首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to investigate the influence of feeding rumen-protected CLA during the early growing period on physical and chemical beef properties in young Simmental heifers. A total of 36 heifers (5 mo old; initial BW 185 ± 21 kg) were fed 250 g of different rumen-protected fats daily for 16 wk in 1 of 3 treatment groups: 250 g of a CLA-free control fat; 100 g of a CLA fat containing 2.4% of cis-9,trans-11 CLA and 2.1% of trans-10,cis-12 CLA and 150 g control fat; or 250 g of the CLA fat. Heifer growth performance variables as well as carcass weight, classification (conformation and fatness), and weights of organs and fat depots were not affected (P > 0.05) by CLA supplementation. Concentration of trans-10,cis-12 CLA in tissues (LM and subcutaneous fat) was dose-dependently increased (P < 0.01) by CLA supplementation, whereas that of cis-9,trans-11 CLA in these tissues did not differ (P > 0.05) between groups. The ratio of SFA to MUFA was increased (P < 0.01) in tissues of CLA-fed heifers compared with control heifers. Concentration of α-tocopherol in LM was greater (P = 0.01) in heifers of the 2 CLA groups than in control heifers. Other quality characteristics such as drip loss during storage, cooking loss, intramuscular fat content, and color variables in LM did not differ (P > 0.05) between groups. In conclusion, the present study demonstrates that feeding rumen-protected CLA during the early growing period changes tissue fatty acid composition but does not influence beef quality variables. Performance variables and carcass traits in young heifers, unlike in pigs and laboratory animals, are not influenced by CLA feeding.  相似文献   

2.
Thirty-six Angus x Hereford heifers (365 +/- 60 kg) were used to determine the effects of supplemental dietary lipid sources on fatty acid composition of i.m., perianal (p.a.), and s.c. lipid depots. Lipid was supplied to diets as either corn oil or a rumen-protected conjugated linoleic acid (CLA) salt for two specific treatment periods of either the final 32 or 60 d on feed. Following an initial 56-d feeding period, heifers were fed one of three dietary treatments (DM basis): 1) basal diet containing 88% concentrate and 12% grass hay (CON), 2) basal diet plus 4% corn oil (OIL), or 3) basal diet plus 2% rumen-protected CLA salt (RPCLA) containing 31% CLA. The trans-10, cis-12 CLA concentration was greatest (P < 0.05) for heifers fed RPCLA and OIL diets and least (P < 0.05) for CON, regardless of time on dietary treatment. Heifers fed supplemental RPCLA had greater (P < 0.05) total CLA content than either CON- or OIL-fed heifers. Adipose tissue concentration of trans-11 vaccenic acid (TVA) was less (P < 0.05) for CON than OIL or RPCLA, which did not differ (P > 0.05). Percentages of C18:1 trans-10 were least (P < 0.05) in i.m. lipid compared with p.a. and s.c., which did not differ (P > 0.05). Following 60 d of lipid supplementation, heifers fed OIL and RPCLA had lower (P < 0.05) concentrations of oleic acid and total monounsaturated fatty acids (MUFA) compared with CON. The ratio of cis-9, trans-11 CLA:TVA was higher (P < 0.05) for heifers fed 60 vs. 32 d, but did not differ (P > 0.05) between adipose depots. Feeding OIL increased (P < 0.05) adipose concentration of C18:2 fatty acid, whereas feeding RPCLA increased (P < 0.05) total CLA isomers by 22%. Intramuscular lipid contained the lowest (P < 0.05) percentage of cis-9, trans-11 CLA, total CLA, C18:1 cis-9, C18:1 trans-10, and TVA. Total CLA and cis-9, trans-11 CLA isomers were increased (P < 0.05) in p.a. and s.c. adipose depots, whereas i.m. adipose tissue contained increased (P < 0.05) amounts of total PUFA. Results from this study indicate that short-term lipid supplementation to feedlot cattle can increase adipose tissue CLA concentrations, but only marginally (8.3 to 17.5%). Moreover, observed decreases in oleic acid and total MUFA concentrations of adipose tissues from heifers fed rumen-protected CLA or corn oil suggest that lipid supplementation may decrease delta9 desaturase activity in adipose tissues, which in turn would lower the conversion of TVA to cis-9, trans-11 CLA isomer.  相似文献   

3.
Thirty-six Angus x Hereford heifers were used in a 3 x 2 factorial (3 dietary treatments; 2 supplementation times) to examine the effect of dietary lipid supplementation on lipid oxidation, lipid composition, and palatability of ribeye steaks and ground beef. Lipid was supplied in the diets as corn oil or a partially rumen-protected CLA salt for 2 specific treatment periods of the final 32 or 60 d on feed, corresponding to a total time on feed of 89 or 118 d. After an initial 56-d feeding period (basal diet), the heifers were fed 1 of 3 dietary treatments (DM basis): 1) a basal diet containing 88% concentrate and 12% grass hay (CON), 2) the basal diet plus 4% corn oil (OIL), or 3) the basal diet plus 2% partially rumen-protected CLA (RPCLA) containing 31% CLA. Heifers were randomly allotted to dietary treatments at the initiation of the study and fed individually. At 48 h postmortem, the right forequarter of each carcass was fabricated into retail cuts. Steaks (2.54-cm thick) were obtained from the posterior end of the ribeye roll (NAMP 112), and beef trim was ground for all subsequent analyses. Dietary treatment did not affect (P > 0.05) lipid oxidation in ground beef or ribeye steaks. Total trans-octadecenoate fat and trans-10 octadecenoic acid content in ribeye steaks increased (P < 0.05) with RPCLA compared with CON. Total CLA and the cis-9 trans-11 isomer of CLA contents in ribeye steaks were unchanged (P > 0.05) by lipid supplementation. In ground beef, RPCLA supplementation increased (P < 0.05) the amount of trans fat and trans-10 octadecenoic acid compared with CON or OIL; supplementation of RPCLA increased (P < 0.05) the amount of CLA cis-9 trans-11 isomer and total CLA. Lipid supplementation did not alter (P > 0.05) off-flavor ratings in ground beef or ribeye steaks. Supplementation of corn oil increased (P < 0.05) total PUFA content of ribeye steaks compared with CON and RPCLA. Dietary RPCLA supplementation increased the amount of trans fat per serving (85.5 g, broiled) by 110 and 88% in ribeye steak and ground beef, respectively, and CLA cis-9 trans-11 by 58% in ground beef compared with CON. Supplementing OIL or RPCLA resulted in minimal changes in lipid oxidation and sensory attributes of steaks and ground beef.  相似文献   

4.
Our objective was to determine the effect of oil supplementation of pasture fed, beef cattle on the fatty acids, particularly CLA and PUFA, of muscle and s.c. adipose tissue. Forty-five Charolais crossbred heifers were blocked on BW and randomly assigned to 1 of 3 dietary regimens in a randomized complete block design (n = 15). The 3 treatments were: unsupplemented grazing (GO), restricted grazing plus a sunflower oil-enriched ration (SO), or restricted grazing plus a linseed oil-enriched ration (LO). Heifers were fed the experimental diets for approximately 158 d. Samples of LM muscle and s.c. adipose tissue were taken postmortem, the muscle fat was separated into neutral lipid and polar lipid (no separation was performed on the s.c. adipose tissue), and the fatty acid profile was determined by GLC. No effect of dietary treatment on carcass weight or total fatty acid concentration (mean 2,571 mg/100 g of muscle) in muscle fat was detected. Heifers offered SO had a greater (P < 0.001) proportion of CLA and C18:1trans-11 (1.90 and 9.35 vs. 1.35 and 6.89 g/100 g of fatty acids, respectively) in neutral lipid of muscle fat compared with those offered LO, which had a greater proportion of CLA and C18:1trans-11 than heifers offered GO (0.78 and 3.37 g/100 g of fatty acids, respectively). Similar effects were observed in the polar lipid and s.c. lipid. The PUFA:SFA ratio was greater in muscle fat and s.c. adipose tissue from supplemented heifers than in those offered GO (P < 0.001). Compared with LO, the PUFA:SFA ratio was greater (P < 0.05) in muscle fat of heifers offered SO, but there was no difference between SO and LO for this ratio in s.c. adipose tissue. The n-6:n-3 PUFA ratio was similar in muscle and s.c. adipose tissue for GO and LO, but it was greater (P < 0.05) for SO. It is concluded that supplementation of pasture-fed cattle with plant oil-enriched concentrates resulted in an increase in beef fat of some fatty acids considered to be of benefit to human health. Concentrates enriched with sunflower oil were more effective in increasing the CLA concentration, whereas linseed oil-enriched concentrates resulted in a more favorable n-6:n-3 PUFA ratio. The relevance to human health of the associated increase in C18:1trans-11 merits investigation.  相似文献   

5.
We conducted a series of experiments to evaluate the effects of conjugated linoleic acids (CLA) on lipid metabolism and energy homeostasis in lactating dairy cows. In all experiments, multiparous Holstein cows in mid to late lactation were abomasally infused with CLA for 5 d. The initial study established that trans-10, cis-12 CLA markedly reduced milk fat yield whereas cis-9, trans-11 CLA, the predominant CLA isomer in milk fat, had no effect. Across the three investigations, infusions of the pure trans-10, cis-12 CLA isomer (3.5 to 14.0 g/d) resulted in a 25 to 50% decrease in milk fat yield and this was energetically equivalent to 6 to 11% of net energy intake. Effects were specific for milk fat as there were little or no changes in feed intake and the yield of milk or milk protein. In Exp. 1, infusing trans-10, cis-12 CLA had no effect on circulating plasma concentrations of glucose, insulin, or leptin. Basal NEFA concentrations were also unaffected, but lipolytic response to an epinephrine challenge was reduced (33%) when cows received trans-10, cis-12 CLA; this minor change in lipolytic response would be consistent with the slightly more positive net energy balance when cows received trans-10, cis-12 CLA. In Exp. 2, infusing differing amounts of trans-10, cis-12 CLA had only minor effects on basal NEFA concentrations, but again cows receiving trans-10, cis-12 CLA tended to have reduced (24%) lipolytic response to trans-10, cis-12 CLA compared to the control period. In Exp. 3, infusing trans-10, cis-12 CLA had no effect on basal glucose concentrations or glucose response to an insulin challenge. The fractional rate of glucose clearance in response to insulin was also not altered by treatment. In summary, the effects of trans-10, cis-12 CLA in lactating dairy cows appear to be specific for the mammary gland, resulting in reduced milk fat synthesis; adipose tissue response to a homeostatic signal regulating lipolysis (epinephrine), whole-body response to a homeostatic signal regulating glucose homeostasis (insulin), and plasma variables associated with lipid metabolism and energy homeostasis were relatively unaffected by treatment with trans-10, cis-12 CLA.  相似文献   

6.
The effects of dietary algal supplementation, a source of docosahexaenoic acid, on the fatty acid profile of rumen lipids in cattle were evaluated, with special emphasis on CLA and trans fatty acids produced by rumen microbes. A diet based on corn silage was fed with supplements containing the following: 1) no algal meal and fed at 2.1 kg of DM/d (control), 2) algal meal and fed at 1.1 kg of DM/d (low algal meal), 3) algal meal and fed at 2.1 kg of DM/d (medium algal meal), and 4) algal meal and fed at 4.2 kg of DM/d (high algal meal). A modified lipid extraction procedure was developed to analyze the lipid changes in rumen fluid. The percentage of stearic acid (18:0) in rumen fluid was decreased by algal meal supplementation (P < 0.001) compared with control and was linearly dependent on the level of algal meal supplementation (P = 0.005). Total trans-18:1 in rumen fluid of cattle fed the control diet was 19% of total fatty acids. Addition of algal meal increased (P < 0.001) total trans-18:1 up to 43%, mostly due to 18:1 trans-10 that increased (P = 0.002) to 29.5% of total rumen fatty acids. This increase in 18:1 trans-10 seems to suggest a change in the rumen microbial population. Vaccenic acid (18:1 trans-11) increased quadratically (P = 0.005) with increasing level of algal meal supplementation in the diets. The total CLA content was low in the control (<0.9%) and increased with dietary algal meal addition, although not significantly; the greatest level was 1.5% with the medium algal meal diet. The increase of rumenic acid (cis-9, trans-11 CLA) was quadratic (P = 0.05) with algal meal supplementation, whereas trans-10, cis-12 CLA increased linearly with increased level of algal meal from 0.08 to 0.13% (P = 0.03). The ratio of trans-11 (cis-9, trans-11 CLA + 18:1 trans-11) to trans-10 (trans-10, cis-12 CLA + 18:1 trans-10) decreased from 2.45 to 0.77, 0.87, and 0.21 for the control, low algal meal, medium algal meal, and high algal meal diets, respectively. The content of docosahexaenoic acid in rumen fluid increased (P = 0.002) from 0.3 to 1.4% of total fatty acids with increasing level of algal meal supplementation in the diets. Our results suggest that algal meal inhibits the reduction of trans-18:1 to 18:0, giving rise to the high trans-18:1 content. In conclusion, algal meal could be used to increase the concentration in rumen contents of trans-18:1 isomers that serve as precursors for CLA biosynthesis in the tissues of ruminants.  相似文献   

7.
Two experiments were conducted to determine the effectiveness of a rumen-protected CLA (pCLA) supplement and the impact of feeding this pCLA on carcass characteristics and tissue fatty acid composition of lambs. In Exp. 1, a CLA-80 preparation (80% pure CLA; contained similar proportions of cis-9, trans-11, and trans-10, cis-12 CLA), protected against rumen degradation, was fed to sheep, and the proportion of CLA reaching the duodenum was determined. A 3 x 3 Latin square design was used with 3 diets (1.4 kg of concentrate-based control diet, the same control diet plus 22 g of CLA-80, or the same control diet plus 110 g of pCLA/d), 3 feeding periods, and 3 rumen and duodenally cannulated sheep (Mule x Charolais males, 10 mo of age, BW 55.3 +/- 1.8 kg). After 7 d of feeding, sheep were ruminally infused with chromium EDTA and Yb acetate for 7 d, after which samples of duodenal digesta were collected every 6 h for 48 h to determine the quantity of CLA reaching the small intestine each day. The amounts of CLA cis-9, trans-11 and trans-10, cis-12, and combined isomers, flowing through the duodenum each day were greater (P = 0.01) in sheep fed pCLA. Approximately 65% of the pCLA avoided rumen biohydrogenation, with the ratio of the 2 main isomers remaining similar. In Exp. 2, 36 Mule x Charolais ewe lambs (approximately 13-wk old, average initial BW 29.3 kg) were fed 3 levels of the pCLA or Megalac, which were fed to provide an equivalent energy content at each pCLA level. Lambs were randomly assigned to 1 of 7 treatment groups, which were fed for 10 wk to achieve a growth rate of 180 g/d. Treatments included the basal diet and the basal diet plus 25, 50, or 100 g of pCLA/kg of diet or the equivalent amount of Megalac. In liver (P < 0.001) and all adipose tissue depots studied, the proportions of both CLA isomers increased (P = 0.02) with the amount of pCLA fed but were not altered with increasing of Megalac. Although there was no effect of treatment on cis-9, trans-11 CLA content, accumulation (P < 0.001) in the LM with increasing of pCLA supplementation was observed for the trans-10, cis-12 isomer. Although tissues had been enriched with CLA, there was no evidence of a reduction in adipose tissue or an increase in muscle mass in these sheep. However, an effect of pCLA on tissue fatty acid composition was consistent with an inhibition of stearoyl-CoA desaturase.  相似文献   

8.
The objective of this study was to determine the forage:concentrate ratio that would provide the greatest duodenal flow of unsaturated fatty acids in ewes supplemented with soybean oil and to determine how diets differing in forage content affect flow of conjugated linoleic acid (CLA) and trans-vaccenic acid (18:1(trans-11)). Five mature ewes (66.5 +/- 12.8 kg) fitted with ruminal and duodenal cannulas were used in a 5 x 5 Latin square experiment. Diets were isonitrogenous and included bromegrass hay, cracked corn, corn gluten meal, urea, and limestone. Dietary fat was adjusted to 6% with soybean oil. Five ratios of forage:concentrate (18.4:81.6, 32.2:67.8, 45.8:54.2, 59.4:40.6, and 72.9:27.1) were fed at 1.3% of BW daily in equal allotments at 0630 and 1830. After 14 d, Cr2O3 (2.5 g) was dosed at each feeding for 7 d and ruminal, duodenal, and fecal collections were taken for the next 3 d. Duodenal flow of 18:0 increased linearly (P < 0.01) with dietary forage. Duodenal flow of 18:1(cis-9) and 18:2(cis-9,12) decreased (P < 0.001) but duodenal flow of 18:3(cis-9,12,15) increased (P < 0.01) with increased dietary forage. Biohydrogenation of dietary unsaturated fatty acids increased (P < 0.001) as dietary forage increased, which was concomitant with increased ruminal pH. Duodenal flow of 18:2(cis-9,trans-11) increased linearly (P < 0.01) with increased dietary forage but increased abruptly when forage was fed at 45.8%. Duodenal flow of the trans-10, cis-12 and cis-10, cis-12 CLA isomers decreased as dietary forage increased, but flow tended to increase on the highest-forage diet, resulting in both linear (P < 0.01) and quadratic (P < 0.01) effects. Duodenal flow of 18:1(trans-11) decreased from 8.28 g/d on the 18.4% forage diet to 5.47 g/d on the 59.4% forage diet then increased to 7.29 g/d on the highest-forage diet (quadratic, P < 0.1). Duodenal flow of 18:1(trans-11) was 27- to 69-fold greater than flow of CLA. We conclude that when ewes were fed a 6% crude fat diet duodenal flows of dietary fatty acids changed incrementally as dietary forage was increased, whereas changes in flows of CLA isomers seemed to be more abrupt. Biohydrogenation changes were gradual with diet, suggesting a gradual shift in ruminal microbial populations with increasing forage. Finally, the highest-concentrate diet supported the greatest duodenal flows of dietary unsaturated fatty acids, as well as the highest flow of 18:1(trans-11).  相似文献   

9.
To provide further insights into ruminant lipid digestion and metabolism, and into cis-9,trans-11 18:2 synthesis, 12 growing Engadine lambs grazing either mountain pasture (2,250 m above sea level; n = 6) or lowland pasture (400 m above sea level; n = 6) were studied. Both pastures consisted exclusively of C(3) plants. Before the experiment, all animals grazed a common pasture for 6 wk. Grasses and perirenal adipose tissues of the sheep were analyzed for fatty acids by gas chromatography. Stable C-isotope ratios (δ(13)C values in ‰ vs. the Vienna Pee Dee Belemnite standard) were determined in the composite samples by elemental analysis-isotope ratio mass spectrometry. The δ(13)C of the individual fatty acids were measured by gas chromatography-combustion-isotope ratio mass spectrometry. The δ(13)C value of the entire mountain pasture grass was -27.5‰ (SD 0.31), whereas that of the lowland pasture grass was -30.0‰ (SD 0.07). This difference was reflected in the perirenal adipose tissues of the corresponding sheep (P < 0.05), even though the δ(13)C values were less in the animals than in the grass. The δ(13)C values for cis-9 16:1 and cis-9 18:1 in perirenal fat differed between mountain and lowland lambs (P < 0.05). The 16:0 in the adipose tissue was enriched in (13)C by 5‰ compared with the dietary 16:0, likely as a result of partly endogenous synthesis. The δ(13)C values of cis-9,trans-11 18:2 (cis-9,trans-11 CLA) in the adipose tissue were smaller than those of its dietary precursors, cis-9,cis-12 18:2 and cis-9,cis-12,cis-15 18:3; conversely, the δ(13)C values of trans-11 18:1 were not, suggesting that large proportions of perirenal cis-9,trans-11 18:2 were of endogenous origin and discrimination against (13)C occurred during Δ(9)-desaturation. The same discrimination was indicated by the isotopic shift between 16:0 and cis-9 16:1 in the mountain grazing group. Furthermore, the δ(13)C values of cis-9,trans-11 18:2 were smaller relative to the precursor fatty acids in the mountain lambs compared with the lowland group. This result suggests a reduced extent of biohydrogenation in lambs grazing on mountain grass in comparison with those grazing on lowland grass. This was supported by the smaller cis-9,trans-11 18:2 concentrations in total fatty acids found in the adipose tissues of the lowland lambs (P < 0.001). The results of this study demonstrate that natural differences between δ(13)C values of swards from different pastures and the adipose tissue fatty acids could be used as tracers in studies of lipid metabolism in ruminants.  相似文献   

10.
11.
One hundred sixty-eight crossbred steers (317.1 +/- 1.0 kg) were used to evaluate the effects of supplemental fat in finishing diets on the fatty acid composition, including the 9,11 isomer of conjugated linoleic acid, of beef. Steers were allotted within three weight blocks to a randomized complete block design with a 3 x 2 + 1 factorial arrangement of dietary treatments. Main effects were level of yellow restaurant grease (RG; 0, 3, and 6%), and level of alfalfa hay (AH; 3.5 and 7%) with an added treatment containing 6% tallow (T) and 7% AH in barley-based diets containing 15% potato by-product and 7% supplement (all dietary levels are on a DM basis) fed for an average of 165 d. Fatty acids of the LM and s.c. fat from four randomly selected steers per pen were quantified using GC after methylation with sodium methoxide. Dietary treatment did not (P > 0.10) affect total fatty acid (FA) content of the LM (143 +/- 5.2 mg/g) or fat (958 +/- 7.9 mg/g). Myristic acid increased linearly (P < 0.01) with increasing RG from 3.1 to 3.7 +/- 0.1 g/100 g of FA in muscle. Stearic acid increased linearly (P < 0.05) as RG increased in the diet, from 11.4 to 12.9 +/- 0.4 g/100 g of FA in LM and from 9.9 to 12.2 +/- 0.3 g/100 g of FA in fat. Compared with T, steers fed 6% RG had more (P < 0.05) oleic acid in LM (42.7 vs. 40.3 +/- 0.5 g/100g FA) and in fat (43.0 vs. 40.9 +/- 0.5 g/100g FA). The cis-9, trans-11 conjugated linoleic acid (CLA) increased quadratically (P < 0.01) with increasing dietary RG in LM from 0.45 to 0.64 to 0.62 +/- 0.03 g/100 g of FA and increased in fat from 0.61 to 0.84 to 0.83 +/- 0.04 g/100 g of FA. Moreover, cis-9, trans-11 CLA was higher (P < 0.05) in fat from steers fed RG compared with T (0.81 vs. 0.69 +/- 0.04 g/100 g of FA), and tended to be higher (P = 0.07) in muscle (0.62 vs. 0.54 +/- 0.03 g/100 g of FA. Feeding yellow restaurant grease increased content of cis-9, trans-11 CLA in beef without an increase total FA content.  相似文献   

12.
Three Angus steers (410 kg) cannulated in the proximal duodenum were used in a replicated 3 x 3 Latin square to evaluate the effects of dietary lipid level and oil source on ruminal biohydrogenation and conjugated linoleic acid (CLA) outflow. Dietary treatments included: 1) typical corn (TC; 79.2% typical corn), 2) high-oil corn (HOC; 79.2% high-oil corn), and 3) the TC diet with corn oil added to supply an amount of lipid equal to the HOC diet (OIL; 76.9% TC + 2.4% corn oil). Duodenal samples were collected for 4 d following 10-d diet adaptation periods. Data were analyzed with animal, square, period, and treatment in the model and planned, nonorthogonal contrasts were used to test the effects of dietary lipid content (TC vs HOC and OIL) and oil source (HOC vs OIL) on ruminal biohydrogenation. Intake and duodenal flow of total long-chain fatty acids were increased (P < 0.05) by over 63% for diets containing more lipid regardless of oil source. Apparent ruminal dry matter and long chain fatty acid digestibilities were not altered (P > 0.05) by dietary lipid level or oil source. Ruminal biohydrogenation of total and individual 18-carbon unsaturated fatty acids was greater (P < 0.05) for diets with higher lipid content. Biohydrogenation of oleic acid was greater (P < 0.05) for HOC than OIL, but biohydrogenation of linoleic acid was lower (P < 0.05) for HOC than OIL. Duodenal flows of palmitic, stearic, oleic, linoleic, and arachidic acids were more than 30% greater (P < 0.05) for diets containing more lipid. Flow of all trans-octadecenoic acids was greater (P < 0.05) for diets containing more lipid. Corn oil addition increased (P < 0.05) the flow of trans-10 octadecenoic acid and the trans-10, cis-12 isomer of CLA by threefold compared to feeding high-oil corn. Feeding high-oil corn or adding corn oil to typical corn rations increased intake, biohydrogenation, and duodenal flow of unsaturated long-chain fatty acids. Compared with high-oil corn diets, addition of corn oil increased duodenal flow of trans-10, trans-12 and cis-12 isomers of octadecenoic acid and the trans-10, cis-12 isomer of CLA. The amount of cis-9, trans-11 isomer of conjugated linoleic acid flowing to the duodenum was less than 260 mg/d, a value over 20 times lower than flow of trans-11 vaccenic acid indicating the importance of tissue desaturation for enhanced conjugated linoleic acid content of beef.  相似文献   

13.
The effect of conjugated linoleic acid (CLA) on blood lipids [total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and triacylglycerols (TAG)] and the fatty acid distribution of the lipoprotein fractions, backfat, muscle fat, and liver lipids were examined in an experiment with two groups of 40 pigs [Pietrain x (Landrace x Large White)] each. The 20 female and 20 male castrated pigs of each group were fed with isoenergetic and isonitrogenous diets supplemented with either 20 g/kg rapeseed oil (control) or 20 g/kg CLA-TAG. The CLA preparation contained 54.2% pure CLA consisting of approximately two-thirds cis,trans/trans,cis-isomers and one-third trans,trans-isomers. The fatty acids of lipoproteins, backfat, muscle lipids and liver lipids were analysed by gas chromatograph (GC). CLA supplementation did not significantly influence blood lipids and the LDL to HDL ratio. In the CLA-fed pigs the very low-density lipoprotein (VLDL) contained higher saturated fatty acid (SFA) concentrations at the cost of the monounsaturated fatty acids (MUFA). The percentage of polyunsaturated fatty acids (PUFA) remained unchanged. The highest CLA content was analysed in VLDL (4.00%) followed by LDL (2.78%) and HDL (1.45%). The ratio of cis,cis to trans,trans isomers increased from VLDL over LDL to HDL. The content of SFA, probably in backfat and muscle lipids, increased whereas the part of MUFA decreased as a result of reduced Delta9-desaturase activity. The percentage of PUFA (without CLA) was higher in backfat of the control group in accordance with the dietary PUFA supply. This shift in the fatty acid distribution was not observed in the liver lipids. In all the three tissues analysed, the CLA-fed pigs had a significantly increased CLA content: the highest increase was in the backfat (5.65%), followed by liver lipids (2.41%), and muscle lipids (1.47%). An isomer-specific accumulation was observed for cis,cis-CLA isomers in muscle, and for trans,trans-CLA isomers in backfat. We conclude that CLA supplementation results in a higher SFA content in backfat and muscle lipids but not in liver lipids. There is a discrimination of the trans-10, cis-12 isomer and the trans,trans isomers in the formation of the cell membranes.  相似文献   

14.
Six Hereford steers (295 kg) cannulated in the proximal duodenum were used to evaluate the effects of forage and sunflower oil level on ruminal biohydrogenation (BH) and conjugated linoleic acid (CLA) outflow. Steers were fed one of six treatment diets in a 3 x 2 factorial arrangement of treatments (grass hay level: 12, 24, or 36% of DM; and sunflower oil level: 2 or 4% of DM) in a 6 x 6 Latin square design. The remainder of the diet was made up of steam rolled corn and protein/mineral supplement. Duodenal samples were collected for 4 d following 10-d diet adaptation periods. Data were analyzed with animal, period, forage level, sunflower oil level, and two-way interaction between forage and sunflower oil level in the model. Dry matter intake showed a quadratic response (P < 0.04), with an increase in DMI as forage level increased from 12 to 24% followed by a decrease in DMI when 36% forage was fed. Flow of fatty acids at the duodenum was higher (P < 0.03) for 4 vs. 2% sunflower oil diets, and similar among forage levels. Apparent ruminal digestibility of NDF increased in a linear manner (P < 0.04) as dietary forage level increased. Ruminal BH of dietary unsaturated 18-C fatty acids, oleic acid, and linoleic acid increased linearly (P < 0.05) as dietary forage level increased. Linoleic acid BH tended (P < 0.07) to be greater for 4 than 2% sunflower oil level. Duodenal flow of pentadecyclic, stearic, linolenic, and arachidic acids increased linearly (P < 0.05) as dietary forage level increased from 12 to 36%. Duodenal flow of linoleic acid decreased in a linear manner (P < 0.03) with increasing dietary forage level. Flow of trans-10 octadecenoate decreased linearly (P < 0.03) as dietary forage level increased, whereas trans-11 vaccenic acid flow to the duodenum increased (P < 0.01) linearly with increased dietary forage. Dietary forage or sunflower oil levels did not alter the outflow of cis-9, trans-11 CLA. Flows of cis-11, trans-13, and cis-9, cis-11 CLA increased linearly (P < 0.05) with increased dietary forage. Flows of cis-11, cis-13, and trans-11, trans-13 CLA decreased linearly (P < 0.05) with increased dietary forage. Increasing dietary forage levels from 12 to 36% in beef cattle finishing diets increased BH of unsaturated 18-C fatty acid and outflow of trans-11 vaccenic acid to duodenum without altering cis-9, trans-11 CLA outflow.  相似文献   

15.
Conjugated linoleic acid (CLA), a mixture of isomers of linoleic acid, has many beneficial effects, including decreased tumor growth in animal cancer models. The cis-9, trans-11 isomer of CLA (CLA9,11) can be formed in the rumen as an intermediate in biohydrogenation of linoleic acid. Recent data, however, indicate that tissue desaturation of trans-fatty acids is an important source of CLA9,11 in milk. Our objective was to determine whether supplementing a high-corn diet with soybean oil (SBO; a source of linoleic acid) would increase concentrations of CLA in ruminal contents and tissue lipids. Four ruminally cannulated steers were utilized in a Latin square design with 28-d periods. A control diet (80% cracked corn, 2.0% corn steep liquor, 8.0% ground corn cobs, and 10% supplement [soybean meal, ground shelled corn, minerals, and vitamins]) was supplemented with 2.5, 5.0, or 7.5% (DM basis) SBO. Supplemental SBO did not affect ruminal pH or concentrations of the major VFA. The proportion and amount (mg FA/g DM ruminal contents) of CLA9,11 were not increased by increasing dietary SBO. However, the proportion and amount of the trans-10, cis-12 CLA isomer (CLA10,12) in ruminal contents increased linearly (P < 0.006) as dietary SBO increased. Trans-18:1 isomers in ruminal contents increased linearly (P < 0.02) as dietary SBO increased. The proportion of CLA10,12 was correlated positively (P < 0.001) with proportions of trans-C 18:1 isomers in ruminal contents. Conversely, CLA9,11 was correlated negatively (P < 0.05) with the proportions of trans-18:1 in ruminal contents. The same high-corn diet, supplemented with 0 or 5% SBO, was fed to 20 Angus-Wagyu heifers for 102 d in a randomized complete block design to determine the effect of added SBO on tissue deposition of CLA. Supplemental SBO did not affect feed intake, gain:feed, or carcass quality. Tissue samples were obtained from the hindquarter, loin, forequarter, liver, large and small intestine, and subcutaneous, mesenteric, and perirenal adipose depots. The concentration of CLA9,11 was greatest in subcutaneous adipose tissue but was not affected in any tissue by SBO. Supplementing high-corn diets with SBO does not increase CLA9,11 concentrations in tissues of fattening heifers. Research is needed to identify regulatory factors for pathways of biohydrogenation that lead to increased concentrations of CLA10,12 in ruminal contents when high-oil, high-concentrate diets are fed.  相似文献   

16.
Xu CX  Oh YK  Lee HG  Kim TG  Li ZH  Yin JL  Jin YC  Jin H  Kim YJ  Kim KH  Yeo JM  Choi YJ 《Journal of animal science》2008,86(11):3033-3044
The present study was conducted to examine the effects of different plant oils or plant oil mixtures and high-temperature, microtime processing (HTMT) on the CLA content in Hanwoo steers. Experiment 1, consisting of 3 in vitro trials, was conducted to determine how the biohydrogenation of C18 fatty acids and CLA production were affected by fat sources (tallow, soybean oil, linseed oil, or mixtures of soybean oil and linseed oil) or HTMT treatment in the rumen fluid. The results showed that HTMT was capable of protecting unsaturated fatty acids from biohydrogenation by ruminal bacteria. The HTMT-treated diet containing 4% linseed oil (LU) and a supplement containing 2% linseed oil and 1% soybean oil treated with HTMT + 1% soybean oil (L(2)S(1)U+S(1)) produced an increased quantity of trans-11 C18:1 and cis-9, trans-11 CLA, and a reduced quantity of trans-10, cis-12 CLA. Based on these results, in vivo studies (Exp. 2) were conducted with LU and L(2)S(1)U+S(1). These 2 treatments increased the content of cis-9, trans-11 CLA in LM compared with the control diet. The content of trans-10, cis-12 CLA in subcutaneous fat was also increased in the L(2)S(1)U+S(1) treatment compared with other treatments. The subcutaneous fat thickness in the LU treatment was decreased compared with the L(2)S(1)U+S(1) treatment. The LU treatment significantly decreased fatty acid synthase expression but simultaneously increased leptin expression. In this report, we showed that diets containing LU and L(2)S(1)U+S(1) were capable of increasing CLA in the intramuscular fat of beef.  相似文献   

17.
Crossbred Angus steers (n = 30) were used to determine whether the conjugated linoleic acid (CLA) content of beef fat could be increased by feeding varying levels of extruded full-fat soybeans as a source of polyunsaturated fatty acids for rumen biohydrogenation. Diets were as follows: 1) control, 2) 12.7% extruded full-fat soybeans (LESB), and 3) 25.6% extruded full-fat soybeans (HE SB). Steers were individually housed and fed the diets for 111 d during the finishing period. Over the experimental period, treatment groups were similar in ADG (1.7 +/- 0.1 kg/d) and had a similar slaughter weight (603 +/- 11.6 kg). Dressing percentage averaged 61.6% and carcass composition averaged 14.3% protein, 30.9% lipid, and 54.8% water. At slaughter, the intramuscular, intermuscular, and subcutaneous fat depots were sampled from the rib longissimus, eye of round, and chuck tender muscles. Across all fat depots, the CLA content differed (P < 0.05), averaging 6.6, 6.7, and 7.7 mg/g of fatty acids for the control, LESB, and HESB diets, respectively. There were significant differences in CLA content between fat depots within a cut, but differences were relatively small and the hierarchy in fat depots was not consistent among cuts. The cis-9, trans-11 isomer was the predominant CLA isomer and its content in fat was related to trans-11 C18:1 content (r = 0.53; P < 0.001). There was substantial individual variation in CLA content and this varied from 2.6 to 17.0 mg/g fatty acids across all treatments and fat depots. Overall, results demonstrated that including extruded full-fat soybeans in the diet of finishing steers increased the CLA content of beef fat. Differences were relatively small and the relationship of this to rumen fermentation and endogenous synthesis of CLA is considered.  相似文献   

18.
Four different plant secondary metabolites were screened for their effect on rumen biohydrogenation of forage long-chain fatty acids, using dual-flow continuous culture fermenters. Treatments were as follows: control (no additive), positive control (12 mg/L of monensin), and plant extracts (500 and 1,000 mg/L of triterpene saponin; 250 and 500 mg/L of quercetin; 250 mg/L of eugenol; 500 mg/L of cinnamaldehyde). Monensin increased propionate, decreased acetate and butyrate proportions, and inhibited the complete biohydrogenation of fatty acids resulting in the accumulation of intermediates of the biohydrogenation process (C18:2 trans-11, cis-15 rather than C18:1 trans-11). Cinnamaldehyde decreased total VFA concentration and proportions of odd and branched-chain fatty acids in total fat effluent. Apparent biohydrogenation of C18:2n-6 and C18:3n-3 was also less, and a shift from the major known biohydrogenation pathway to a secondary pathway of C18:2n-6 was observed, as evidenced by an accumulation of C18:1 trans-10 and trans-10, cis-12 CLA. Quercetin (500 mg/L) increased total VFA concentration, but no shifts in the pathways or extent of biohydrogenation were observed. Eugenol resulted in the accumulation of C18:1 trans-15 and C18:1 cis-15, end products of an alternative biohydrogenation pathway of C18:3n-3. Triterpene saponins did not affect the fermentation pattern, the biohydrogenation pathways, or the extent of biohydrogenation. At the doses tested in this study, we could only show a direct relation between changes in the rumen fatty acid metabolism and the presence of cinnamaldehyde but not for eugenol, quercetin, or triterpene saponins.  相似文献   

19.
Background: The positive influence of replacing dietary starch with sugar on milk fat production has been proposed to be partially attributed to the inhibition of the rumen trans-10 biohydrogenation pathway. However,whether and how sucrose inhibits the rumen trans-10 biohydrogenation pathway remains elusive.Results: A batch in vitro incubation system was used to evaluate effects of replacing cornstarch in a high-concentrate diet(forage to concentrate ratio = 40:60) with 0(control), 3, 6 and 9 % of sucrose on rumen fermentation pattern, fatty acid(FA) biohydrogenation pathways and bacterial populations relating to trans-11 to trans-10 biohydrogenation pathways. Replacing dietary cornstarch with sucrose did not alter rumen p H or concentrations of total volatile fatty acids(VFA) in comparison with the control but significantly influenced the profiles of individual VFA. The molar proportions of butyrate and valerate were linearly increased, while that of acetate was quadratically decreased and those of propionate, isobutyrate and isovalerate were linearly decreased with increasing concentrations of sucrose in the diet. Furthermore, replacing cornstarch with sucrose led to a linear decrease in C18:1 trans-10, linear increases in the proportions of C18:1 trans-11, C18:2n-6 and the ratio of trans-11 to trans-10, and linear decreases in biohydrogenation of C18:2n-6 and C18:3n-3. The abundance of Butyrivibrio fibrisolvens, a butyrate and CLA cis-9,trans-11 producer, was increased with the increasing inclusion of sucrose in the diet, while the population of Megasphaera elsdenii, a CLA trans-10, cis-12 producer, was significantly decreased by all levels of sucrose replacements.Conclusions: These results indicate that replacing starch in a high-concentrate diet with sucrose increased butyrate production and inhibited the rumen trans-10 biohydrogenation pathway, which was at least partially due to increased abundance of Butyrivibrio fibrisolvens and decreased abundance of Megasphaera elsdenii.  相似文献   

20.
In the current study, we hypothesized that diets high in linoleic acid would increase conjugated linoleic acid (CLA) tissue content, reduce adiposity and leptin production, and result in an increase in the age at puberty in heifers. Heifers were weaned and blocked by body weight (heavy, n = 10, and light, n = 10) and allocated randomly within block to receive isocaloric and isonitrogenous diets with either added fat (HF, n = 10) or no added fat (C, n = 10) from 4 mo of age until post-pubertal slaughter. Whole sunflower seed (55% oil; 70% linoleic acid) was used as the fat source in HF diets and provided 5% added fat from the start of the study until heifers weighed 250 +/- 8 kg, at which time added fat was increased to 7% of dry matter until slaughter. Body weights were recorded weekly, and blood samples were collected weekly for total cholesterol and hormone analyses. Puberty was confirmed based on serum concentrations of progesterone and ultrasonographic confirmation of corpora lutea. Heifers were slaughtered at 325 +/- 10 d of age, and longissimus muscle between the 9th and 11th rib was collected and analyzed to estimate carcass composition. Subcutaneous and kidney, pelvic, and heart fat were collected at slaughter for fatty acid analyses. The HF heavy group tended (P < 0.10) to reach puberty later than all other groups, and one HF light heifer did not reach puberty during the study. Linoleic acid and cis-9, trans-11 CLA tissue contents were higher (P < 0.03) in HF heifers than controls, but neither total carcass fat nor percentage of dry matter differed by dietary group, although the percentage of protein tended (P < 0.10) to be lower in HF heifers. Mean serum concentrations of leptin did not differ due to diet; however, leptin increased (P < 0.01) linearly as puberty approached. Circulating concentrations of growth hormone and insulin-like growth factor I increased or remained relatively constant between wk 2 to 10 of feeding, and then declined (P < 0.01) until the onset of puberty. Serum IGF-I was lower (P < 0.01) in heifers receiving the HF diet. Mean serum concentrations of insulin and total cholesterol increased (P < 0.01) with time in both groups, but only total cholesterol was increased by the HF diet (P < 0.05). Results indicate that diets high in linoleic acid fed to growing beef heifers beginning early in life have little or no effect on total carcass fat, circulating leptin, or age at puberty despite measurable increases in CLA accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号