首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesembryanthemum edule L. (sourfig, Aizoaceae) has long been used as food and in traditional medicine. This study was intended to characterize the antioxidant properties and the phenolic compounds of M. edule leaf, stem and root. The approach consisted to evaluate these organs for their antioxidant activities through several in vitro tests, to determine tissue contents in total phenolics, flavonoids and proanthocyanidins and to establish the phenolic composition through RP-HPLC analysis. All studied organs showed a high antioxidant activity as compared to positive control BHT, with maximal efficiency for stems followed by leaves and roots. The highest polyphenolic levels were found in stems and leaves (86.5 and 68.7 mg GAE g−1 DW, respectively), suggesting that their strong antioxidant activity could be attributed to these phytochemicals. The HPLC analysis revealed that the main phenolic compounds were quercitrin and avicularin (1.4 and 1.15 mg g−1 DW, respectively) in the leaves, while catechin and procyanidin B2 (1.66 and 1.54 mg g−1 DW, respectively) were the most abundant phenolics in the stems. Overall, the strong antioxidant activity and richness of M. edule aerial tissues suggest that it could be advantageously used as a functional or nutraceutical food, to prevent or moderate oxidative stress-related diseases.  相似文献   

2.
A highly efficient regeneration protocol for oilseed crop Crambe abyssinica has been developed using hypocotyls as explants in this study. Crambe is a potential engineering oilseed crop for industrial purposes as it contains 55-60% erucic acid in its oil and, more importantly, it does not outcross with any food oil seed crops. However, the low regeneration frequency with the currently available protocols is still a limiting factor for genetic modification of Crambe. In this study, we investigated the effects of N-source, C-source, AgNO3, cultural conditions as well as the concentration and combination of plant growth regulators (PGR) on the regeneration frequency of C. abyssinica. The results showed that all these factors, especially the N-source and PGR concentrations and combinations, played an important role in shoot regeneration. Among all the factors tested, the combination of using hypocotyls from C. abyssinica cv. galactica, the Lepiovre basal medium supplemented with 16 g l−1 glucose, 0.5 g l−1 AgNO3, 2.2 mg l−1 thidiazuron (TDZ), 0.5 mg l−1 α-naphthaleneacetic acid (NAA), 2.5 g l−1 Gelrite, seeds germinated in dark for 3 days and explants cultured in light, gave the best regeneration frequency (over 95%). The results also suggest that reducing the content of NH4+ or keeping a suitable NO3/NH4+ ratio in the regeneration medium would be crucial to Crambe shoot regeneration.  相似文献   

3.
For people with celiac disease, a lifelong abdication of gluten including-products is necessary to live a life without celiac affected reactions. The production of high-quality bread from gluten free flour is not simple in comparison to gluten including flours such as those derived from wheat (Triticum spp.). The gas binding and crumb structure forming capacity are very low in gluten free batters. They can efficiently be analyzed through the rheological properties of the dough used. The use of acidification in amaranth (Amaranthus hypochondriacus) dough preparation is a possible means of changing the rheological behavior of amaranth in the desired direction. Methods include the use of lactic acid directly, or the fermentation via lactic acid bacteria. Adding up to 20 mL lactic acid/kg flour in amaranth dough preparation led, during oscillation tests, to an increase of the complex shear modulus up to 30% in the range of 0.1 up to 10 Hz. The use of sourdough fermentation decreased the complex shear modulus in the same test up to nearly 60%. In creep recovery tests, the elastic part of amaranth dough decreased from 65.4% without any treatment down to 63.9% by the addition of up to 20 mL lactic acid/kg flour. Sourdough fermentation by Lactobacillus plantarum was able to decrease it to 54%. The acidification showed a significant positive influence on the rheological parameters of amaranth dough only at the higher stress level. In contrast, sourdough fermentation was able to produce doughs with viscosity and elasticity similar to that found in pure wheat flours.  相似文献   

4.
Recently, new varieties of hull-less barley have been developed with altered carbohydrate traits. To our knowledge, there is no study on metabolic characteristics in ruminants of the proteins in the newly developed hull-less barley varieties. The objectives of this study were to: compare metabolic characteristics of the proteins of zero-amylose waxy (CDC Fibar), low-amylose waxy (CDC Rattan), high-amylose (HB08302), and normal starch (CDC McGwire) hull-less barley. In situ animal trials were carried out to generate the original rumen fermentation data for modeling nutrient supply to dairy cattle by using two dairy nutrition models – Dutch DVE/OEB system and NRC 2001. The major comparisons were made in terms of i) truly absorbed protein in the small intestine (DVE or MP, and ii) degraded protein balance (DPB). The study revealed that zero-amylose waxy hull-less barley was superior (P < 0.05) in both DVE (123 vs. 117, 114, 103 g kg−1 DM) and MP (112 vs. 93, 96, and 87 g kg−1 DM) when hull-less barley was evaluated as a single feed for dairy cattle. All of four hull-less barley varieties had negative DPB (DPBOEB; −37.4, −17.1, −30.2, and −28.2 g kg−1 DM for normal starch, zero-amylose waxy, waxy, and high-amylose cultivar, respectively), indicating the potential N shortage. In conclusion, the alteration of starch structure in granule provided a relatively balanced energy and protein for microbial synthesis in the rumen. The DVE and DPB predicted by using the DVE/OEB system can be explained (r2 > 0.76) by the equivalent parameters, predicted by using the NRC 2001 model. The alteration of starch structure in granule affects metabolic characteristics of the proteins of hull-less barley in ruminants.  相似文献   

5.
Total folate content was determined in the pseudocereals amaranth (four varieties), quinoa and buckwheat in comparison to four cereal species (eight wheat varieties, four barley varieties, one oat variety, one rye variety). Amaranth and quinoa were found to possess very high total folate contents: in amaranth, total folate ranged from 52.8 to 73.0 and in quinoa it was 132.7 μg/100 g dm, about ten times as much as in wheat. The bran fractions contained on average 124% of total folate, while only 57% on average was present in the flour fractions.  相似文献   

6.
High-performance liquid chromatography (HPLC) was used to determine the distribution of phenolic acids in wheat flours produced from five milling extraction rates ranging from 60% to 100% in four cultivars sown in two locations in the 2008–2009 season. Considerable variation was observed in free and bound phenolic acids, and their components in flours with different extraction rates. Most phenolic acids, including the component ferulic, were present in the bound form (94.0%). Ferulic (51.0%) was the predominant phenolic acid in wheat grain, and caffeic (22.8%) and p-coumaric (17.6%) acids were abundant. The phenolic acids and their components were all significantly influenced by effects of cultivar, milling, location, and cultivar × milling interaction, with milling effect being the predominant. The proportions of phenolic compounds varied considerably among milling extractions and cultivars, and their levels depended on both initial grain concentrations and on selection of milling extraction that was incorporated into the final product. The grain phenolic acid concentrations determined ranged from 54 μg g−1 in flour produced at 60% extraction rate to 695 μg g−1 in flour produced at 100% extraction rate, indicating their higher concentrations in bran associated with cell wall materials. Therefore, wholemeal wheat products maximize health benefits and are strongly recommended for use in food processing.  相似文献   

7.
Litchi downy blight caused by Peronophythora litchii is a devastating disease of litchi plants in China. Control of litchi downy blight requires numerous fungicide applications. A new carboxylic acid amide (CAA) fungicide, mandipropamid, was examined for its in vitro effects on multiple asexual stages of four single-sporangium P. litchii isolates and protective activity against downy blight in detached fruit assays. Though mandipropamid did not affect discharge of zoospores from sporangia, it strongly inhibited mycelial growth (mean EC50 = 0.0048 μg ml−1), sporangia production (mean EC50 = 0.0032 μg ml−1), germination of encysted zoospores (mean EC50 = 0.0023 μg ml−1), and germination of sporangia (mean EC50 = 0.0061 μg ml−1). On detached fruit, 0.39, 1.56 and 6.25 μg ml−1 of mandipropamid were superior in reducing downy blight compared to metalaxyl and flumorph, however, the 25 μg ml−1 application rate was necessary for all three CAA fungicides to completely inhibit the disease. In 2007, 100 isolates from Fujian, Guangdong, and Guangxi Provinces of China were characterized for the baseline sensitivity to mandipropamid. The isolates obtained from different provinces showed similar baseline sensitivities to mandipropamid. Baseline sensitivities formed a unimodal curve with mean EC50 values of 0.0055 ± 0.0012 μg ml−1 for inhibition of mycelial growth. The described baseline sensitivities of P. litchii populations will be useful for monitoring possible shifts in sensitivity to mandipropamid.  相似文献   

8.
The holoparasitic weed Orobanche cumana (sunflower broomrape) constrains sunflower (Helianthus annuus) production in many countries. The development of efficient control strategies requires an understanding of the processes underlying the complex environment–host–parasite interrelations. Growth and development of O. cumana and sunflower were quantified under field conditions in southeastern Romania. Sunflower hybrid Florom 350 was sown at two dates, in plots infested with 0, 50, 200 and 1600 viable O. cumana seeds kg−1 dry soil, under low-input (rainfed, low nitrogen supply) and high-input (irrigated, high nitrogen supply) conditions. Sunflower shoot biomass reached peak values of 760–1287 g m−2 between the end of anthesis and physiological maturity. Seed yield varied from 221 to 446 g m−2. Sunflower biomass and yield were affected by all experimental factors. Seed yield responded positively to delaying sowing from early April to late May as well as to irrigation and fertilisation, and negatively to O. cumana infestation. Yield reductions, which were a product of reduced seed number and size, amounted to 13%, 25% and 37% at parasite seed densities of 50, 200 and 1600 viable seeds kg−1 soil, respectively. Maximum O. cumana attachment numbers, recorded in late-sown high-input crops in 2004, ranged from 11 m−2 in plots with 50 parasite seeds kg−1 soil to 188 m−2 with 1600 seeds kg−1 soil. Parasite attachment number was a function of crop sowing date, water and nutrient supply, seedbank density, and sunflower biomass and root length density, via mechanisms of parasite seed stimulation, host carrying capacity and intraspecific competition. Delayed sowing and improved water and nitrogen supply were associated with increases in parasite number that neutralised yield-boosting effects of irrigation and fertilisation at the highest infestation level. Sunflower shoot biomass was significantly reduced by O. cumana infection, with reductions affecting organs in the order head > stem > leaves. Most of the discrepancy between infected and non-infected plants was accounted for by O. cumana biomass. Parasites mainly acted as an extra sink for assimilates during sunflower generative growth and impaired host photosynthesis to a much lesser degree. Results suggest that similar mechanisms govern infection level and host–parasite biomass partitioning across different Orobanche–host systems.  相似文献   

9.
Because CO2 is needed for plant photosynthesis, the increase in atmospheric CO2 concentration ([CO2]) has the potential to enhance the growth and yield of rice (Oryza sativa L.), but little is known regarding the impact of elevated [CO2] on grain quality of rice, especially under different N availability. In order to investigate the interactive effects of [CO2] and N supply on rice quality, we conducted a free-air CO2 enrichment (FACE) experiment at Wuxi, Jiangsu, China, in 2001–2003. A long-duration rice japonica with large panicle (cv. Wuxiangging 14) was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] under three levels of N: low (LN, 15 g N m2), medium (MN, 25 g N m2) and high N (HN, 35 g N m2 (2002, 2003)). The MN level was similar to that recommended to local farmers. FACE significant increased rough (+12.8%), brown (+13.2%) and milled rice yield (+10.7%), while markedly reducing head rice yield (−13.3%); FACE caused serious deterioration of processing suitability (milled rice percentage −2.0%; head rice percentage −23.5%) and appearance quality (chalky grain percentage +16.9%; chalkiness degree +28.3%) drastically; the nutritive value of grains was also negatively influenced by FACE due to a reduction in protein (−6.0%) and Cu content (−20.0%) in milled rice. By contrast, FACE resulted in better eating/cooking quality (amylose content −3.8%; peak viscosity +4.5%, breakdown +2.9%, setback −27.5%). These changes in grain quality revealed that hardness of grain decreased with elevated [CO2] while cohesiveness and resilience increased when cooked. Overall, N supply had significant influence on rice yield with maximum value occurring at MN, whereas grain quality was less responsive to the N supply, showing trends of better appearance and eating/cooking quality for LN or MN-crops as compared with HN-crops. For most cases, no [CO2] × N interaction was detected for yield and quality parameters. These data suggested that the current recommended rates of N fertilization for rice production should not be modified under projected future [CO2] levels, at least for the similar conditions of this experiment.  相似文献   

10.
Requirements of consumers for products with low residues of pesticides have increased the need for alternative disease management practices. The concentration of boron in fruit affects its quality, shelf life and the development of physiological disorders. However, the effect of boron on the susceptibility of peach to fruit rots has not been reported. This study investigated the effect of boron (Power B and Borax) on the development of Monilinia laxa on peaches (cv Andross). Mycelial growth of M. laxa was inhibited on potato dextrose agar supplemented with 750 μg ml−1 of Borax or 1000 μg ml−1 of Power B. The EC 50 values were 107.9 and 522.4 for Borax and Power B respectively. Field investigations showed that the incidence of peach infections by M. laxa was negatively correlated with the content of Boron in the leaves. Post-harvest dipping of peaches in Power B or Borax solution, at concentrations recommended by manufacturer (2 μg ml−1 for Power B and 1 mg ml−1 for Borax), significantly reduced the development of M. laxa. Power B, at rates of 6 μg ml−1, and Borax at rates of 3 mg ml−1 were the most effective in reducing infections by M. laxa. Finally, post-harvest dipping of fruit in Power B or Borax reduced losses of fruit weight and improved fruit firmness one month after storage, showing that boron increased the maintainability of peaches in cold storage. Peaches treated with 6 μg ml−1 Power B or 3 mg ml−1 Borax had the highest flesh firmness and the lowest water losses, while untreated control peaches were the least firm. Generally, Borax was significantly less effective than Power B, but better than the control treatment.  相似文献   

11.
The paper investigates management and cultivar type effects on pearl millet stover yield and fodder quality. Sixteen pearl millet cultivars available to farmers in India were selected to represent three cultivar types: (1) traditional landrace germplasm from the arid/semi-arid millet production zones, (2) improved dual-purpose (grain and stover) open-pollinated varieties incorporating differing amounts of traditional landrace germplasm and (3) commercial, grain-type F1 hybrids, bred for use in the arid/semi-arid zone. The cultivars were grown for 2 years (2000 and 2001) at high fertility (HF: 65 kg N ha−1 and 18 kg P ha−1) and low fertility (LF: 21 kg N ha−1 and 9 kg P ha−1). Within each fertility level high (HP) and low (LP) plant population densities were established by varying sowing rate and then thinning to the target populations (HP: 11 plants m−2 and LP: 5 plants m−2). Stover fodder quality traits (nitrogen concentration, sugar content, in vitro digestibility and metabolizable energy content) were analyzed using a combination of conventional laboratory analysis and near infrared spectroscopy. In general, fertility level and cultivar type had strong effects on grain and stover yields, and on a range of stover nutritional quality traits, but with significant year interactions. In contrast, the effect of population density on these variables was largely insignificant. Higher fertilizer application significantly increased grain and stover yields and stover nitrogen concentration, in vitro digestibility and metabolizable energy content. As a result, fertilization resulted in significant increases in the yields of both digestible and metabolizable stover. Landrace cultivars as a group produced higher quality fodder than modern hybrids, but at a significant cost in grain yield. Dual-purpose, open-pollinated cultivars were generally intermediate between the landraces and hybrids, in terms of both stover quality and grain yield, but produced the highest yields of both digestible and metabolizable stover. The paper discusses the implications of these findings for Indian pearl millet farmers with various resource levels and farming objectives.  相似文献   

12.
Some secondary metabolites of plants function as antimicrobial products against phytopathogens and constitute an increasingly important class of pesticides. In the present study, the essential oil of Asarum heterotropoides var. mandshuricum was analyzed by GC/MS and its antimicrobial activity was evaluated against five phytopathogenic fungi. Major components of the oil were methyleugenol (59.42%), eucarvone (24.10%), 5-allyl-1,2,3-trimethoxybenzene (5.72%), and 3,7,7-trimethylbicyclo(4.1.0)hept-3-ene (4.93%). The essential oil and the most abundant component, methyleugenol, were separately assayed for inhibition of 5 pathogens: Alternaria humicola, Colletotrichum gloeosporioides, Rhizoctonia solani, Phytophthora cactorum and Fusarium solani. Both the oil and methyleugenol strongly inhibited the growth of the test pathogens (IC50 values <0.42 μg ml−1) except F. solani, with the best activity against P. cactorum (IC50 values = 0.073 and 0.052 μg ml−1, respectively). It is concluded that the essential oil of A. heterotropoides var. mandshuricum has a broad antiphytopathogenic spectrum, and that methyleugenol is largely responsible for the bioactivity of the oil. The mode of action of methyleugenol against P. cactorum is discussed based on changes in the mycelial ultrastructure.  相似文献   

13.
The concentration of water soluble carbohydrates (WSC) is a main determinant of the ensiling potential of forages and the aerobic stability of silages. The aims of the present study were to assess the impact of genotype on the seasonal changes of WSC concentration, to adapt and calibrate the FONSCH (FOrage NonStructural CarboHydrates) model – originally developed for forage grasses – for silage maize, and finally to conduct a long-term simulation study for quantifying weather-related variability of WSC content. A 3-year field experiment (2001–2003) was conducted in northern Germany to evaluate differences in WSC content among commercial silage maize varieties and to provide calibration data for modelling. Eight varieties covering three maturity groups (early, mid-early and mid-late) were investigated. On six dates throughout the vegetation period the plants were harvested, separated into ear and stover, and freeze–dried for subsequent determination of WSC. Ear, stover, and whole crop WSC content was influenced by genotype and environmental conditions. Genotypic effects were most pronounced in the early grain filling period. At silage maturity, an effect of variety on whole crop WSC content was found in the mid-early group only, accounting for a difference of 44.8 g WSC kg−1 DM. FONSCH model calibration showed good agreement between observed and calculated WSC contents, with RMSE below 27.6 g WSC kg−1 DM and r2 above 0.84. Parameter estimates revealed a substantial influence of temperature and solar radiation on WSC content, while plant available soil water had minimal impact. Successful model validation with an independent data set allowed us to perform a 30-year simulation study, where variation among varieties and years of up to 68.8 and 186.5 g WSC kg−1 DM, respectively, demonstrated a larger impact of environmental conditions compared to genotype.  相似文献   

14.
Two antimicrobial alkaloids, palmatine and jatrorrhizine, were isolated from tubers of traditional Chinese medicinal plant Tinospora capillipes using activity-guided isolation method and chromatography. Their antimicrobial activity was determined in vitro. The results showed that palmatine and jatrorrhizine had inhibitory activity against plant pathogens Colletotrichum gloeosporioides, Fusarium oxysporum f. sp. niveum, Mycosphaerella sentina, Pestalotia mangiferae, Cercospora kaki, Gymnosporangium haraeanum, Rhizoctonia solani and Colletotrichum graminicola, with the EC50 values of 0.0348-0.8356 g L−1 and 0.0240-0.8649 g L−1, respectively. Palmatine and jatrorrhizine also exhibited inhibition against animal pathogens Bacillus cereus, Bacillus megaterium, Bacillus subtilis, Staphyloccocus aureus, Staphylococcus epidermidi, Micrococcus lysodeikticus, Proteus vulgaris, Salmonella typhi and Escherichia coli, with the MIC values of 0.1-0.8 g L−1 and 0.1-0.6 g L−1, respectively. These results suggested that palmatine and jatrorrhizine showed relatively broad spectrum antimicrobial activity against plant and animal pathogens.  相似文献   

15.
This study investigated changes in accumulation and partitioning of nitrogen (N), phosphorus (P), and potassium (K) with harvest dates of early, middle, and late maturity sweet sorghum varieties in 2006 and 2007 in North China. All the varieties exhibited an obvious trend of decrease in concentrations of N, P and K in aboveground plants from elongation to 60 days after anthesis (DAA). The reduction in nutrient concentrations was found in the order of K (14.5 − 4.5 g kg−1) > N (13.3 − 7.4 g kg−1) > P (2.40 − 0.96 g kg−1). Conversely, N, P, and K accumulation significantly increased from elongation to anthesis, and continued to increase until 40 DAA. The accumulation of N, P, and K at maturity (40 DAA) was 128–339 kg ha−1, 30–75 kg ha−1 and 109–300 kg ha−1, respectively. Between elongation and anthesis, the middle and late maturity varieties had a higher ratio of N (50–82%), P (55–83%), and K (62–88%) accumulation than the early varieties (51–64% for N, 40–62% for P, and 55–75% for K). Sweet sorghum exhibited only one important K uptake stage from elongation to thesis according to the accumulation ratio (percentage of the nutrient accumulated at a given stage relative to that at physiological maturity) and rate (kilogram of nutrient accumulated per day per hectare). The stage from anthesis to grain maturity was the second important N and P uptake period. During the delay harvest period between 40 and 60 DAA, the early varieties exhibited significant increases in N accumulation; and the late varieties exhibited the reverse. P accumulation did not decrease significantly, whereas K accumulation decreased for all varieties in both years. Although of the N and P concentrations in straw were significantly lower than in grains, the N, P and K accumulation in straw was 2.2–9.3, 1.7–7.7, and 8.1–30.5 times higher than in grains, respectively. The concentrations of N and P in leaves were higher than in stems after anthesis. We found significantly higher accumulation of P and K in stems than in leaves, with a comparable N accumulation. The findings are helpful to make a fertilization regime recommendation for sweet sorghum production as a bioethanol crop in North China. It also suggests a further genetic improvement for optimizing nutrient use.  相似文献   

16.
Traditional tropical japonica (Oryza sativa) and Oryza glaberrima cultivars are typically grown in low-input, subsistence production systems in the uplands of West Africa by resource-poor farmers. In these systems, low soil fertility (LF), which is generally associated with lower organic carbon content, and N and P availability, is one of the major constraints to rice productivity. Thus, cultivars adapted to LF are needed for the food security of farmers, who would otherwise be solely reliant on nutrient inputs to increase productivity. This study evaluated the performance of six diverse cultivars grown in LF and high soil fertility (HF) conditions with supplemental irrigation over two seasons. Average grain yield across all cultivars in LF was 54% of that in HF (156 vs. 340 g m−2). Three improved indica rice cultivars and CG 14 (O. glaberrima) out-yielded Morobérékan (traditional tropical japonica) and WAB450-IBP-38-HB (progeny from interspecific hybridization of tropical japonica and O. glaberrima) in LF (181 vs. 105 g m−2 on average). The high grain yield in LF was the result of large spikelet number m−2 due to superior tillering ability and high harvest index rather than biomass production. The high-yielding cultivars in LF consistently had lower leaf chlorophyll content and higher specific leaf area during the period from the early vegetative stage through the reproductive stage. Among them, two indica cultivars (B6144F-MR-6-0-0 and IR 55423-01) were also high yielding in HF. The use of improved indica cultivars adapted to LF, but also with input-responsiveness, appears to offer an attractive and economical approach to improving upland rice productivity and widening genetic diversity in this region.  相似文献   

17.
Castilleja tenuiflora is a highly valued medicinal plant that grows in pine-oak woods in Mexico. In this study, we identified for the first time verbascoside and isoverbascoside as the major phenylethanoid glycosides (PhGs) in C. tenuiflora. These compounds have proven biological activities, including anti-inflammatory, antioxidant, and cytotoxic activities, which may be related to the traditional uses of this plant. We developed a reverse-phase high-performance liquid chromatography (RP-HPLC) procedure to analyze PhGs, and determined their concentrations in various different tissues of wild plants. Verbascoside accumulated mainly in roots and inflorescences (9.23 and 7.88 mg g−1 dry biomass, respectively), while isoverbascoside accumulated mainly in the roots (7.13 mg g−1 dry biomass). To provide an alternative source of material for production of bioactive compounds, we established in vitro adventitious root cultures in which roots were grown in B5 medium containing either 10 μM indole 3-acetic acid (IAA) or 10 μM α-naphthaleneacetic acid (NAA). The greatest dry biomass yield (30 g L−1) was achieved at 30 days after transfer of roots into IAA-containing medium. The highest specific yields of PhGs were also obtained using this auxin; the maximum level of verbascoside was 14.62 mg g−1 dry root biomass (438.6 mg L−1) at 30 days after root transfer, and the maximum yield of isoverbascoside was 37.32 mg g−1 dry root biomass (522.48 mg L−1) at 23 days after root transfer. Adventitious root cultures of C. tenuiflora are a promising system for further studies on scale-up and phenylethanoid glycosides biosynthesis.  相似文献   

18.
CIMMYT hexaploid spring wheat (Triticum aestivum L.) germplasm has played a global role in assisting wheat improvement. This study evaluated four classes of CIMMYT germplasm (encompassing a total of 273 lines), along with 15 Australian cultivars (Oz lines) for grain yield, yield components and physiological traits in up to 27 environments in Australia's north-eastern region, where terminal drought frequently reduces grain yield and grain size.Broadly-adapted CIMMYT germplasm selected for grain yield had greater yield potential and improved performance under drought stress, being up to 5% greater yielding in High-yielding (mean yield 429 g m−2) and 4-10% greater yielding than adapted Oz lines in Low-yielding environments (mean yield 185 g m−2). Whilst maintaining statistically similar harvest index and spikes m−2 compared to broadly-adapted Oz lines across all environments, sets of selected CIMMYT lines had greater canopy temperature depression (0.18-0.27 °C), dry weight stem−1 (0.20-0.37 g), increased grains spike−1 (0.8-3.4 grains), grain number m−2 (ca. 20-800 grains), and maturity biomass (56-83 g m−2). Compared to selected Oz lines, broadly-adapted CIMMYT lines had a smaller reduction in Low compared to High-yielding environments for these traits, especially dry weight stem−1, such that CIMMYT lines had ca. 25% and 10% greater dry weight stem−1 than the Oz lines in Low- and High-yielding environment groups, respectively. Broadly-adapted CIMMYT germplasm also had slightly higher stem water soluble carbohydrate concentration at anthesis (ca. 6 mg g−1), which contributed to their higher grain weight (ca. 0.5 mg grain−1), and maintained an agronomically appropriate time to anthesis and plant height. Thus current CIMMYT germplasm should be useful donor sources of traits to enrich breeding programs targeting variable production environments where there is a high probability of water deficit during grain filling. However, as multiple traits were important, efficient introgression of these traits in breeding programs will be complex.  相似文献   

19.
Physic nut (Jatropha curcas L.) is a promising seed oil source for biodiesel production. Natural antioxidants play a major role in maintaining oxidative stability of oils and they also have important food and industrial applications. Among them, tocochromanols are the most abundant in seeds. The objective of this research was to evaluate the variation for tocochromanol content and profile in a germplasm collection of 52 accessions of J. curcas. Seeds collected in two different periods, August and November of 2009, were analysed for tocochromanol content. Additionally, the dynamics of tocochromanol accumulation in developing seeds was studied. Total seed tocochromanol content averaged 307.2 mg kg−1 in August and 303.7 mg kg−1 in November, whereas total oil tocochromanol content averaged 507.4 mg kg−1 in August and 500.8 mg kg−1 in November. The tocochromanol fraction was made up of 15.4% gamma-tocopherol, 83.8% gamma-tocotrienol, and 0.8% delta-tocotrienol in August and 18.0% gamma-tocopherol, 80.4% gamma-tocotrienol, and 1.6% delta-tocotrienol in November. Genotype × environment effects were identified for tocochromanol content but not for the proportion of major tocochromanol homologues, which showed a high positive correlation between both environments. Developing seeds contained primarily alpha-tocopherol and gamma-tocopherol at early stages of development, with gamma-tocotrienol and delta-tocotrienol being practically undetectable. Gamma-tocotrienol content remained practically undetectable till 66 DAP and then increased pronouncedly to final levels of 177.1 mg kg−1 (74.8% of the total tocochromanol content). The powerful antioxidant and health-promoting properties of gamma-tocotrienol encourages further studies on selection for the tocopherol/tocotrienol ratio in Jatropha and on the potential of tocochromanols as high added-value products derived from Jatropha seed oil production.  相似文献   

20.
The concept of aerobic culture is to save water resource while maintaining high productivity in irrigated rice ecosystem. This study compared nitrogen (N) accumulation and radiation use efficiency (RUE) in the biomass production of rice crops in aerobic and flooded cultures. The total water input was 800–1300 mm and 1500–3500 mm in aerobic culture and flooded culture, respectively, and four high-yielding rice cultivars were grown with a high rate of N application (180 kg N ha−1) at two sites (Tokyo and Osaka) in Japan in 2007 and 2008. The aboveground biomass and N accumulation at maturity were significantly higher in aerobic culture (17.2–18.5 t ha−1 and 194–233  kg N ha−1, respectively) than in flooded culture (14.7–15.8 t ha−1 and 142–173 kg N ha−1) except in Tokyo in 2007, where the surface soil moisture content frequently declined. The crop maintained higher N uptake in aerobic culture than in flooded culture, because in aerobic culture there was a higher N accumulation rate in the reproductive stage. RUE in aerobic culture was comparable to, or higher than, that in flooded culture (1.27–1.50 g MJ−1 vs. 1.20–1.37 g MJ−1), except in Tokyo in 2007 (1.30 g MJ−1 vs. 1.37 g MJ−1). These results suggest that higher biomass production in aerobic culture was attributable to greater N accumulation, leading to higher N concentration (N%) than in flooded culture. Cultivar differences in response to water regimes were thought to reflect differences in mainly (1) early vigor and RUE under temporary declines in soil moisture in aerobic culture and (2) the ability to maintain high N% in flooded culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号