首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aims of this study were to determine if accurate diagnosis of congenital portosystemic shunt was possible using two dimensional, grey-scale ultrasonography, duplex-Doppler, and color-flow Doppler ultrasonography in combination, and to determine if dogs with congenital portosystemic shunts have increased or variable mean portal blood flow velocity. Eighty-two dogs with clinical and/or clinicopathologic signs compatible with portosystemic shunting were examined prospectively. Diagnosis of congenital portosystemic shunt was subsequently confirmed in 38 of these dogs using operative mesenteric portography: 14(37%) dogs had an intrahepatic shunt and 24(63%) had an extrahepatic shunt. Ultrasonography had a sensitivity of 95%, specificity of 98%, and accuracy of 94%. Ultrasonographic signs in dogs with congenital portosystemic shunts included small liver, reduced visibility of intrahepatic portal vessels, and anomalous blood vessel draining into the caudal vena cava. Correct determination of intra - versus extrahepatic shunt was made ultrasonographically in 35/38 (92%) dogs. Increased and/or variable portal blood flow velocity was present in 21/30 (70%) dogs with congenital portosystemic shunts. In one dog with an intrahepatic shunt the ultrasonographic diagnosis was based partly on finding increased mean portal blood flow velocity because the shunting vessel was not visible. Detection of the shunting vessel and placement of duplex-Doppler sample volumes were facilitated by use of color-flow Doppler. Two-dimensional, grey-scale ultrasonography alone is sufficient to detect most intrahepatic and extrahepatic shunts; sensitivity is increased by additional use of duplex-Doppler and color-flow Doppler. Increased and/or variable portal blood flow velocity occurs in the majority of dogs with congenital portosystemic shunts.  相似文献   

2.
Two dogs with simultaneous congenital and acquired portosystemic shunts are reported. The first dog was an eight-month-old, male Golden Retriever with a history of peritoneal effusion, polyuria/polydipsia, and stunted growth. The dog had a microcytic, hypochromic anemia, a mildly elevated AST, and a moderate to severely elevated preprandial and postprandial serum bile acids. Transcolonic portal scintigraphy confirmed the presence of a portosystemic shunt. An intraoperative mesenteric portogram was performed. Two conjoined congenital extrahepatic portosystemic shunts and multiple acquired extrahepatic portosystemic shunts were identified. The second dog was a five-month-old, mixed breed with two week history of peritoneal effusion. Abdominal ultrasound and transcolonic scintigraphy were used to diagnose a portosystemic shunt. A single extrahepatic portosystemic shunt, portal hypertension, and multiple acquired collateral shunts were identified at surgery. The histologic alterations observed in these dogs were consistent with a portosystemic shunt. In these dogs, the presence of congenital and acquired portosystemic shunts and histopathologic findings are considered to represent a combination of congenital portosystemic shunts and noncirrhotic portal hypertension or portal vein hypoplasia.  相似文献   

3.
The value of ultrasonography was evaluated in 85 dogs and 17 cats presented with a clinically suspected portosystemic shunt (PSS). A PSS was confirmed in 50 dogs and nine cats (single congenital extrahepatic in 42, single congenital intrahepatic in 11, and multiple acquired in six). Six dogs and one cat had hepatic microvascular dysplasia, and 29 dogs and seven cats had a normal portal system. Ultrasonography was 92% sensitive, 98% specific, and had positive and negative predictive values of 98% and 89%, respectively, in identifying PSS, with an overall accuracy of 95%. When a PSS was identified with ultrasonography, extrahepatic, intrahepatic, and multiple acquired PSS could be correctly differentiated in 53/54 patients (98%). The combination of a small liver, large kidneys, and uroliths had positive and negative predictive values of 100% and 51% for the presence of a congenital PSS in dogs. The portal vein/aorta (PV/Ao) and portal vein/caudal vena cava (PV/ CVC) ratios were smaller in animals with extrahepatic PSSs compared with animals with microvascular dysplasia, intrahepatic PSSs and those without portal venous anomalies (P<0.001). All dogs and cats with a PV/Ao ratio of < or = 0.65 had an extrahepatic PSS or idiopathic noncirrhotic portal hypertension. Dogs and cats with PV/Ao and PV/CVC ratios of > or = 0.8 and > or = 0.75, respectively, did not have an extrahepatic PSS. Reduced or reversed portal flow was seen in four of four patients with multiple acquired PSSs secondary to portal hypertension. The presence of turbulence in the caudal vena cava of dogs had positive and negative predictive values of 91% and 84%, respectively, for the presence of any PSS terminating into that vein.  相似文献   

4.
OBJECTIVE: To evaluate the efficacy of cellophane banding of single congenital extrahepatic portosystemic shunts in dogs using transcolonic portal scintigraphy. To investigate the portal circulation of those dogs with elevated postoperative shunt fractions to determine the cause of the persistent shunting. Further, to evaluate whether presenting signs, clinical pathology findings and liver histopathology are predictive of outcome. DESIGN: Prospective study of 16 dogs presenting with single congenital extrahepatic portosystemic shunts. PROCEDURE: Dogs with single extrahepatic portosystemic shunts attenuated by cellophane banding underwent portal scintigraphy and bile acids tolerance testing pre- and post-operatively. Dogs identified with elevated shunt fractions at 10 weeks post-operatively underwent mesenteric portovenography. Qualitative hepatic histopathology from all dogs was reviewed by a veterinary pathologist and assigned a semi-quantitative score to identify any abnormalities that may predict surgical outcome. RESULTS: At 10 weeks post cellophane banding, 10 of 16 cases (63%) had normal shunt fractions, whilst six dogs (37%) had increased shunt fractions and seven dogs (44%) had increased serum bile acids. Of these dogs, mesenteric portovenography revealed incomplete closure of the shunt in three dogs (18.6%) and multiple acquired shunts in three dogs (18.6%). Liver histopathology findings were similar for all dogs, regardless of outcome. CONCLUSIONS: Cellophane banding is an efficacious method for complete gradual occlusion of single extrahepatic shunts when the shunt vessel is attenuated to < or = 3 mm. Transcolonic portal scintigraphy is a reliable method for assessment of shunt attenuation and, unlike serum bile acids, is not influenced by other causes of liver dysfunction.  相似文献   

5.
We describe the use of ultrasonography‐guided percutaneous splenic injection of agitated saline and heparinized blood for the diagnosis of portosystemic shunts (PSS) in 34 dogs. Agitated saline mixed with 1 ml of heparinized autologous blood was injected into the spleen of 34 sedated dogs under sonographic guidance. The transducer was then sequentially repositioned to visualize the portal vein, the caudal vena cava, and the right atrium through different acoustic windows. It was possible to differentiate between intrahepatic and extrahepatic shunts depending on the entry point of the microbubbles into the caudal vena cava. Portoazygos shunts and portocaval shunts could be differentiated based on the presence of microbubbles in the caudal vena cava and/or the right atrium. In one dog, collateral circulation due to portal hypertension was identified. In dogs with a single extrahepatic shunt, the microbubbles helped identify the shunting vessel. The technique was also used postoperatively to assess the efficacy of shunt closure. All abnormal vessels were confirmed by exploratory laparotomy or with ultrasonographic identification of the shunting vessel. Ultrasound‐guided transsplenic injection of agitated saline with heparinized blood should be considered as a valuable technique for the diagnosis of PSS; it is easy to perform, safe, and the results are easily reproducible.  相似文献   

6.
Objective —To evaluate lack of encephalopathy as a positive prognostic factor for complete ligation of extrahepatic congenital portosystemic shunts in dogs.
Study Design —Retrospective analysis of case records.
Animals —Dogs with extrahepatic congenital portosystemic shunts treated at the Veterinary Medical Teaching Hospital of the College of Veterinary Medicine, Cornell University, from 1985 to 1996.
Methods —The ability to completely ligate the shunting vessel in 12 nonencephalopathic dogs was compared with that in 44 encephalopathic dogs with similar shunts.
Results —Clinical signs in the 12 nonencephalopathic dogs were related to ammonium biurate urolithiasis. All 12 dogs had single extrahepatic shunting vessels. The rate of complete ligation in the nonencephalopathic dogs was 92%, whereas the rate of complete ligation in the 44 encephalopathic dogs with single extrahepatic shunts was 59%. The ability to completely ligate the shunt in nonencephalopathic dogs was significantly better ( P = .04) than in the encephalopathic dogs.
Conclusion—Lack of encephalopathy is a positive prognostic factor for complete ligation of single extrahepatic congenital portosystemic shunts.
Clinical Relevance —In most affected dogs, extrahepatic congenital portosystemic shunts in nonencephalopathic dogs can be completely ligated.  相似文献   

7.
Computed tomography angiography, sonography, scintigraphy, and portography can be used to evaluate the portal vasculature to evaluate for a portosystemic shunt (PSS). Time‐of‐flight magnetic resonance angiography (TOF‐MRA) and contrast‐enhanced MRA (CE‐MRA) are other potentially useful techniques. The aim of this study was to evaluate CE‐MRA in 10 dogs suspected of having a PSS. Noncontrast MR images of the abdomen were obtained using a Siemens Symphony MR‐scanner (1.5 T) and a T1‐weighted FLASH‐3D sequence with a very short scan time (about 20 s). After injection of contrast medium, the initial sequence was repeated five times. The sequence with the best contrast medium filling of the portal vasculature was selected subjectively, subtracted from the initial survey image series, and a maximum intensity projection (MIP) of the subtraction data, in multiple views, was created. The cross‐sectional and MIP images were evaluated for abnormal portosystemic vasculature. A single PSS was identified and confirmed at surgery in all dogs. A portocaval shunt was found in five dogs, a portophrenic shunt in three dogs, a portoazygos shunt in one, and a central divisional intrahepatic shunt in one other dog. Based on our results, CE‐MRA is a useful tool for imaging abdominal and portal vasculature and for the diagnosis of a PSS.  相似文献   

8.
Congenital extrahepatic portosystemic shunts are anomalous vessels joining portal and systemic venous circulation. These shunts are often diagnosed sonographically, but computed tomography (CT) angiography produces high‐resolution images that give a more comprehensive overview of the abnormal portal anatomy. CT angiography was performed on 25 dogs subsequently proven to have an extrahepatic portosystemic shunt. The anatomy of each shunt and portal tributary vessels was assessed. Three‐dimensional images of each shunt type were created to aid understanding of shunt morphology. Maximal diameter of the extrahepatic portosystemic shunt and portal vein cranial and caudal to shunt origin was measured. Six general shunt types were identified: splenocaval, splenoazygos, splenophrenic, right gastric‐caval, right gastric‐caval with a caudal shunt loop, and right gastric‐azygos with a caudal shunt loop. Slight variations of tributary vessels were seen within some shunt classes, but were likely clinically insignificant. Two shunt types had large anastomosing loops whose identification would be important if surgical correction were attempted. A portal vein could not be identified cranial to the shunt origin in two dogs. In conclusion, CT angiography provides an excellent overview of extrahepatic portosystemic shunt anatomy, including small tributary vessels and loops. With minor variations, most canine extrahepatic portosystemic shunts will likely be one of six general morphologies.  相似文献   

9.
Per rectal portal scintigraphy using 99mTechnetium pertechnetate (99mTcO4-) was used to diagnose portosystemic shunts (PSS) before surgical confirmation in seven dogs and two cats. Shunt fractions, representing the percent of portal blood that bypasses the liver, were determined by computer analysis of the scintigraphic images. Animals with portosystemic shunts had a mean preoperative shunt fraction of 84.02% (n = 9). The mean postoperative shunt fraction in four animals was 58.22%. The mean shunt fraction in ten control dogs was 5.00%. Per rectal portal scintigraphy is an innovative, easily performed, inexpensive method to diagnose congenital portosystemic shunts in dogs and cats.  相似文献   

10.
In this essay we use clinical evidence and knowledge of anatomy to examine the relationship between blood flow and formation of congenital extrahepatic portosystemic shunts in dogs and cats. First we report on the clinical findings in a series of 50 dogs and 10 cats and then systematically review peer‐reviewed data on the detailed anatomy of shunts in dogs and cats. In dogs four types of shunt: spleno‐caval, left gastro‐phrenic, left gastro‐azygos and those involving the right gastric vein account for 94% of extrahepatic shunts. Cats also exhibit four types of shunt: spleno‐caval, left gastrophrenic, left gastro‐caval and left gastro‐azygos, and the first three of these account for 92% shunts in this species. Our findings lead us to propose that preferential blood flow influences the subsequent formation of one of a number of defined and consistent congenital extrahepatic portosystemic shunts in dogs and cats.  相似文献   

11.
Transvenous retrograde portography for identification and characterization of portosystemic shunts in dogs A method for transvenous retrograde portography (TRP) in dogs suspected to have a portosystemic shunt (PSS) and results in 20 dogs are described. For TRP, dogs were anesthetized and positioned in left lateral recumbency A dual-lumen balloon-tipped catheter was inserted into the right jugular vein and advanced into the azygos vein. The balloon was inflated to occlude the azygos vein, and contrast material was injected during fluoroscopic evaluation. The catheter was then positioned in the caudal vena cava just cranial to the diaphragm. The balloon was again inflated to occlude the vena cava, and contrast material was again injected. Once a shunt was identified, selective catheterization was attempted with a guide wire and angled catheter. A PSS was identified in 18 of the 20 dogs. In 10 of the 18, the shunt vessel could be selectively catheterized, allowing measurement of portal pressures while the shunt was occluded with the balloon. In 1 dog, results of TRP were normal, but subsequent exploratory celiotomy revealed a single extrahepatic PSS, which was surgically attenuated. The other dog in which results of TRP were normal did not have a macroscopic PSS. In dogs suspected to have a PSS, TRP may be a useful adjunctive diagnostic test that is less invasive than operative mesenteric vein portography and allows measurement of portal pressures before and after temporary shunt occlusion.  相似文献   

12.
OBJECTIVE: To evaluate the effect of species and breed on the anatomy of portosystemic vascular anomalies in dogs and cats. DESIGN: Retrospective study of 233 dogs and nine cats presenting to the University Veterinary Centre, Sydney. METHODS: Case records were evaluated for breed, sex, age, anatomical and histological diagnosis. Cases were included when a portosystemic vascular anomaly resulted from a congenital or developmental abnormality of the liver or portal venous system. RESULTS: Disease conditions included single congenital portosystemic shunt with patent portal vasculature (214 dogs, nine cats), portal vein aplasia (nine dogs), multiple acquired shunts resulting from portal vein hypoplasia (seven dogs), biliary atresia (one dog) and microvascular dysplasia (one dog). One Maltese had a single, congenital shunt and multiple acquired shunts resulting from hepatic cirrhosis. Breeds that were significantly over-represented included the Maltese, Silky Terrier, Australian Cattle Dog, Bichon Frise, Shih Tzu, Miniature Schnauzer, Border Collie, Jack Russell Terrier, Irish Wolfhound and Himalayan cat. Bichon Frise with shunts were significantly more likely to be female than male (12:2, P < 0.001). Two hundred and fourteen dogs (91.4%), and all cats, had shunts that were amenable to attenuation. Inoperable shunts occurred in 19 dogs (8.2%). Fifty six of 61 (92%) operable shunts in large breed dogs were intrahepatic, versus 10/153 (7%) in small breeds (P < 0.0001). Breeds that were not predisposed to portosystemic shunts were significantly more likely to have unusual or inoperable shunts than dogs from predisposed breeds (29% versus 7.6%, P < 0.0001). No significant relationship between breed and shunt type could be determined in cats. CONCLUSION: Breed has a significant influence on shunt anatomy in dogs. Animals presenting with signs of portosystemic shunting may suffer from a wide range of operable or inoperable conditions. Veterinarians should be aware that unusual or inoperable shunts are much more likely to occur in breeds that are not predisposed to congenital portosystemic shunts.  相似文献   

13.
OBJECTIVE: To determine ultrasonographic abnormalities in dogs with hyperammonemia. DESIGN: Retrospective study. ANIMALS: 90 client-owned dogs with hyperammonemia. PROCEDURE: Ultrasonography of the abdominal vessels and organs was performed in a systematic way. Dogs in which the ultrasonographic diagnosis was a congenital portosystemic shunt were included only if they underwent laparotomy or necropsy. Dogs in which the abdominal vasculature appeared normal and dogs in which the ultrasonographic diagnosis was acquired portosystemic shunts and portal hypertension were included only if liver biopsy specimens were submitted for histologic examination. RESULTS: Ultrasonography excluded portosystemic shunting in 11 dogs. Acquired portosystemic shunts were found in 17 dogs, of which 3 had arterioportal fistulae and 14 had other hepatic abnormalities. Congenital portosystemic shunts were found in 61 dogs, of which 19 had intrahepatic shunts and 42 had extrahepatic shunts. Intrahepatic shunts originated from the left portal branch in 14 dogs and the right portal branch in 5. Extrahepatic shunts originated from the splenic vein, the right gastric vein, or both and entered the caudal vena cava or the thorax. Ultrasonography revealed splenic-caval shunts in 24 dogs, right gastric-caval shunts in 9 dogs, splenic-azygos shunts in 8 dogs, and a right gastric-azygos shunt in 1 dog. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that ultrasonography is a reliable diagnostic method to noninvasively characterize the underlying disease in dogs with hyperammonemia. A dilated left testicular or ovarian vein was a reliable indicator of acquired portosystemic shunts.  相似文献   

14.
15.
OBJECTIVE:To evaluate the use of a portocaval venograft and ameroid constrictor in the surgical management of intrahepatic portosystemic shunts (PSS). STUDY DESIGN: Prospective, clinical study. Animal Population: Ten client-owned dogs with intrahepatic PSS. METHODS: Portal pressure was measured after temporary suture occlusion of the intrahepatic PSS. In dogs with an increase in portal pressure greater than 8 mm Hg, a single extrahepatic portocaval shunt was created using a jugular vein. An ameroid ring was placed around the venograft and the intrahepatic PSS was attenuated. Transcolonic pertechnetate scintigraphy was performed before surgery, 5 days after surgery, and 8 to 10 weeks after surgery. Dogs with continued portosystemic shunting were evaluated further by laparotomy or portography. Clinical outcome and complications were recorded. RESULTS: Mean (+/- SD) portal pressure increased from 6 +/- 3 to 19 +/- 6 mm Hg with PSS occlusion; in all 10 dogs, the increase in portal pressure was greater than 8 mm Hg. There were no intraoperative complications, and, after creation of the portocaval shunt, the intrahepatic PSS could be completely ligated in 8 of 10 dogs. The final portal pressure was 9 +/- 4 mm Hg. Postoperative complications included coagulopathy and death (1 dog), ascites (3 dogs), and incisional discharge (3 dogs). Five of 8 dogs had continued portosystemic shunting at 8 to 10 weeks after surgery. Multiple extrahepatic PSS were demonstrated in 4 of these dogs. Clinical outcome was excellent in all 9 surviving dogs. CONCLUSIONS AND CLINICAL SIGNIFICANCE: The surgical technique resulted in a high incidence of multiple extrahepatic PSS. Short-term clinical results were promising, but long-term outcome must be evaluated further.  相似文献   

16.
Objective To evaluate the efficacy and short term effects of a cellophane banding technique for progressive attenuation of canine single extrahepatic portosystemic shunts.
Design A prospective trial of 11 dogs with single congenital extrahepatic shunts.
Procedure Rectal ammonia tolerance testing and routine biochemical tests were performed preoperatively on all dogs. In seven dogs, preoperative abdominal Doppler ultrasonography was also performed. Exploratory laparotomy revealed a single extrahepatic portocaval shunt in each animal, which was attenuated using a cellophane band with an internal diameter of 2 to 3 mm. The abdomen was closed routinely. Follow-up biochemical analysis and abdominal Doppler ultrasonography or splenoportography were performed postoperatively.
Results The shunt was not amenable to total ligation in 11 dogs, based upon reported criteria. All dogs recovered uneventfully from surgery without evidence of portal hypertension, and showed clinical improvement thereafter. Shunt occlusion was deemed to have occurred in 10 dogs based on resolution of biochemical and/or sonographic abnormalities. One dog continued to have sonographic evidence of portosystemic shunting when evaluated 3 weeks after surgery, despite normal ammonia tolerance, but was lost to subsequent follow-up. Two dogs, in which 3 mm cellophane bands were placed, experienced delayed shunt occlusion.
Conclusion Cellophane banding is simple to perform, and causes progressive attenuation of single extrahepatic shunts in dogs. Further work is needed to determine the maximum diameter of a cellophane band which will produce total attenuation, and the long-term safety and reliability of the treatment.  相似文献   

17.
Congenital portosystemic shunts in Maltese and Australian Cattle Dogs   总被引:2,自引:0,他引:2  
SUMMARY Congenital portosystemic shunts were definitively diagnosed in 62 dogs over a period of 15 years. Maltese and Australian Cattle Dogs were significantly over-represented, accounting for 14 and 13 cases, respectively. Maltese invariably had a single extrahepatic shunt derived from the left gastric or gastrosplenic vein, whereas Cattle Dogs usually had large intrahepatic shunts involving the right liver lobes. The clinical syndromes resulting from anomalous portosystemic communications were indistinguishable in the 2 breeds. Fasting blood ammonia concentration was elevated in 20 of 22 dogs tested, providing a minimally invasive and effective means of diagnosis. Complete or partial shunt attenuation was performed successfully in all 9 Maltese and in 2 of 6 Cattle Dogs in which it was attempted.  相似文献   

18.
Summary

The value of ultrasonographic examination in the diagnosis of congenital portosytemic shunts was assessed in 36 dogs, using the right lateral approach. The sensitivity, specificity, and accuracy were 0.74, 1.0, and 0.86 respectively. The conclusion is that ultrasonography is highly specific and reasonably sensitive in diagnosing congenital portosystemic shunts in dogs  相似文献   

19.
Extrahepatic‐congenital portosystemic shunt is a vascular anomaly that connects the portal vein to the systemic circulation and leads to a change in hepatic microvascular perfusion. However, an assessment of hepatic microvascular perfusion is limited by conventional diagnostic modalities. The aim of this prospective, exploratory study was to assess hepatic microvascular perfusion in dogs with extrahepatic‐congenital portosystemic shunt using contrast‐enhanced ultrasonography (CEUS) using perfluorobutane (Sonazoid®). A total of 17 dogs were included, eight healthy dogs and nine with extrahepatic‐congenital portosystemic shunt. The time‐to‐peak (TTP), rising time (RT), and rising rate (RR) in the hepatic artery, portal vein, and hepatic parenchyma, as well as the portal vein‐to‐hepatic parenchyma transit time (ΔHP‐PV) measured from time‐intensity curve on CEUS were compared between healthy and extrahepatic‐congenital portosystemic shunt dogs. The RT of the hepatic artery in extrahepatic‐congenital portosystemic shunt dogs was significantly earlier than in healthy dogs (P = 0.0153). The TTP and RT of the hepatic parenchyma were significantly earlier in extrahepatic‐congenital portosystemic shunt dogs than in healthy dogs (P = 0.0018 and P = 0.0024, respectively). ΔHP–PV was significantly shorter in extrahepatic‐congenital portosystemic shunt dogs than in healthy dogs (P = 0.0018). CEUS effectively revealed changes in hepatic microvascular perfusion including hepatic artery, portal vein, and hepatic parenchyma simultaneously in extrahepatic‐congenital portosystemic shunt dogs. Rapid hepatic artery and hepatic parenchyma enhancements may reflect a compensatory increase in hepatic artery blood flow (arterialization) caused by a decrease in portal vein blood flow and may be used as an additional diagnostic test to distinguish extrahepatic‐congenital portosystemic shunt dogs from healthy dogs.  相似文献   

20.
OBJECTIVE : To report outcomes after cellophane banding of single congenital portosystemic shunts in dogs and cats. STUDY DESIGN : Retrospective study of sequential cases. ANIMALS : One hundred and six dogs and five cats. METHODS : Medical records were reviewed for breed, sex, age at surgery, shunt anatomy, results of pre- and postoperative biochemical analysis, development of postligation neurologic dysfunction, portal hypertension or other serious complications, and the owners' perception of their animal's response to surgery. RESULTS : Ninety-five dogs and all 5 cats had extrahepatic shunts. Eleven dogs had intrahepatic shunts. Six dogs (5.5%) died as a result of surgery from portal hypertension (2 dogs), postligation neurologic dysfunction (2), splenic hemorrhage (1) and suspected narcotic overdose (1). Serious complications were more common in dogs with intrahepatic shunts than those with extrahepatic shunts (P=.002). Postligation neurologic dysfunction necessitated treatment in 10 dogs and 1 cat; 8 dogs and the cat survived. Clinical signs attributed to portosystemic shunting resolved or were substantially attenuated in all survivors. Postoperative serum bile acid concentrations or results of ammonia tolerance testing were available for 88 animals; 74 (84%) were normal and 14 (16%) were abnormal. Multiple acquired shunts were documented in two animals. CONCLUSIONS : Cellophane banding is a safe and effective alternative to other methods of attenuation. CLINICAL RELEVANCE : Slow occlusion of portosystemic shunts using a variety of methods is being evaluated world wide. Cellophane banding is a relatively simple procedure with comparable safety and efficacy to previously reported techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号