先增加后减少,2次冻融循环后达到最大值,其平均含量分别为68.92mg/kg,53.34mg/kg,21.57mg/kg,22.09mg/kg,而土壤硝态氮含量先减少后增加,1次冻融循环后达到最小值,其平均含量分别为4.86mg/kg,3.91mg/kg,10.62mg/kg,10.10mg/kg,但(-25)~5℃比(-5)~5℃冻融处理的氮矿化程度高,表现出冻融循环能够促进氮素矿化,且较大的冻融温差更能加速矿化进程。  相似文献   

3.
为研究秸秆生物炭输入对冻融期黑土表层无机氮磷垂直迁移的影响,采用室内模拟冻融循环试验,设置冻融与不冻融、冻融循环次数和生物炭施加量3个影响因素,分析冻融作用下不同秸秆生物炭输入量土壤表层无机氮磷垂直迁移特征。结果表明:(1)冻融与不冻融、冻融循环次数及生物炭施加量对黑土表层NO3-—N、NH4+—N和PO43-—P垂直迁移液总体积、迁移液总浓度及迁移总量均有极显著影响。(2)淋溶时间随冻融作用增强而缩短,随生物炭施加量增加而延长。所有处理迁移液总体积均随生物炭输入量的增加呈降低趋势。未冻融组迁移液总体积随培养期增加呈现缓慢下降趋势,冻融组处理迁移液总体积在第5次冻融循环试验出现急剧增加,而后趋于平稳。(3)分析冻融作用下秸秆生物炭施入对无机氮磷垂直迁移累积影响,同一控制时间内生物炭对冻融组无机氮磷垂直迁移量的抑制作用大于不冻融组,且随生物炭施入量增加对无机氮磷垂直迁移的抑制作用增强。由于土壤物理性质的改变,冻融组NO3-—N、NH4+—N和PO43-—P累积迁移量均在第5次冻融循环左右发生急剧变化。综上可知,生物炭在冻融期可以有效的固持养分,研究结果可为寒冷地区解冻期面源污染防治提供一定的理论支持。  相似文献   

4.
冻融条件下黑土大孔隙结构特征研究   总被引:4,自引:0,他引:4  
姜宇  刘博  范昊明  马仁明 《土壤学报》2019,56(2):340-349
冻融作用会改变土壤微观结构,孔隙特征的变化是其结构性改变的重要体现。研究冻融作用对开展黑土区侵蚀机理研究及合理利用黑土资源具有重要意义。本研究旨在对冻融条件下原状土样的三维结构进行分析,获取孔隙特征的定量指标,进而分析冻融循环对土壤大孔隙的影响,为进一步揭示黑土区季节性冻融对黑土结构的影响提供证据。通过室内冻融循环试验结合CT扫描技术研究黑土原状土体大孔隙在7种冻融循环次数以及两组含水率下的变化规律,探讨在冻融循环作用下原状土体大于1.25 mm的孔隙变化特征。结果表明:在15次冻融循环内,随着冻融循环次数的增多,土壤孔隙度不断增大,在7次冻融循环后增长尤为显著;孔隙数量随冻融循环次数的增多而减小;规则孔隙度(RP)持续减小,不规则孔隙度(IRP)呈减小趋势而加长孔隙度(EP)呈增大趋势;孔径随冻融循环次数的增多而增大,孔径大于3 mm的孔隙孔隙度不断增大;冻融作用使孔隙出现大量分支,冻融循环次数越多分支占比越大。在冻融温差一定时,冻融循环后高含水率土壤比低含水率土壤的上述孔隙特征变化更为显著。研究成果为阐明冻融侵蚀机理、合理评价及利用寒区农田提供理论依据。  相似文献   

5.
利用天山北坡季节性冻土区的军塘湖流域观测场2013年和2014年冻融期冻土深度及各层土壤的温湿度数据,研究季节性冻土的冻融规律及冻融过程中土壤含水量的变化特征,探讨各层土壤水分分布及迁移特征对融雪径流的影响。结果表明:冻融过程中冻土深度会发生变化,且温度不同冻融速率不一;土壤水分的迁移受制于土壤温度的变化,特别是表层10cm土壤温湿度相关性极大;对比2013年,2014年数据,土壤表层10cm内的含水量变化会对融雪水的下渗有调控作用,从而影响下垫面的径流量。研究季节性冻土冻融过程及对融雪径流的影响,会对准确预报融雪性洪水有重要意义。  相似文献   

6.
秸秆生物炭输入对冻融期棕壤磷有效性的影响   总被引:6,自引:0,他引:6  
冻融交替是东北地区土壤常见的温度变化现象。通过室内模拟冻融循环方法,分析秸秆生物炭输入对冻融期东北地区棕壤有效磷影响规律及机理,探讨生物炭还田对东北春季作物生长初期土壤养分供应状况的影响。结果表明:(1)除在0~5次冻融循环中冻融次数对有效磷含量无显著影响外,冻融循环次数、生物炭施加量以及二者交互作用对土壤有效磷含量在各冻融阶段(0~5次、5~30次、0~30次)均有极显著影响。(2)培养结束后施加生物炭量2%、4%和6%处理,有效磷含量随生物炭施入量增大而依次增加,且均明显高于对照处理20%以上。各处理在第5次冻融左右达到峰值,有效磷含量增加幅度随生物炭施加量增加而减小。在第20次冻融循环后各处理有效磷含量达到相对谷值,此时施加生物炭处理有效磷含量较未冻融时有明显降低。说明,生物炭在常温培养时可以增加土壤有效磷含量,但是,在冻融过程中,相对于对照处理可以较好固持土壤磷素,减小磷素随融雪过程流失的风险。(3)通过分析生物炭输入后棕壤pH、电导率、有机质和中性磷酸酶活性等生物化学性质对冻融循环过程响应,以及不同冻融循环阶段与土壤有效磷相关分析,发现有机质含量在冻融循环过程中变化显著且与有效磷含量具有显著相关性。生物炭通过增强团聚体稳定性,减少有机质释放来固持土壤磷素。  相似文献   

7.
通过野外调查与室内土柱模拟试验相结合的方法,对灌水条件下不同次生盐渍化水平设施土壤氮、磷含量的变化及迁移特征进行研究.结果表明:(1)灌水后土壤水分变化主要集中于20 cm以上土层,灌水后13~15 d,不同次生盐渍化程度的土壤水分都表现出向下迁移的特征.(2)设施土壤硝态氮含量最高值均出现在土层20 cm处,且次生盐渍化程度越严重,硝态氮表聚现象越为突出.灌水15d后,各处理铵态氮集中分布于20-40 cm土层,灌水后土壤铵态氮含量变化不明显,环境风险较小.(3)设施土壤速效磷含量高于露地土壤,且表层土壤速效磷含量介于40~60 mg/kg之间,灌水后各时期不同次生盐渍化程度土壤剖面中速效磷的分布趋势基本一致,虽受灌水的影响较小,但存在潜在的环境风险.  相似文献   

8.
冻融对东北黑土硒酸盐吸附解吸的影响   总被引:2,自引:0,他引:2  
行文静  牛浩  李娇  吴福勇 《土壤通报》2021,52(2):338-345
为探究冻融过程对东北黑土硒酸盐(Se(VI))吸附、解吸的影响机理,通过室内不同初始含水率及冻融次数模拟冻融循环,随后利用冻融后土壤进行Se(VI)的吸附和解吸试验,分别采用Langumuir和Freundlich方程对Se(VI)吸附过程进行拟合。结果表明:冻融显著(P < 0.05)改变了东北黑土pH值、有机质、球囊霉素相关土壤蛋白及各粒级团聚体含量,冻融后土壤Se(VI)吸附量显著高于未冻融土壤。通过拟合发现东北黑土对Se(VI)的吸附更符合Langmuir模型(R2 > 0.967),高初始含水率及冻融循环次数均增加了冻融后黑土对Se(VI)的最大吸附量及缓冲容量,同时提高了Se(VI)的解吸率。70%含水率及多次冻融循环提高了黑土对Se(VI)的吸附潜能,促进Se(VI)的解吸,使得冻融后土壤硒的生物有效性增加,有利于作物根系对硒的吸收。  相似文献   

9.
冻融作用对土壤物理、化学和生物学性质影响的研究进展   总被引:1,自引:1,他引:0  
冻融是作用于土壤的非生物应力,对元素生物地球化学循环过程影响显著。文章综述了冻融作用对土壤物理、化学和生物学性质的影响,分析了影响冻融理化效应的主控环境因子。结果表明:冻融循环可使土壤大团聚体破碎成小团聚体,细颗粒物表现出向中等大小颗粒物聚集的趋势;但冻融作用对团聚体水稳性的影响不一。由于土壤孔隙间冰晶膨胀,推动土壤颗粒发生相对位移,导致土壤孔隙度增加,容重随之降低。冻融初期,低温导致大量水分向冰晶转化,促使水分向土壤表层迁移;经反复冻融后,冰晶充分占据土壤孔隙,使水分移动空间变小、路径增长,造成不同深度土层含水率差异显著;水分状况改变又反过来对土壤冻融过程产生影响。冻融过程会增强土壤硝化作用和促进溶解性有机酸的释放,从而导致土壤溶液pH降低。冻融作用能够提高土壤有机碳(SOC)矿化速率,导致有机碳组分的固定与活化产生分异。冻融循环通过改变土壤理化性质和生物学性状,影响氮、磷素迁移转化方向和赋存形态以及温室气体N_2O等的排放。此外,冻融作用还显著影响土壤微生物群落结构,指示土壤微生物群落演替方向。冻融循环次数、温度和土壤含水率是影响上述冻融作用效应的关键因素。  相似文献   

10.
冻融条件下沙丘土壤水分物理性提升的试验研究   总被引:1,自引:1,他引:0  
基于乌兰敖都试验站内土壤冻融试验,探讨不同外界条件下土壤冻融作用对土壤中水分迁移的影响。结果表明:土壤冻结作用可以增加水分的迁移量,从而提高冻融层土壤水分含量,0-30cm和100-140cm深度土壤中水分迁移受冻结作用的影响比较显著,分别迁移了87.6,210.9mm,30-60cm和60-100cm深度受到的影响较小;冻融期内,稻草覆盖减小了水分向土壤上层迁移或者向下层的入渗;初始地下水埋藏较深能导致土壤水分迁移量变大。通过探究土壤冻融对水分物理性提升的影响作用,测定其提升数量,合理利用其提升的水分,改善固沙植被区浅层土壤水分条件,有利于固沙植物的生长和其他植物物种的侵入,提高固沙植被区的物种多样性,建立持久稳定的固沙植被。  相似文献   

11.
  目的  生物土壤结皮在干旱、半干旱地区分布广泛,能显著影响土壤饱和导水率的大小,为探明冻融交替对不同类型生物结皮土壤饱和导水率的变化。  方法  以神木六道沟流域混合结皮(藻结皮 + 苔藓结皮)和苔藓结皮土壤为研究对象,采用室内模拟冻融实验的方法,测定不同冻融交替次数和初始含水率共同作用下生物结皮土壤饱和导水率(Ks)的变化。  结果  (1)冻融条件下,苔藓结皮和混合结皮的存在相比裸土均降低了土壤Ks。(2)同一冻融次数下,苔藓结皮和混合结皮土壤Ks随初始含水率增加总体呈现先增大后减小的趋势;同一初始含水率下,两种结皮土壤Ks随冻融次数增加呈现逐渐增大的趋势。(3)冻融后苔藓结皮土壤Ks显著大于混合结皮土壤,在同一冻融条件下,初始含水率为8%时,冻融3次和7次后两种结皮土壤Ks相差最大,表现为苔藓结皮土壤Ks分别是混合结皮土壤的2.1和2.3倍。(4)冻融通过影响结皮层容重和结皮厚度及结皮下层土壤有机质和 > 0.25 mm团聚体含量进而影响Ks,冻融次数对结皮厚度及有机质含量有极显著影响(P < 0.01),对结皮容重有显著影响(P < 0.05),初始含水率对 > 0.25 mm团聚体含量有极显著影响(P < 0.01)。(5)冻融环境下苔藓结皮和混合结皮土壤的Ks均与冻融次数呈极显著正相关(P < 0.01),与结皮容重呈极显著负相关(P < 0.01)。并对两种结皮Ks与其他因子进行偏最小二乘回归分析,结果表明苔藓结皮土壤Ks的主要影响因子依次为结皮容重 > 冻融次数 > 结皮厚度,而混合结皮土壤Ks的主要影响因子为冻融次数 > 结皮容重。  结论  冻融交替对生物结皮土壤饱和导水率有较显著影响,且冻融作用主要是通过影响结皮厚度、结皮容重及结皮下层土壤大团聚体颗粒及有机质含量来影响生物结皮土壤饱和导水率。  相似文献   

12.
为了探讨在寒旱盐灌区覆盖秋浇后冻融土壤的冻融特性及水热盐协同调控机制,在盐渍土壤进行覆盖后秋浇田间冻融试验,设5个处理,秸秆覆盖量1.2kg/m~2(F1.2)、秸秆覆盖量0.9kg/m~2(F0.9)、秸秆覆盖量0.6kg/m~2(F0.6)、秸秆覆盖量0.3kg/m~2(F0.3)、未覆盖(CK)。结果表明:秸秆覆盖影响了土壤冻结融化推进过程,改变了土壤温度对气温变化的响应关系,影响了水分、盐分在土壤剖面(特别是土壤表层和耕作层)的重新分配,提高了翌年春季水分可利用量,抑制了表层及耕作层春季返盐,提高了秋浇的灌水效果。秸秆覆盖处理的最大冻结深度小于CK处理4~26cm,初冻时间滞后0~12d,融化时间滞后0~21d;秸秆覆盖的各处理由于覆盖层的存在,消融水蒸发受到抑制,表层积盐现象较弱;消融期结束后,在土壤表层0—10cm,F0.9的土壤含水率最高,处理F1.2较秋浇前脱盐率为81.18%,脱盐效果最好;在耕作层0—40cm,F0.9的土壤含水率最高,处理F0.6较秋浇前脱盐率为75.65%,脱盐效果最好;为保证在翌年春播时的适宜含盐量及含水率,以覆盖量0.6~0.9kg/m~2为宜。研究结果可为河套灌区秋浇制度的优化提供参考。  相似文献   

13.
冻融作用对棕壤磷素吸附-解吸特性的影响   总被引:7,自引:0,他引:7  
以棕壤为研究对象,采用室内模拟冻融环境的方法,研究土壤磷素吸附-解吸行为,采用Langumuir、Freundlich和Temkin方程对吸附过程进行拟合分析,定量研究冻融作用对土壤磷素吸附机制的影响,同时建立土壤磷素解吸量与吸附量关系方程,进一步探讨冻融土壤磷吸附-解吸特性。结果表明,冻融条件下棕壤对磷的吸附规律一致,吸附量均随着平衡溶液中磷浓度增加而逐渐增大,与未冻融土壤相比,冻融后土壤磷等温吸附曲线变得平缓。冻融条件下磷等温吸附曲线用Langmuir方程拟合相关性最好。土壤磷素解吸量与相应最大吸附量符合线性相关。冻融后土壤磷固定吸附量低于未冻融土壤,即冻融过程促进土壤磷素释放,增加了土壤磷流失风险。多次冻融循环对土壤磷吸附-解吸行为影响更为强烈。  相似文献   

14.
冻融循环对黑土容重和孔隙度影响的试验研究   总被引:18,自引:4,他引:14  
反复的冻融循环会通过改变土壤容重、孔隙度等物理性质而使其侵蚀加剧,该文探讨了土壤容重及孔隙度在冻融循环作用下的变化.试从机理上分析冻融作用对土壤抗蚀性的影响规律.以东北黑土为研究对象,考虑冻融温差和土壤含水率两个影响因素.通过室内冻融试验研究了黑土容重及孔隙度的变化规律.结果表明:随着冻融循环次数的增大,土壤的容重和孔隙度分别呈现缓慢减小及增大趋势,且变化幅度越来越小,最后达到基本稳定的状态;冻融温差越大,冻结温度越低,同一含水率土壤的容重变得更低,而孔隙度相对较高,并且两者的变化量最大;在同一冻融温差下,高含水率土壤经过冻融循环后较低含水率土壤容重更低,而孔隙度更高,且数值的变化量最大.  相似文献   

15.
马晶晶  王佩  邓钰婧  马娟娟  孙海涛  陈奇 《土壤》2022,54(3):619-628
根据2018—2020年青海湖流域高寒草甸野外定点监测的温度、降水、土壤水热数据,分析了高寒草甸生态系统土壤冻融特征以及不同冻融阶段土壤温度、水分的日变化和季节动态过程。结果表明:(1)基于土壤温度变化特征分析,可将冻融循环过程划分为始冻期、完全冻结期、解冻期和完全融化期。各阶段持续的天数长短依次为:完全融化期>完全冻结期>解冻期>始冻期。从表层到深层土壤,完全融化天数持续增大,完全冻结天数趋于减小,0~180 cm土层完全融化期持续天数超过半年以上。(2)冻土表现出单向冻结、双向融化的规律,土壤融化速率(5.45 cm/d)快于土壤冻结速率(2 cm/d)。整个冻融过程,不同深度土壤水分的变化比温度的变化更复杂。(3)随着冻融循环过程,土壤温湿度呈现出周期性的季节变动特征。土壤温湿度日变化具有一致性,表层日较差大,随着深度的增加,日较差变小并趋于稳定。土壤剖面的结构特征对土壤水分异质性分布具有较强的解释性。  相似文献   

16.
冻融交替对土壤CO2及N2O释放效应的研究进展   总被引:3,自引:1,他引:2  
杨红露  秦纪洪  孙辉 《土壤》2010,42(4):519-525
在秋冬交替和冬春交替时期高纬度地区和高海拔生态系统表层土壤常有冻融交替频繁发生。由于冻融交替作用通过改变土壤水热性质而对土壤物理、化学、生物学特性产生效应。冻结通常导致土壤团聚体破裂、微生物细胞及细根死亡,释放出活性较高的有机物,增强随后融解的土壤的反硝化和呼吸活性,从而影响土壤生物、生物化学过程以及生物地化循环。已有对苔原、泰加林等北极和亚北极生态系统的研究表明,土壤冻融交替次数、冻融极端温度、土壤水分、土壤团聚体结构变化等对CO2和N2O的释放通量影响较为显著,一般在冻融的最初几个循环温室气体排放会增加,随后会降至一个较为稳定的水平。目前,冻融循环变化背景下的温室气体排放研究主要是针对北方高纬度地区,而且对冻融交替影响土壤温室气体排放的机理研究也不够。我国面积广大的青藏高原高海拔地带在全球增温背景下,轻微增温会导致季节性冻土表层冻融交替次数增加,甚至冻土季节消失,加强全球增温背景下我国高山亚高山季节性冻土生态系统效应和过程研究,特别是土壤暖化导致的温室气体排放变化通量和变化机理的研究,对揭示全球变化的区域效应以及高海拔生态系统的管理都具有重要作用。  相似文献   

17.
This study aims to provide basic data to support accurate estimation of carbon stocks and reveal the physicochemical factors that influence the carbon cycle in saline–alkali soils. Soil samples were collected during initial freezing, complete freezing, initial thawing and complete thawing stages. Levels of soil organic carbon (SOC), soil inorganic carbon (SIC), moisture, salinity, pH and available nitrogen were determined, and variations were observed during the freezing and thawing periods. Correlation analysis and regression analysis of carbon contents and physicochemical properties were performed. The results showed that freeze–thaw cycles have significant effects on carbon contents. The SOC content initially decreased in the freezing stage and then increased in the thawing stage. However, the SIC content initially increased in the freezing stage, decreased in the initial thawing stage and finally increased in the complete thawing stage. The migration and transformation of SOC and SIC were observed both temporally and spatially. SOC was positively correlated with available nitrogen, moisture and salinity and negatively correlated with pH; while SIC was negatively correlated with available nitrogen, moisture and salinity and positively correlated with pH. Among the factors evaluated, available nitrogen and salinity exerted the greatest effects on SOC and SIC contents, respectively.  相似文献   

18.
[目的] 揭示中国极端干旱区甘肃省石羊河流域储水灌溉与季节性冻融叠加作用下对土壤呼吸的影响,为进一步提高极端干旱区灌溉水资源利用效率和节约灌溉水源提供理论基础和技术支撑。[方法] 按照1 199.4 m3/hm2低灌溉定额分为灌水和非灌水处理,将冻融循环分为冻结期、冻融期和解冻期3个时间段,采用LI-8100土壤碳通量全自动测量系统对各处理地块的土壤呼吸速率进行观测与分析。[结果] 极端干旱区储水灌溉在季节性冻融作用下农田生态系统土壤呼吸速率增强,土壤碳排放量增加,农田生态系统碳循环被改变,有利于作物的生长和提高粮食产量。不同土地利用方式下土壤呼吸速率对水分和温度的响应程度不同。整个冻融过程中土壤呼吸速率呈现出:解冻期>冻结期>冻融期的规律。冻结期、冻融期和解冻期3个时期的土壤CO2都表现为源,但在夜间极低温度时土壤CO2由源转化为汇。[结论] 储水灌溉调控了整个冻融期土壤呼吸的过程,改变了极端干旱区农田生态系统的碳循环。在水分与季节性冻融叠加作用下,储水灌溉地块土壤呼吸速率相对未储水地块随温度的波动更为剧烈,但与温度的变化趋势一致,水分加剧了其随温度的波动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号