首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Depending on the spatial density of built cover and location within a catchment, residential areas make varying contributions to surface runoff throughout different rainfall events. This study examined these contributions and the associated effect of different surface covers and sustainable drainage systems on runoff generation. The Soil Conservation Service curve number (SCS-CN) method was applied to analyse urban development in the Höjeå river catchment in southern Sweden.The results indicated that identical amounts of surface runoff are generated by low-density residential areas on heavy clay soils and high-density residential areas on sandy soils. However, increasing the density of built-up areas on sandy soils is likely to be more disruptive to the hydrological balance and to generate a greatly increasing difference in runoff as building density and impermeable surface area increase. A similar pattern is likely to occur if rainfall intensity increases. It may therefore be appropriate to apply different planning considerations to residential developments depending on the existing soil group, e.g. conserving existing vegetated surfaces on sandy soil and incorporating permeable paving materials and sub-surface infiltration beds in development on clayey soils. Increased area of impermeable surface cover will increase surface runoff in all residential areas, irrespective of building density, soil group and rainfall intensity. However, adapting a systems approach in combining vegetative structures and permeable paving materials with subsurface infiltration beds can help mitigate the impact of surface runoff, particularly in urban developments on clay-rich soils.  相似文献   

2.
We hypothesized that the spatial configuration and dynamics of periurban forest patches in Barcelona (NE of Spain) played a minor role in determining plant species richness and assemblage compared to site conditions, and particularly to both direct (measured at plot level) and potential (inferred from landscape metrics) human-associated site disturbance. The presence of all understory vascular plants was recorded on 252 plots of 100 m2 randomly selected within forest patches ranging in size from 0.25 ha to 218 ha. Species were divided into 6 groups, according to their ecology and conservation status. Site condition was assessed at plot level and included physical attributes, human-induced disturbance and Quercus spp. tree cover. Landscape structure and dynamics were assessed from patch metrics and patch history. We also calculated a set of landscape metrics related to potential human accessibility to forests. Results of multiple linear regressions indicated that the variance explained for non-forest species groups was higher than for forest species richness. Most of the main correlates corresponded to site disturbance variables related to direct human alteration, or to landscape variables associated to indirect human effects on forests: Quercus tree cover (a proxy for successional status) was the most important correlate of non-forest species richness, which decreased when Quercus tree cover increased. Human-induced disturbance was an important correlate of synanthropic and total species richness, which were higher in recently managed and in highly frequented forests. Potential human accessibility also affected the richness of most species groups. In contrast, patch size, patch shape and connectivity played a minor role, as did patch history. We conclude that human influence on species richness in periurban forests takes place on a small scale, whereas large-scale effects attributable to landscape structure and fragmentation are comparatively less important. Implications of these results for the conservation of plant species in periurban forests are discussed.  相似文献   

3.
There is considerable concern over the occurrence of stand-replacing fire in forest types historically associated with low- to moderate-severity fire. The concern is largely over whether contemporary levels of stand-replacing fire are outside the historical range of variability, and what natural forest recovery is in these forest types following stand-replacing fire. In this study we quantified shrub characteristics and tree regeneration patterns in stand-replacing patches for five fires in the northern Sierra Nevada. These fires occurred between 1999 and 2008, and our field measurements were conducted in 2010. We analyzed tree regeneration patterns at two scales: patch level, in which field observations and spatial data were aggregated for a given stand-replacing patch, and plot level. Although tree regeneration densities varied considerably across sampled fires, over 50 % of the patches and approximately 80 % all plots had no tree regeneration. The percentage of patches, and to a greater extent plots, without pine regeneration was even higher, 72 and 87 %, respectively. Hardwood regeneration was present on a higher proportion of plots than either the pine or non-pine conifer groups. Shrub cover was generally high, with approximately 60 % of both patches and individual plots exceeding 60 % cover. Patch characteristics (size, perimeter-to-area ratio, distance-to-edge) appeared to have little effect on observed tree regeneration patterns. Conifer regeneration was higher in areas with post-fire management activities (salvage harvesting, planting). Our results indicate that the natural return of pine/mixed-conifer forests is uncertain in many areas affected by stand-replacing fire.  相似文献   

4.

Context

Urbanization has altered many landscapes around the world and created novel contexts and interactions, such as the rural–urban interface.

Objectives

We sought to address how a forest patch’s location in the rural–urban interface influences which avian species choose to occur within the patch. We predicted a negative relationship between forest bird richness and urbanization surrounding the patch, but that it would be ameliorated by the area of tree cover in the patch and matrix, and that total tree-cover area would be more influential on forest bird species richness than area of tree cover in the focal patch alone.

Methods

We conducted bird surveys in 44 forest patches over 2 years in Southeast Michigan and evaluated bird presence and richness relative to patch and matrix tree cover and development density.

Results

We observed 43 species, comprised of 21 Neotropical migrants, 19 residents, and three short-distance migrants. Focal-patch tree-cover area and the matrix tree-cover area were the predominant contributors to a site’s overall forest-bird species richness at the rural–urban interface, but the addition of percent of over-story vegetation and percentage of deciduous tree cover influenced the ability of the patches to support forest species, especially Neotropical migrants. Development intensity in the matrix was unrelated to species richness and only had an effect in four species models.

Conclusions

Although small forest patches remain an important conservation strategy in developed environments, the influence of matrix tree cover suggests that landscape design decisions in surrounding matrix can contribute conservation value at the rural–urban interface.
  相似文献   

5.
Habitat fragmentation strongly affects insect species diversity and community composition, but few studies have examined landscape effects on long term development of insect communities. As mobile consumers, insects should be sensitive to both local plant community and landscape context. We tested this prediction using sweep-net transects to sample insect communities for 8 years at an experimentally fragmented old-field site in northeastern Kansas, USA. The site included habitat patches undergoing secondary succession, surrounded by a low turf matrix. During the first 5 years, plant richness and cover were measured in patches. Insect species richness, total density, and trophic diversity increased over time on all transects. Cover of woody plants and perennial forbs increased each year, adding structural complexity to successional patches and potentially contributing to increased insect diversity. Within years, insect richness was significantly greater on transects through large successional patches (5000 m2) than on transects through fragmented arrays of 6 medium-sized (total area 1728 m2) or 15 small (480 m2) patches. However, plant cover did not differ among patch types and was uncorrelated with insect richness within years. Insect richness was strongly correlated with insect density, but trophic and α diversities did not differ among patch types, indicating that patch insect communities were subsets of a common species pool. We argue that differences in insect richness resulted from landscape effects on the size of these subsets, not patch succession rates. Greater insect richness on large patches can be explained as a community-level consequence of population responses to resource concentration.  相似文献   

6.
Scaling properties in landscape patterns: New Zealand experience   总被引:15,自引:0,他引:15  
In this paper we present a case study of spatial structure in landscape patterns for the North and South Islands of New Zealand. The aim was to characterise quantitatively landscape heterogeneity and investigate its possible scaling properties. The study examines spatial heterogeneity, in particular patchiness, at a range of spatial scales, to help build understanding on the effects of landscape heterogeneity on water movement in particular, and landscape ecology in general.We used spatial information on various landscape properties (soils, hydrogeology, vegetation, topography) generated from the New Zealand Land Resource Inventory. To analyse this data set we applied various methods of fractal analyses following the hypothesis that patchiness in selected landscape properties demonstrates fractal scaling behaviour at two structural levels: (1) individual patches; and (2) mosaics (sets) of patches.Individual patches revealed scaling behaviour for both patch shape and boundary. We found self-affinity in patch shape with Hurst exponent H from 0.75 to 0.95. We also showed that patch boundaries in most cases were self-similar and in a few cases of large patches were self-affine. The degree of self-affinity was lower for finer patches. Similarly, when patch scale decreases the orientation of patches tends to be uniformly distributed, though patch orientation on average is clearly correlated with broad scale geological structures. These results reflect a tendency to isotropic behaviour of individual patches from broad to finer scales. Mosaics of patches also revealed fractal scaling in the total patch boundaries, patch centers of mass, and in patch area distribution. All these reflect a special organisation in patchiness represented in fractal patch clustering. General relationships which interconnect fractal scaling exponents were derived and tested. These relationships show how scaling properties of individual patches affect those for mosaics of patches and vice-versa. To explain similarity in scaling behaviour in patchiness of different types we suggest that the Self-Organised Criticality concept should be used. Also, potential applications of our results in landscape ecology are discussed, especially in relation to improved neutral landscape models.  相似文献   

7.
A large-scale experimental landscape study was conducted to examine the use of corridors and the forest matrix habitat by the hispid cotton rat (Sigmodon hispidus). The role of micro- habitat selection by S. hispidus in influencing routes of movement was also investigated. The experimental landscape consisted of ten 1.64-ha patches (each 128×128 m) established in a loblolly (Pinus teada) forest. Four of the patches were isolated while the other six were connected in pairs by a 32-m wide corridor. Cotton rats (N=96) were simultaneously released into both an isolated and connected patch, and monitored by radiotelemetry for 10 days. We found that the forest matrix was not a barrier to movements of cotton rats. Fifty percent of the cotton rats moved through the matrix. Corridors had no significant effect on the number of animals leaving connected patches (60%) compared to isolated patches (50%). However, corridors were the preferred route to leave a connected patch. Colonization success for cotton rats leaving connected and isolated patches did not significantly differ. Cotton rats exhibited micro-habitat preferences and these preferences differed within patch/corridor and matrix habitats. In patch/corridor habitats, cotton rats selected sites with tall (>1 m) shrubs and high percent cover. In the forest matrix, cotton rats selected sites with abundant cover by vines and low tree canopy cover. Movement patterns of Sigmodon hispidus are not strongly influenced by large-scale landscape spatial structures. Micro-habitat selection, however, does influence movement patterns. These findings have important implications regarding habitat connectivity for small mammals.  相似文献   

8.
The fractal shape of riparian forest patches   总被引:1,自引:0,他引:1  
Remnant patches of a forest corridor were examined along the Iowa and Cedar Rivers, Iowa. A fractal dimension was found for these patches which was incorporated with the perimeter:area ratio in an index of shape. This index was then regressed on 5 hydrogeomorphic variables hypothesized to represent processes which might control patch dimensions, plus a variable to represent human impact. The hydrogeomorphic variables were derived from topographic maps; the impact variable used was the proportion of perimeter that was occupied by a road, railroad, transmission line, urban or other built area, or a straight line judged to be agricultural. Three variables remained significant in a reduced model: human impact, valley width, and stream sinuosity, but together the three accounted for only 24% of the variance in patch shape. The fractal perimeter:area ratio increased with human impact, probably because of reduced area, and decreased with valley width, which allowed more extensive forest on wide floodplains, and with sinuosity, which resulted in small patches isolated on the interior of meanders. These results indicate that in this landscape the hydrogeomorphic structures play a role, but that human impact is more significant in its effect on the shape of remnant forest patches. Other structures, such as the regional topography, may account for the unexplained variance. The index of shape used here may be useful as an independent variable in studies of ecological processes affected by patch shape and form and as a guide to conservation.  相似文献   

9.
It is well known that the process of urbanization alters the hydrological performance of an area, reducing the ability of urban areas to cope with heavy rainfall events. Previous investigations into the role that trees can play in reducing surface runoff have suggested they have low impact at a city wide scale, though these studies have often only considered the interception value of trees.This study assessed the impact of trees upon urban surface water runoff by measuring the runoff from 9 m2 plots covered by grass, asphalt, and asphalt with a tree planted in the centre. It was found that, while grass almost totally eliminated surface runoff, trees and their associated tree pits, reduced runoff from asphalt by as much as 62%. The reduction was more than interception alone could have produced, and relative to the canopy area was much more than estimated by many previous studies. This was probably because of infiltration into the tree pit, which would considerably increase the value of urban trees in reducing surface water runoff.  相似文献   

10.
Hydrocell™is a urea formaldehyde resin foam (UFRF) product used as a soil amendment. It is proposed to improve the physicochemical properties (viz. water relations and aeration) of the plant root zone. Flindersia schottiana is a tree species used in the ornamental horticulture industry. This study investigated the potential of Hydrocell™ [0–50% (v/v) incorporation rates] to promote growth of F. schottiana saplings during containerized nursery production in composted pine bark medium. The growth response of the potted saplings to transient water stress was also assessed. In addition, growth of F. schottiana saplings potted into three different soil types (sand, loam, clay) was assessed in the presence and absence of 30% (v/v) Hydrocell™. Under well-watered conditions in composted pine bark, Hydrocell™ treatments enhanced sapling leaflet numbers, with 30% (v/v) being the most beneficial treatment. However, no consistent significant differential effects of incorporation rate on either plant height or stem diameter were recorded. Extended time to wilting upon withholding irrigation was achieved, with the optimum Hydrocell™ rate being 10% (v/v). Among the three soil types compared, use of 30% (v/v) Hydrocell™ resulted in improved growth of potted F. schottiana saplings in the sand and loam soils, but not in the clay soil. These findings suggest that the UFRF, Hydrocell™, holds limited promise as a soil amendment for trees in the nursery phase. Optimum incorporation rates (v/v) would need to be determined for individual media types, specific irrigation regimes and individual taxa.  相似文献   

11.
Landscape analysis and delineation of habitat patches should take into account organism-specific behavioral and perceptual responses to landscape structure because different organisms perceive and respond to landscape features over different ranges of spatial scales. The commonly used methods for delineating habitat based on rules of contiguity do not account for organism-specific responses to landscape patch structure and have undesirable properties, such as being dependent on the scale of base map used for analysis. This paper presents an improved patch delineation algorithm, “PatchMorph,” which can delineate patches across a range of spatial scales based on three organism-specific thresholds: (1) land cover density threshold, (2) habitat gap maximum thickness (gap threshold), and (3) habitat patch minimum thickness (spur threshold). This algorithm was tested on an “idealized” landscape with landscape gaps and spurs of known size, and delineated patches as expected. It was then applied to delineate patches from a neutral random fractal landscape, which showed that as the input gap and spur thickness thresholds were increased, the number of patches decreased from 59 (low thresholds) patches to 1 (high thresholds). The algorithm was then applied to model western yellow-billed cuckoo (Coccyzus americanus occidentalis) nesting habitat patches based on spur and gap thresholds specific to this organism. Both these analyses showed that fewer patches were delineated by PatchMorph than by rules of contiguity, and those patches were larger, had smoother edges, and had fewer gaps within the patches. This algorithm has many applications beyond those presented in this paper, including habitat suitability analysis, spatially explicit population modeling, and habitat connectivity analysis.  相似文献   

12.
Container mixes consisting of Pinus radiata bark and brown coal or clay loam soil have poor wetting properties when they are dry, because of the shrinkage of all three and the hydrophobic nature of dry pinebark. The wettability of coarse sand, which is independent of its dryness, is quantitatively transferred to container mixes in proportion to the amount used.  相似文献   

13.
Our research illustrates how a landscape mosaic changes in association with a mixed natural-anthropogenic disturbance history. Our study area is the Northwest Wisconsin (USA) Sand Plain (NWSP), a region with a rich disturbance history including fire, insects and clearcut forestry. We integrated historic airphotos from 1938, 1960, 1980 and 1998 within a GIS to describe change among four landcover classes describing a canopy-closure gradient: closed forests, woodlands, savannas and “open barrens”. Our work addresses two literature needs: empirical studies of mixed-disturbance landscapes, and nonforest habitats within a forest matrix. Our analysis shows that: the area of open barrens fluctuated, woodlands and savannas declined severely and closed forests increased through time. Falling median patch sizes and other landscape metrics suggest that the woodlands are becoming more fragmented. The landcover transitions driving this change vary according to time and place. The dominant transitions are toward closed forests from all classes, and transitions toward open barrens are also consistently important. The woodlands, savannas and open barrens habitats are mostly comprised of transient patches, persisting for less than 20 years. This contrasts with closed forests that often persist for 40 plus years. These changes are consistent with the disturbance regime that is shifting from fire- to forestry-dominance. Our results show a trend towards landscape simplification, manifest as losses of intermediate-density habitats (woodland and savanna) and shrinking patch sizes. The transient nature of the nonforest habitats shows that disturbance resulting in total or partial canopy removal will be vital for their conservation at a landscape scale.  相似文献   

14.
Studies investigating animal response to habitat in marine systems have mainly focused on habitat preference and complexity. This study is one of the first to investigate the affect of benthic habitat corridors and their characteristics on dispersal and colonization by estuarine macrofuana. In this study, mark-recapture field experiments using artificial seagrass units (ASUs) assessed the effects of seagrass corridors, interpatch distance (5 m vs. 10 m), and the ratio of corridor width to patch width (0.5 m:1 m vs. 0.25 m:1 m) on dispersal of two benthic organisms: the highly mobile grass shrimp, Palaemonetes sp., and the less mobile bay scallop, Argopecten irradians, in two estuarine systems in southeastern North Carolina (NC). The presence of a seagrass corridor, interpatch distance, and corridor width to patch width ratios did not significantly affect shrimp or scallop dispersal to receiver patches. Bay scallop dispersal to receiver patches was significantly higher at one site (Drum Shoals) with relatively high flow, compared to a second site (Middle Marsh) with lower flow. We then examined colonization of estuarine macrofauna to seagrass patches with and without corridors to determine which, if any, taxonomic groups respond positively to corridors at scales of 10 m and over 1 month. Colonization of estuarine macrofauna to seagrass patches was enhanced in the presence of corridors at a relatively large interpatch distance (10 m), which was statistically significant for relatively slow moving polychaete worms. Thus, although benthic habitat corridors may facilitate dispersal of relatively slow moving estuarine animals between otherwise isolated seagrass patches, several common seagrass fauna such as grass shrimp and bay scallops apparently use water currents to rapidly disperse across the seagrass/sand landscape.  相似文献   

15.
The understanding and prediction of the responses of animal populations to habitat fragmentation is a central issue in applied ecology. The identification of habitat variables associated to patch occupancy is particularly important when habitat quality is affected by human activities. Here, we analyze the influence of patch and landscape characteristics on patch occupancy by the subterranean herbivorous rodent Ctenomys porteousi. Patch occupancy was monitored in a network of 63 habitat patches identified by satellite imagery analysis which extends along almost the whole distributional range for C. porteousi. Suitable habitat for the occurrence of C. porteousi is highly fragmented and represents <10% of the total area in its distributional range. The distribution of C. porteousi in the patch network is affected not only by characteristics of the habitat patches, but also by those of the surrounding landscape matrix. Significant differences between occupied and empty patches were found in several environmental variables. Overall, occupied patches were larger, less vegetated, more connected, and had larger neighbor patches than empty patches. A stepwise procedure on a generalized linear model selected four habitat variables that explain patch occupancy in C. porteousi; it included the effects of habitat quality in the matrix surrounding the patch, average vegetation cover in the patch, minimum vegetation cover in the matrix surrounding the patch, and the area of the nearest neighbor patch. These results indicate that patch occupancy in C. porteousi is strongly influenced by the availability and quality of habitat both in the patch and in the surrounding landscape matrix.  相似文献   

16.
Where the potential natural vegetation is continuous forest (e.g., eastern US), a region can be divided into smaller units (e.g., counties, watersheds), and a graph of the proportion of forest in the largest patch versus the proportion in anthropogenic cover can be used as an index of forest fragmentation. If forests are not fragmented beyond that converted to anthropogenic cover, there would be only one patch in the unit and its proportional size would equal 1 minus the percentage of anthropogenic cover. For a set of 130 watersheds in the mid-Atlantic region, there was a transition in forest fragmentation between 15 and 20% anthropogenic cover. The potential for mitigating fragmentation by connecting two or more disjunct forest patches was low when percent anthropogenic cover was low, highest at moderate proportions of anthropogenic cover, and again low as the proportion of anthropogenic cover increased toward 100%. This fragmentation index could be used to prioritize locations for restoration by targeting watersheds where there would be the greatest increase in the size of the largest forest patch.  相似文献   

17.
Detailed species composition data are rapidly collected using a high-powered telescope from remote vantage points at two scales: site level and patch level. Patches constitute areas of homogeneous vegetation composition. Multiple samples of species composition are randomly located within the patches. These data are used as site-level data and are also aggregated to provide species composition data at the patch level. The site- and patch-level data are spatially integrated with high resolution (10 m), topographically-derived fields of environmental conditions, such as solar radiation, air temperature, and topographic moisture index in order to evaluate the applicability of the sampling method for modeling relationships between species composition and environmental processes.The methodology provides a balance between sampling efficiency and the accuracy of field data. Application of the method is appropriate for environments where terrain and canopy characteristics permit open visibility of the landscape. We evaluate the nature of data resulting from an implementation of the remote sampling methodology in a steep watershed dominated by closed-canopy chaparral. Analyses indicate that there is minimal bias associated with scaling the data from the site level to the patch level, despite variable patch sizes. Analysis of variance and correlation tests show that the internal floristic and environmental variability of patches is low and stable across the entire sample of patches. Comparison of regression tree models of species cover at the two scales indicates that there is little scale-dependence in the ecological processes that govern patterns of species composition between the site level and patch level. High explanatory power of the regression tree models suggests that the vegetation data are characterized at an appropriate scale to model landscape-level patterns of species composition as driven by topographically-mediated processes. Patch-level sampling reduces the influence of local stochasticity and micro-scale processes. Comparison of models between the two scales can be useful for assessing the processes and associated scales of variability governing spatial patterns of plant species.  相似文献   

18.
以分别栽培于砂壤土、壤土和黏壤土,砧木为八棱海棠(Malus robusta Rehd.)和平邑甜茶(Malus hupehensis Rehd.)的2年生盆栽‘红富士’苹果(Malus × domestica Borkh.‘Red Fuji’)幼树根际土为试材,分析根际和未栽植果树的非根际土壤细菌16S rRNA基因拷贝数、细菌根际效应、微生物群落代谢活性、功能多样性及其碳源利用类型等。结果表明,根际和非根际土壤细菌的拷贝数、微生物群落代谢活性以及功能多样性指数均是黏壤土 > 壤土 > 砂壤土、平邑甜茶根际土 > 八棱海棠根际土、根际土 > 非根际土。两种砧木的细菌根际效应均是在砂壤土最大,黏壤土最小;砂壤土中的细菌丰度受砧木的影响最大。根际和非根际微生物群落碳源利用能力均是黏壤土 > 壤土 > 砂壤土;根际微生物群落对酚酸和羧酸类碳源的利用能力显著高于非根际;八棱海棠根际微生物群落对羧酸类碳源的利用能力在砂壤土中最高、在黏壤土中最低,平邑甜茶根际微生物群落正相反。根际微生物群落碳源利用类型因土壤质地而异,在砂壤土中主要利用氨基酸类,其次是碳水化合物和羧酸类;在壤土中主要利用碳水化合物,其次是多聚物类和氨基酸类;在黏壤土中主要利用多聚物类,其次是氨基酸类和碳水化合物。主成分分析显示土壤质地使根际微生物群落类型分离,而两种砧木的根际微生物群落在同一质地土壤下聚集在一起,即苹果根际微生物群落碳源利用类型更易受到土壤质地影响,而砧木差异所带来的影响较小。  相似文献   

19.
We investigated the role of patch attributes and context on patch occupancy of the Lower Keys marsh rabbit (Sylvilagus palustris hefneri). The Lower Keys marsh rabbit is a federally endangered lagomorph endemic to the Lower Keys of Florida. The marsh rabbit occurs in subpopulations on patches of high marsh that interact to form a metapopulation. Between March 1991 and July 1993, all known patches of high marsh in the Lower Keys were surveyed for presence or absence of marsh rabbit pellets three times per year. Of the 59 habitat patches, 20 had pellets present during all of the surveys (occupied patches), 22 had pellets present during at least one survey (variable patches), and 17 never had any pellets present (empty). Ten variables were measured at each of the 59 patches; seven of these variables concerned attributes of the patch (food, cover, patch size), and three were patch context variables (distance of patch to other patches, distance of patch to other features). Two discriminant function analysis (DFA) were performed. The first DFA compared empty patches to occupied patches (both variably and consistently occupied). Patch isolation explained the most variation in patch occupancy followed by area. The second DFA compared the variably occupied sites with the consistently occupied sites, and patch attributes variables involving the type and height of vegetation were significant. Management efforts for the Lower Keys marsh rabbit should be aimed at both improving habitat quality and decreasing distance between patches.  相似文献   

20.
The availability and spatial arrangement of habitat patches are known to strongly influence fauna in terrestrial ecosystems. The importance of patch arrangement is not well-studied within running-water systems where flow-induced movements of patches and of fauna could decouple habitat characteristics and faunal habitat preferences. Using small, stream-dwelling invertebrates, we asked if fauna in such systems can distinguish among patch types and if patch arrangement at their `landscape scale' (i.e., within a streambed across which they move and forage) can be linked to faunal abundance. We quantified the spatial distribution of sand and leaf patches at multiple sites on a streambed at regular intervals over a 1 yr period, estimated faunal abundance in the two patch types, and experimentally determined if faunal colonization varied among leaf patches that were similar structurally but differed in their potential microbial food resources. We show that despite their small size and limited swimming abilities, these stream invertebrates did respond to patch type, that specific characteristics of an individual patch influenced faunal colonization, and that the spatial arrangement of patches on the streambed was linked to field abundances. Larval chironomids and adult copepods were more abundant in leaves than in sand and preferentially colonized leaf patches made with rapidly decomposing leaves that harbored higher microbial (bacteria and fungi) abundances over leaf patches with more refractory leaves and lower microbial abundances. Further, statistical models that included spatially-explicit data on patch arrangement (e.g., patch contagion, distance between patches) explained significantly more variation in faunal abundance, than models that included only nonspatial information (e.g., date, time since last flood). Despite the fact that these fauna live in a highly dynamic environment with variable flow rates during the year, unstable patch configurations, and seasonal changes in total abundance, our findings suggest a need for aquatic ecologists to test the hypothesis that small-scale landscape attributes within streams (e.g., leaf patch aggregation) may be important to faunal dynamics. If patch aggregation has negative consequences for stream biota, streambed `landscapes' may be fundamentally different from many terrestrial landscapes due to the inherent connectivity provided by the water and the over-riding importance of patch edges. Regardless of these differences, our findings suggest that the spatial configuration of patches in a landscape may have consequences for fauna even in highly dynamic systems, in which patches move and fauna periodically experience high levels of passive dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号