首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decomposing stumps could significantly increase soil resource heterogeneity in forest ecosystems. However, the impact of these microsites on nutrient retention and cycling is relatively unknown. Stump soil was defined as the soil fraction directly altered by the decomposition of the primary rooting system (e.g. taproots) and aboveground stumps. Study sites were located in mature hardwood stands within the Jefferson National Forest in the Ridge and Valley Physiographic region of southwest Virginia. The objectives of this study were to: (i) determine the total soil volume altered by the decomposition of stumps and underlying root system, (ii) compare and contrast total C and N, extractable ammonium (NH4+) and nitrate (NO3), potentially mineralizable N, microbial biomass C (MBC), root length and root surface area between the bulk soil (i.e. O, A, B and C horizons) and stump soil and (iii) evaluate how nutrient concentrations and fine-root dynamics change as stumps decompose over time using a categorical decay class system for stumps. Potentially mineralizable N was 2.5 times greater in stump soil than the A horizon (103 mg kg−1 vs. 39 mg kg−1), 2.7 times greater for extractable NH4+ (16 mg kg−1 vs. 6 mg kg−1) and almost 4 times greater for MBC (1528 mg kg−1 vs. 397 mg kg−1). Approximately 19% of the total fine-root length and 14% of fine-root surface area occurred in the stump soil. Significant differences occurred in C and N concentrations between all four decay classes and the mineral soil. This validated the use of this system and the need to calculate weighted averages based on the frequency and soil volume influenced by each decay class. In this forest ecosystem, approximately 1.2% of the total soil volume was classified as stump soil and contained 10% and 4% of soil C and N. This study illustrates that including stump soil in soil nutrient budgets by decay class will increase the accuracy of ecosystem nutrient budgets.  相似文献   

2.
The effect of land use type on the dynamics and annual rate of net nitrogen mineralization (NNM) in a naturally generated silver birch stand and in a grassland, both on abandoned agricultural land, was assessed in situ in the upper 0–20 cm soil layer using the method of buried polyethylene bags. Annual NNM rate in the birch stand (156 kg N ha−1 year−1) was higher than in the grassland (102 kg N ha−1 year−1); in both cases NNM covered a major part of the plants annual nitrogen demand. The rate of NNM in the upper 0–10 cm soil layer in the birch stand (99 kg N ha−1 year−1) exceeded the respective rate of NNM in the grassland (51 kg N ha−1 year−1) roughly two times. In the grassland the rates of NNM in the 0–10 and 10–20 cm layers were equal; in the birch stand NNM in the 0–10 cm layer was 1.7 times higher than in deeper 10–20 cm layer. The intensity of daily NNM in the upper 0–10 cm soil layer in the birch stand was the highest in June and in the grassland in May, 776 and 528 mg kg−1 N day−1, respectively. In our study no significant correlation was found between NNM and the environmental factors monthly mean soil temperature, soil moisture content and pH.  相似文献   

3.
Zhang Y  Cao Y  Duan H  Wang H  He L 《Fitoterapia》2012,83(1):60-66
Augmented endothelial nitric oxide (NO) synthase (eNOS) signaling has been reported to be associated with improvements in cardiac remodeling, and NO levels have been shown to be related to cardiac hypertrophy and heart failure. Imperatorin, a dietary furanocoumarin, has been shown to prevent cardiac hypertrophy in the spontaneous hypertension rats (SHR). Thus, we aimed to clarify whether imperatorin attenuates both cardiac hypertrophy and heart failure via the NO-signaling pathway. In neonatal mouse cardiac myocytes, imperatorin inhibited protein synthesis stimulated by either isoproterenol or phenylephrine, which was unchanged by NG-nitro-L-arginine methyl ester (L-NAME). Four weeks after transverse aortic constriction (TAC) on Kunming (KM) male mice, the ratio of heart weight to body weight was lower after imperatorin treatment than in controls (6.60 ± 0.35 mg/g in TAC, 4.54 ± 0.29 mg/g with imperatorin 15 mg kg−1 d−1, ig, P < 0.01); similar changes in the ratio of lung weight to body weight (7.30 ± 0.85 mg/g in TAC, 5.42 ± 0.51 mg/g with imperatorin 15 mg kg− 1 d− 1, ig) and the myocardial fibrosis. All of these improvements were blunted by L-NAME. Imperatorin treatment significantly activated phosphorylation of eNOS. Myocardial mRNA levels of natriuretic peptide precursor type B and protein inhibitor of NO synthase, which were increased in the TAC mice, were decreased in the imperatorin-treated ones. Imperatorin can attenuate cardiac hypertrophy both in vivo and in vitro, and halt the process leading from hypertrophy to heart failure by a NO-mediated pathway.  相似文献   

4.
Berries and mushrooms are increasingly appreciated products of Finnish forests. Therefore, there is a need to integrate them in silvicultural planning. Bilberry (Vaccinium myrtillus L.) is an economically important wild berry that is widely collected for household consumption and sale in North Karelia, Finland. In this study, bilberry yield models developed recently were included in a stand growth simulator and the joint production of timber and bilberry was optimized by maximizing soil expectation value (SEV) with 3% discounting rate, assuming that 75% of the bilberry yield is harvested. The effect of bilberry production on the optimal stand management increased with increasing bilberry price. With high bilberry prices (4–8 € kg−1) it was optimal to manage the mixed stand of Scots pine, Norway spruce and birch, and the pure stand of Norway spruce so as to promote bilberry production. In the Scots pine stand, where bilberry yields are higher, bilberry production affected optimal stand management already with a price of 2 € kg−1. Compared to timber production, joint production led to longer rotation lengths, higher thinning intensities, more frequent thinnings, and higher share of Scots pine in the mixed stand. The contribution of bilberries to the total SEV increased with increasing bilberry price and discounting rate. In the mixed stand and pine stand the SEV of bilberry production, calculated with 3% discounting rate, exceeded the SEV of timber production when bilberry price was 4 € kg−1.With 4% discounting rate this happened already with bilberry price of 2 € kg−1. It was concluded that forest management which promotes bilberry yields is the most profitable in pine stands where the potential bilberry yields are high.  相似文献   

5.
Efforts in Europe to convert Norway spruce (Picea abies) plantations to broadleaf or mixed broadleaf-conifer forests could be bolstered by an increased understanding of how artificial regeneration acclimates and functions under a range of Norway spruce stand conditions. We studied foliage characteristics and leaf-level photosynthesis on 7-year-old European beech (Fagus sylvatica) and pedunculate oak (Quercus robur) regeneration established in open patches and shelterwoods of a partially harvested Norway spruce plantation in southwestern Sweden. Both species exhibited morphological plasticity at the leaf level by developing leaf blades in patches with an average mass per unit area (LMA) 54% greater than of those in shelterwoods, and at the plant level by maintaining a leaf area ratio (LAR) in shelterwoods that was 78% greater than in patches. However, we observed interspecific differences in photosynthetic capacity relative to spruce canopy openness. Photosynthetic capacity (A1600, net photosynthesis at a photosynthetic photon flux density of 1600 μmol photons m−2 s−1) of beech in respect to the canopy gradient was best related to leaf mass, and declined substantially with increasing canopy openness primarily because leaf nitrogen (N) in this species decreased about 0.9 mg g−1 with each 10% rise in canopy openness. In contrast, A1600 of oak showed a weak response to mass-based N, and furthermore the percentage of N remained constant in oak leaf tissues across the canopy gradient. Therefore, oak photosynthetic capacity along the canopy gradient was best related to leaf area, and increased as the spruce canopy thinned primarily because LMA rose 8.6 g m−2 for each 10% increase in canopy openness. These findings support the premise that spruce stand structure regulates photosynthetic capacity of beech through processes that determine N status of this species; leaf N (mass basis) was greatest under relatively closed spruce canopies where leaves apparently acclimate by enhancing light harvesting mechanisms. Spruce stand structure regulates photosynthetic capacity of oak through processes that control LMA; LMA was greatest under open spruce canopies of high light availability where leaves apparently acclimate by enhancing CO2 fixation mechanisms.  相似文献   

6.
In south-coastal British Columbia, a low availability of phosphorus (P) may limit the early growth of young red alder (Alnus rubra Bong.), even on sites classified as productive for red alder. However, it remains unclear as to what P addition rates best alleviate P deficiencies on such sites and how long effects of P additions on growth persist.We applied P 1-3 months after planting at rates up to 60 g P tree−1 and assessed growth and foliar elemental contents over three growing seasons at three sites with site productivity classed as good for red alder. Foliar δ13C was also determined in year 1 in the two sites on Vancouver Island and in year 2 in the site on the British Columbia mainland coast in order to better understand the relationships among foliar nutritional status, leaf water use efficiency (WUE), and growth.P additions at planting significantly increased height (11-15%), diameter (26%) and stem volume (62-64%) through 3 years. Maximum growth rates were achieved at P addition rates of 30 g tree−1 and at foliar P concentrations of 2.2-2.5 g kg−1. Growth did not increase further at addition rates of 60 g P tree−1. Stem growth increases were accompanied by increased individual leaf mass, first-year foliar concentrations of N, P, Ca, Mg, and S, and foliar δ13C, the latter suggesting that WUE increased with P additions. Foliar concentrations of P in unfertilized trees were at deficient levels, based on earlier studies, and increases in first-year foliar P concentrations and stem growth through year 3 were consistent with responses in earlier single-tree plot experiments. Longer-term measurements are required to define the duration of growth response to P additions in these otherwise-productive sites.  相似文献   

7.
We estimated water use by the two main oak species of the Lower Galilee region of Israel—Tabor (Quercus ithaburensis) and Kermes (Quercus calliprinos)—to develop management options for climate-change scenarios. The trees were studied in their typical phytosociological associations on different bedrock formations at two sites with the same climatic conditions. Using the heat-pulse method, sap flow velocity was measured in eight trunks (trees) of each species during a number of periods in 2001, 2002 and 2003. Hourly sap flux was integrated to daily transpiration per tree and up-scaled to transpiration at the forest canopy level. The annual courses of daytime transpiration rate were estimated using fitted functions, and annual totals were calculated. Sap flow velocity was higher in Tabor than in Kermes oak, and it was highest in the youngest xylem, declining with depth into the older xylem. Average daytime transpiration rate was 67.9 ± 4.9 l tree−1 d−1, or 0.95 ± 0.07 mm d−1, for Tabor oak, and 22.0 ± 1.7 l tree−1d−1, or 0.73 ± 0.05 mm d−1, for Kermes oak. Differences between the two oak species in their forest canopy transpiration rates occurred mainly between the end of April and the beginning of October. Annual daytime transpiration was estimated to be 244 mm year−1 for Tabor oak and 213 mm year−1 for Kermes oak. Adding nocturnal water fluxes, estimated to be 20% of the daytime transpiration, resulted in total annual transpiration of 293 and 256 mm year−1 by Tabor and Kermes oaks, respectively. These amounts constituted 51% and 44%, respectively, of the 578 mm year−1 average annual rainfall in the region. The two species differed in their root morphology. Tabor oak roots did not penetrate the bedrock but were concentrated along the soil–rock interface within soil pockets. In contrast, the root system of Kermes oak grew deeper via fissures and crevices in the bedrock system and achieved direct contact with the deeper bedrock layers. Despite differences between the two sites in soil–bedrock lithological properties, and differences in the woody structure, annual water use by the two forest types was fairly similar. Because stocking density of the Tabor oak forests is strongly related to bedrock characteristics, thinning as a management tool will not change partitioning of the rainfall between different soil pockets, and hence soil water availability to the trees. In contrast, thinning of Kermes oak forests is expected to raise water availability to the remaining trees.  相似文献   

8.
The Warner Mountains of northeastern California on the Modoc National Forest experienced a high incidence of tree mortality (2001–2007) that was associated with drought and bark beetle (Coleoptera: Curculionidae, Scolytinae) attack. Various silvicultural thinning treatments were implemented prior to this period of tree mortality to reduce stand density and increase residual tree growth and vigor. Our study: (1) compared bark beetle-caused conifer mortality in forested areas thinned from 1985 to 1998 to similar, non-thinned areas and (2) identified site, stand and individual tree characteristics associated with conifer mortality. We sampled ponderosa pine (Pinus ponderosa var ponderosa Dougl. ex Laws.) and Jeffrey pine (Pinus jeffreyi Grev. and Balf.) trees in pre-commercially thinned and non-thinned plantations and ponderosa pine and white fir (Abies concolor var lowiana Gordon) in mixed conifer forests that were commercially thinned, salvage-thinned, and non-thinned. Clusters of five plots (1/50th ha) and four transects (20.1 × 100.6 m) were sampled to estimate stand, site and tree mortality characteristics. A total of 20 pre-commercially thinned and 13 non-thinned plantation plot clusters as well as 20 commercially thinned, 20 salvage-thinned and 20 non-thinned mixed conifer plot clusters were established. Plantation and mixed conifer data were analyzed separately. In ponderosa pine plantations, mountain pine beetle (Dendroctonus ponderosae Hopkins) (MPB) caused greater density of mortality (trees ha−1 killed) in non-thinned (median 16.1 trees ha−1) compared to the pre-commercially thinned (1.2 trees ha−1) stands. Percent mortality (trees ha−1 killed/trees ha−1 host available) was less in the pre-commercially thinned (median 0.5%) compared to the non-thinned (5.0%) plantation stands. In mixed conifer areas, fir engraver beetles (Scolytus ventralis LeConte) (FEN) caused greater density of white fir mortality in non-thinned (least square mean 44.5 trees ha−1) compared to the commercially thinned (23.8 trees ha−1) and salvage-thinned stands (16.4 trees ha−1). Percent mortality did not differ between commercially thinned (least square mean 12.6%), salvage-thinned (11.0%), and non-thinned (13.1%) mixed conifer stands. Thus, FEN-caused mortality occurred in direct proportion to the density of available white fir. In plantations, density of MPB-caused mortality was associated with treatment and tree density of all species. In mixed conifer areas, density of FEN-caused mortality had a positive association with white fir density and a curvilinear association with elevation.  相似文献   

9.
Secondary cavity-nesting birds (SCN), which cannot create their own breeding cavities, are expected to be influenced by habitat alteration caused by forest management practices, but the mechanisms underlying the distribution pattern of SCN subjected to different management systems are poorly known. To improve our knowledge on these mechanisms, we examine cavity abundance, cavity occupation and reproductive performance of SCN in Pyrenean oak (Quercus pyrenaica) forests subjected to two management systems: (i) dense “young forests”, maintained at such stage by clear-cuttings and burns, and (ii) “old forest”, subjected to extensive traditional grazing and scarce firewood extraction by selective cutting. Young forests had considerably lower density of cavities (1.29 ± 0.71 vs 15.09 ± 2.00 cavities ha−1), SCN species (0.18 ± 0.11 vs 0.61 ± 0.07 species ha−1) and nests (0.40 ± 0.27 vs 2.67 ± 0.25 nests of all SCN ha−1) than old forests, indicating that a low availability of cavities may limit SCN assemblages in young oak forests. However, reproductive parameters of great (Parus major) and blue (Cyanistes caeruleus) tits associated with the availability of food (laying date, clutch size, nestling number and weight, adult weight) did not differ between both forest types, suggesting that food supply was not reduced in young forests, at least for tits during the breeding season. Large diameter (up to 170 cm dbh) decayed trees were the most likely to hold cavities, but birds preferred smaller living cavity-trees for nesting (90% of nests in 21-65 cm dbh trees). The preservation of cavity-trees within traditionally managed old oak forests is crucial in providing nesting opportunities to SCN. Besides, the protection of these traditionally managed forests would also benefit to other forest organisms that depend on old and open oak forests.  相似文献   

10.
The net primary productivity of Bruguiera parviflora dominated mangrove forest at Kuala Selangor, Malaysia was estimated from the average yearly biomass increment and litter production. The average yearly biomass increment in saplings and trees was 0.58 and 16.51 t ha−1, respectively, and the annual amount of total litter production was 10.35 t ha−1. The biomass increment in saplings and trees was not significantly different (t-test, p > 0.05) in 2 successive years and the estimated net primary productivity was 27.44 t ha−1 year−1. The ratio (2.65:1) of net primary productivity and litterfall suggests that this mangrove forest is at a juvenile stage.  相似文献   

11.
This study was conducted to determine carbon (C) dynamics following forest tending works (FTW) which are one of the most important forest management activities conducted by Korean forest police and managers. We measured organic C storage (above- and below-ground biomass C, forest floor C, and soil C at 50 cm depth), soil environmental factors (soil CO2 efflux, soil temperature, soil water content, soil pH, and soil organic C concentration), and organic C input and output (litterfall and litter decomposition rates) for one year in FTW and non-FTW (control) stands of approximately 40-year-old red pine (Pinus densiflora S. et Z.) forests in the Hwangmaesan Soopkakkugi model forest in Sancheonggun, Gyeongsangnam-do, Korea. This forest was thinned in 2005 as a representative FTW practice. The total C stored in tree biomass was significantly lower (P < 0.05) in the FTW stand (40.17 Mg C ha−1) than in the control stand (64.52 Mg C ha−1). However, C storage of forest floor and soil layers measured at four different depths was not changed by FTW, except for that at the surface soil depth (0–10 cm). The organic C input due to litterfall and output due to needle litter decomposition were both significantly lower in the FTW stand than in the control stand (2.02 Mg C ha−1 year−1 vs. 2.80 Mg C ha−1 year−1 and 308 g C kg−1 year−1 vs. 364 g C kg−1 year−1, respectively, both P < 0.05). Soil environmental factors were significantly affected (P < 0.05) by FTW, except for soil CO2 efflux rates and organic C concentration at soil depth of 0–20 cm. The mean annual soil CO2 efflux rates were the same in the FTW (0.24 g CO2 m−2 h−1) and control (0.24 g CO2 m−2 h−1) stands despite monthly variations of soil CO2 efflux over the one-year study period. The mean soil organic C concentration at a soil depth of 0–20 cm was lower in the FTW stand (81.3 g kg−1) than in the control stand (86.4 g kg−1) but the difference was not significant (P > 0.05). In contrast, the mean soil temperature was significantly higher, the mean soil water content was significantly lower, and the soil pH was significantly higher in the FTW stand than in the control stand (10.34 °C vs. 8.98 °C, 48.2% vs. 56.4%, and pH 4.83 vs. pH 4.60, respectively, all P < 0.05). These results indicated that FTW can influence tree biomass C dynamics, organic C input and output, and soil environmental factors such as soil temperature, soil water content and soil pH, while soil C dynamics such as soil CO2 efflux rates and soil organic C concentration were little affected by FTW in a red pine stand.  相似文献   

12.
We used pine (Pinus elliottii Engelm.) forests located along a short urban–rural gradient in Nanchang, China to study nitrogen (N) cycling responses to urbanization. Annual average rates of nitrification and net N-mineralization in soils (0–15 cm depth) measured from February 2007 to January 2009 increased from rural (8 and 37 kg ha−1 year−1) to suburban (69 and 79 kg ha−1 year−1) and urban sites (114 and 116 kg ha−1 year−1) (P < 0.05). Soil nitrate and mineral N pools exhibited the same spatial patterns in response to urban location. In comparison to rural sites, urban and suburban sites experienced soil microbial biomass N that increased by 98% and 38%, sucrase activity that increased by 40% and 26%, and urease activity that decreased by 35% and 25%, respectively. Soil microbial biomass C:N and free amino acids varied little along the urban–rural gradient. Foliar N concentrations and N resorption proficiencies were higher in urban (12.3 and 4.8 g kg−1) and suburban (12.3 and 6.2 g kg−1) than in rural (9.9 and 3.6 g kg−1) sites, while N resorption efficiencies (from 58% to 72%) were not statistically different. These results indicate that forests in suburban and especially in urban areas are moving rapidly towards a state of “N saturation” and increased potential N loss most likely attributable to higher N deposition to these sites.  相似文献   

13.
We tested the effects of species and spacing of nurse trees on the growth of Hopea odorata, a dipterocarp tree indigenous to Southeast Asia, in a two-storied forest management system in northeast Thailand. Eucalyptus camaldulensis, Acacia auriculiformis, and Senna siamea were planted as nurse trees in 1987 at spacings of 4 m × 8 m, 2 m × 8 m, 4 m × 4 m, and 2 m × 4 m in the Sakaerat Silvicultural Research Station of the Royal Forest Department, Thailand. Seedlings of H. odorata were planted in the nurse tree stands at a uniform spacing of 4 m × 4 m and in control plots (no nurse trees) in 1990. Stem numbers of some nurse trees were thinned by half in 1994. The stem diameter and height of all trees were measured annually until 1995 and again in 2007. The mean annual increment (MAI) in volume was estimated as 8.2–10.1 m3 ha−1 year−1 for E. camaldulensis and 0.9–1.2 m3 ha−1 year−1 for S. siamea, smaller than reported elsewhere. This suggests that the site properties were not suitable for them. The MAI of A. auriculiformis was 7.9–9.8 m3 ha−1 year−1, within the reported range. Survival rates of H. odorata in the S. siamea stands and the control plots decreased rapidly during the first 2 years but then stayed constant from 1992. In contrast, survival rates of H. odorata in the E. camaldulensis and A. auriculiformis stands were initially high (>70%), but then decreased after 1995. Stem diameter, tree height, and stand basal area of H. odorata were large in both the S. siamea stands and the control plots from then. The growth of H. odorata was largest in the 2 m × 8 m S. siamea stands. In contrast, it was restricted in the E. camaldulensis and A. auriculiformis stands owing to strong shading by their canopies. Thinning by 50% tended to facilitate the growth of H. odorata temporarily in the E. camaldulensis and A. auriculiformis stands. The stand basal areas of nurse trees and of H. odorata showed a trade-off. These results suggest that the growth of H. odorata was maximized in the S. siamea stands. We assume, however, that the growth of H. odorata could be improved even in the E. camaldulensis and A. auriculiformis stands by frequent or heavy thinning.  相似文献   

14.
Acacia plantation establishment might cause soil acidification in strongly weathered soils in the wet tropics because the base cations in the soil are translocated rapidly to plant biomass during Acacia growth. We examined whether soils under an Acacia plantation were acidified, as well as the factors causing soil acidification. We compared soils from 10 stands of 8-year-old Acacia mangium plantations with soils from 10 secondary forests and eight Imperata cylindrica grasslands, which were transformed into Acacia plantations. Soil samples were collected every 5–30 cm in depth, and pH and related soil properties were analyzed. Soil pH was significantly lower in Acacia plantations and secondary forests than in Imperata grasslands at every soil depth. The difference was about 1.0 pH unit at 0–5 cm and 0.5 pH unit at 25–30 cm. A significant positive correlation between pH and base saturation at 0–20 cm depth indicated that the low pH under forest vegetation was associated with exchangeable cation status. Using analysis of covariance (ANCOVA), with clay content as the covariate, exchangeable Ca (Ex-Ca) and Mg (Ex-Mg) stocks were significantly lower in forested areas than in Imperata grasslands at any clay content which was strongly related to exchangeable cation stock. The adjusted average Ex-Ca stock calculated by ANCOVA was 249 kg ha−1 in Acacia plantations, 200 kg ha−1 in secondary forests, and 756 kg ha−1 in Imperata grasslands at 0–30 cm. Based on a comparison of estimated nutrient stocks in biomass and soil among the vegetation types, the translocation of base cations from soil to plant biomass might cause a decrease in exchangeable cations and soil acidification in Acacia plantations.  相似文献   

15.
Greenhouse gas emissions from managed peatlands are annually reported to the UNFCCC. For the estimation of greenhouse gas (GHG) balances on a country-wide basis, it is necessary to know how soil–atmosphere fluxes are associated with variables that are available for spatial upscaling. We measured momentary soil–atmosphere CO2 (heterotrophic and total soil respiration), CH4 and N2O fluxes at 68 forestry-drained peatland sites in Finland over two growing seasons. We estimated annual CO2 effluxes for the sites using site-specific temperature regressions and simulations in half-hourly time steps. Annual CH4 and N2O fluxes were interpolated from the measurements. We then tested how well climate and site variables derived from forest inventory results and weather statistics could be used to explain between-site variation in the annual fluxes. The estimated annual CO2 effluxes ranged from 1165 to 4437 g m−2 year−1 (total soil respiration) and from 534 to 2455 g m−2 year−1 (heterotrophic soil respiration). Means of 95% confidence intervals were ±12% of total and ±22% of heterotrophic soil respiration. Estimated annual CO2 efflux was strongly correlated with soil respiration at the reference temperature (10 °C) and with summer mean air temperature. Temperature sensitivity had little effect on the estimated annual fluxes. Models with tree stand stem volume, site type and summer mean air temperature as independent variables explained 56% of total and 57% of heterotrophic annual CO2 effluxes. Adding summer mean water table depth to the models raised the explanatory power to 66% and 64% respectively. Most of the sites were small CH4 sinks and N2O sources. The interpolated annual CH4 flux (range: −0.97 to 12.50 g m−2 year−1) was best explained by summer mean water table depth (r2 = 64%) and rather weakly by tree stand stem volume (r2 = 22%) and mire vegetation cover (r2 = 15%). N2O flux (range: −0.03 to 0.92 g m−2 year−1) was best explained by peat CN ratio (r2 = 35%). Site type explained 13% of annual N2O flux. We suggest that water table depth should be measured in national land-use inventories for improving the estimation of country-level GHG fluxes for peatlands.  相似文献   

16.
The efficiency with which trees convert photosynthetically active radiation (PAR) to biomass has been shown to be consistent within stands of an individual species, which is useful for estimating biomass production and carbon accumulation. However, radiation use efficiency (?) has rarely been measured in mixed-species forests, and it is unclear how species diversity may affect the consistency of ?, particularly across environmental gradients. We compared aboveground net primary productivity (ANPP), intercepted photosynthetically active solar radiation (IPAR), and radiation use efficiency (? = ANPP/IPAR) between a mixed deciduous forest and a 50-year-old white pine (Pinus strobus L.) plantation in the southern Appalachian Mountains. Average ANPP was similar in the deciduous forest (11.5 Mg ha−1 y−1) and pine plantation (10.2 Mg ha−1 y−1), while ? was significantly greater in the deciduous forest (1.25 g MJ−1) than in the white pine plantation (0.63 g MJ−1). Our results demonstrate that late-secondary hardwood forests can attain similar ANPP as mature P. strobus plantations in the southern Appalachians, despite substantially less annual IPAR and mineral-nitrogen availability, suggesting greater resource-use efficiency and potential for long-term carbon accumulation in biomass. Along a 260 m elevation gradient within each forest there was not significant variation in ?. Radiation use efficiency may be stable for specific forest types across a range of environmental conditions in the southern Appalachian Mountains, and thus useful for generating estimates of ANPP at the scale of individual watersheds.  相似文献   

17.
Infestations of Essigella californica following the installation of post-thinning fertilizer trials in Pinus radiata plantations provided an opportunity to examine the impact of repeated defoliation over a period of 8 years (1997–2005). Replicated treatments (n = 4) of nil fertilizer (control), N (300 kg ha−1) as urea, P (80 kg ha−1) and S (45 kg ha−1) as superphosphates were applied immediately after thinning at three sites and this was followed by a second application of NPS fertilizers 6 years later with N applied at 300 kg ha−1 as urea and ammonium sulphate and P at 80 or 120 kg ha−1. Defoliation of untreated P. radiata gradually increased to 50% over a period of 8 years. Basal area growth was negatively correlated with average defoliation for two consecutive post-fertilizer periods of 6 and 2 years. Growth responses to fertilizer varied considerably between sites but the largest improvement in growth was due to NPS fertilizer, this increased basal area by 30–80%. Application of N fertilizer raised total N levels in foliage and increased defoliation with a commensurate loss in growth under conditions of deficiencies of S or P. Repeated infestations gradually increased the percentage of trees with severe defoliation (>80% loss of foliage) indicating that nutrient-deficient trees have a reduced capacity for foliage recovery between episodes of peak infestation. In contrast, treatment with N fertilizer in combination with S- and P-corrected deficiencies of these nutrients, raised levels of total N in foliage and reduced defoliation to approximately 20%. Basal area growth responses to NPS fertilizers reflected improved nutrition as well as reduced insect damage. The reduction in defoliation under conditions of balanced tree nutrition was most likely due to enhanced needle retention following correction of P deficiency as well as greater availability of nutrients enabling a more vigorous recovery of P. radiata after an episode of E. californica activity. Treatment with fertilizer therefore reduced the long-term impact of aphid damage and improved growth of P. radiata.  相似文献   

18.
Reduced soil respiration in gaps in logged lowland dipterocarp forests   总被引:1,自引:0,他引:1  
We studied the effects of forest composition and structure, and related biotic and abiotic factors on soil respiration rates in a tropical logged forest in Malaysian Borneo. Forest stands were classified into gap, pioneer, non-pioneer and mixed (pioneer, non-pioneer and unclassified trees) based on the species composition of trees >10 cm diameter breast height. Soil respiration rates did not differ significantly between non-gap sites (1290 ± 210 mg CO2 m−2 h−1) but were double those in gap sites (640 ± 130 mg CO2 m−2 h−1). Post hoc analyses found that an increase in soil temperature and a decrease in litterfall and fine root biomass explained 72% of the difference between gap and non-gap sites. The significant decrease of soil respiration rates in gaps, irrespective of day or night time, suggests that autotrophic respiration may be an important contributor to total soil respiration in logged forests. We conclude that biosphere-atmosphere carbon exchange models in tropical systems should incorporate gap frequency and that future research in tropical forest should emphasize the contribution of autotrophic respiration to total soil respiration.  相似文献   

19.
Sudden oak death, caused by Phytophthora ramorum, is widely established in mesic forests of coastal central and northern California. In 2000, we placed 18 plots in two Marin County sites to monitor disease progression in coast live oaks (Quercus agrifolia), California black oaks (Q. kelloggii), and tanoaks (Lithocarpus densiflorus), the species that are most consistently killed by the pathogen in these areas. Through early 2008, the numbers of newly infected trees increased for all species. The infection rate for trees that were asymptomatic in 2000 was 5.0% y−1 for coast live oaks, 4.1% y−1 for black oaks and 10.0% y−1 for tanoaks. Mortality rates were 3.1% y−1 for coast live oaks, 2.4% y−1 for black oaks, and 5.4% y−1 for tanoaks. Mortality not attributed to P. ramorum was 0.54% y−1 for coast live oaks, and 0.75% y−1 for tanoaks. Weibull survival models of trees that were asymptomatic in 2000 provided overall median survival times of 13.7 y for coast live oaks, 13.8 y for black oaks, and 8.8 y for tanoaks. Survival of infected (bleeding) trees declined to 9.7 y for coast live oaks, 6.2 y for black oaks, and 5.8 y for tanoaks. Ambrosia beetle attacks on bleeding trees further reduced modeled survival times by 65–80%, reaffirming the earlier finding that beetle attacks on bleeding cankers considerably reduce survival. Across all plots, the modeled time for 90% of trees that were asymptomatic in 2000 to become infected is 36.5 y for coast live oaks and 15.4 y for tanoaks. There was a trend toward higher infection rates as tree diameter increased. Greater than 90% of living coast live oaks that failed during the study had extensive beetle tunneling at the site of the break. Disease intensity in coast live oaks at the plot level was positively associated with bay laurel (Umbellularia californica) basal area and negatively associated with Pacific madrone (Arbutus menziesii) basal area. This study demonstrates the use of survival modeling to characterize the effects of epidemic disease on different species and to project the future of forests infected with tree pathogens.  相似文献   

20.
Contrasting responses of Eucalyptus trees to K fertilizer applications have been reported on soils with low K contents. A complete randomized block experiment was set up in Brazil to test the hypothesis that large atmospheric deposits of NaCl in coastal regions might lead to a partial substitution of K by Na in Eucalyptus physiology and enhance tree growth. Treatments with application of 1.5, 3.0, 4.5 kmol K ha−1 (K1.5, K3.0, K4.5, respectively) as KCl, 3.0 kmol K ha−1 applied as K2SO4, 3.0 kmol Na ha−1 (Na3.0) as NaCl commercialized for cattle feeding, and a mixture of 1.5 kmol K + 1.5 kmol Na ha−1 (K1.5 + Na1.5) were compared to a control treatment (C) with no K and Na applications. All the plots were fertilized with large amounts of the other nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号