首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Three experiments were conducted to evaluate spray-dried blood cells (SDBC) and crystalline isoleucine in nursery pigs. In Exp. 1, 120 pigs were used to evaluate 0, 2, 4, and 6% SDBC (as-fed basis) in a sorghum-based diet. There were six replicates of each treatment and five pigs per pen, with treatments imposed at an initial BW of 9.3 kg and continued for 16 d. Increasing SDBC from 0 to 4% had no effect on ADG, ADFI, and G:F. Pigs fed the 6% SDBC diet had decreased ADG (P < 0.01) and G:F (P = 0.06) compared with pigs fed diets containing 0, 2, or 4% SDBC. In Exp. 2, 936 pigs were used to test diets containing 2.5 or 5% SDBC (as-fed basis) vs. two control diets. There were six replicates of each treatment at industry (20 pigs per pen) and university (six pigs per pen) locations. Treatments were imposed at an initial BW of 5.9 and 8.1 kg at the industry and the university locations, respectively, and continued for 16 d. Little effect on pig performance was noted by supplementing 2.5% SDBC, with or without crystalline Ile, in nursery diets. Pigs fed the 5% SDBC diet without crystalline Ile had decreased ADG (P < 0.01), ADFI (P < or = 0.10), and G:F (P < 0.05) compared with pigs fed the control diets. Supplementation of Ile restored ADG, ADFI, and G:F to levels that were not different from that of pigs fed the control diets. In Exp. 3, 1,050 pigs were used to test diets containing 5, 7.5, or 9% SDBC (as-fed basis) vs. a control diet. There were six replicates of each treatment at the industry (20 pigs per pen) location and five replicates at the university (six pigs per pen) locations. Treatments were imposed at an initial BW of 6.3 and 7.0 kg at the industry and university locations, respectively, and continued for 16 d. Supplementation of 5% SDBC without crystalline Ile decreased ADG and G:F (P < 0.01) compared with pigs fed the control diet, but addition of Ile increased ADG (P < 0.01) to a level not different from that of pigs fed the control diet. The decreased ADG, ADFI, and G:F noted in pigs fed the 7.5% SDBC diet was improved by addition of Ile (P < 0.01), such that ADG and ADFI did not differ from those of pigs fed the control diet. Pigs fed diets containing 9.5% SDBC exhibited decreased ADG, ADFI, and G:F (P < 0.01), all of which were improved by Ile addition (P < 0.01); however, ADG (P < 0.05) and G:F (P = 0.09) remained lower than for pigs fed the control diet. These data indicate that SDBC can be supplemented at relatively high levels to nursery diets, provided that Ile requirements are met.  相似文献   

2.
Four experiments with 1,040 weanling pigs (17 +/- 2 d of age at weaning) were conducted to evaluate the effects of spray-dried animal plasma source, drying technique, and methods of bacterial reduction on nursery pig performance. In Exp. 1, 180 barrows and gilts (initial BW 5.9 +/- 1.8 kg) were used to compare effects of animal plasma, animal plasma source, drying technique (spray-dried or freeze-dried), and plasma irradiation in nursery pig diets. From d 0 to 10, pigs fed diets containing irradiated spray-dried animal plasma had increased ADG and ADFI (P < 0.05) compared with pigs fed diets containing nonirradiated spray-dried animal plasma. Pigs fed irradiated animal plasma Sources 1 and 2 were similar in ADG and ADFI, but pigs fed animal plasma Source 1 had greater ADG (P < 0.05) than pigs fed animal plasma Source 2 and pigs not fed plasma. Pigs fed freeze-dried animal plasma had growth performance similar (P > 0.36) to pigs fed spray-dried animal plasma. Overall (d 0 to 24), pigs fed irradiated spray-dried animal plasma were heavier (P < 0.05) than pigs fed no animal plasma, whereas pigs fed nonirradiated spray-dried plasma were intermediate. In Exp. 2, 325 barrows and gilts (initial BW 5.8 +/- 1.7 kg) were used to compare the effects of irradiation or formaldehyde treatment of animal plasma and formaldehyde treatment of the whole diet. Pigs fed diets containing irradiated animal plasma had greater ADG (P < 0.05) than pigs fed nonirradiated plasma. Pigs fed formaldehyde-treated plasma had greater ADG and ADFI (P < 0.05) than pigs fed diets with either nonirradiated plasma or whole diet treated with formaldehyde. In Exp. 3 (360 barrows and gilts; initial BW 6.3 +/- 2.7 kg) and Exp. 4 (175 barrows and gilts; initial BW 6.1 +/- 1.7 kg), the irradiation of feed (high bacteria) and food-grade (low bacteria) animal plasma in nursery pig diets was examined. Pigs fed irradiated feed-grade plasma Product 2 had increased ADG (P < 0.05) compared with pigs fed nonirradiated plasma Product 2 and pigs fed the control diet without plasma. In Exp. 3 and 4, pigs fed irradiated food-grade plasma had growth performance similar to pigs fed nonirradiated food-grade plasma (P > 0.12). These studies indicate that bacterial reduction of feed-grade, but not food-grade animal plasma, improves nursery pig performance.  相似文献   

3.
Two 5-wk experiments were conducted to determine the effects of water and diet acidification with and without antibiotics on weanling pig growth performance and microbial shedding. In Exp. 1, 204 pigs (19.2 d of age) were used in a 3 x 2 factorial, with 3 dietary treatments fed with or without water acidification (2.58 mL/L of a propionic acid blend; KEM SAN, Kemin Americas, Des Moines, IA). Dietary treatments were: 1) control, 2) control + 55 ppm of carbadox (CB), and 3) dietary acid [DA; control + 0.4% organic acid-based blend (fumaric, lactate, citric, propionic, and benzoic acids; Kemin Americas)] on d 0 to 7 followed by 0.2% inorganic acid-based blend (phosphoric, fumaric, lactic, and citric acids; Kemin Americas) on d 7 to 34. In Exp. 2, 210 pigs (average 18.3 d of age) were fed 1 of 3 dietary treatments: 1) control, 2) control + 55 ppm of CB, and 3) control + 38.6 ppm of tiamulin + 441 ppm of chlortetracycline on d 0 to 7 followed by 110 ppm of chlortetracycline on d 7 to 35 (TC) with or without dietary acidification (same as Exp. 1) in a 3 x 2 factorial arrangement of treatments. For both experiments, the pigs were allotted based on genetics, sex, and initial BW [5.5 kg (Exp. 1) or 5.6 kg (Exp. 2)]. Pigs were housed at 6 or 7 (Exp. 1) and 7 (Exp. 2) pigs/pen. Treatments were fed in 3 phases: d 0 to 7, 7 to 21, and 21 to 35 (34 d, Exp. 1). Fecal grab samples were collected from 3 pigs/pen on d 6, 20, and 33 for measurement of pH and Escherichia coli. During phase 3 and overall in Exp. 1, pigs fed CB had greater (P < 0.001) ADG (overall ADG, 389 vs. 348, and 348 g/d, respectively), ADFI (P < 0.007, 608 vs. 559, and 554 g/d, respectively), and d 34 BW (P < 0.001, 18.8 vs. 17.3, and 17.3 kg, respectively) than pigs fed NC and DA. Phase 3 ADG was improved (P < 0.01) by water acidification across all diets. In Exp. 2, pigs fed CB and TC had greater ADG (P < 0.004; 315 and 303 vs. 270 g/d, respectively), ADFI (P < 0.01), and d 35 BW (P < 0.002; 16.7 and 16.2 vs. 15.1 kg, respectively) than pigs fed NC. There was a tendency (P < 0.08) for an improvement in ADG when DA was added to the NC or TC, but decreased ADG when DA was added to CB.  相似文献   

4.
A total of 720 nursery pigs in three experiments were used to evaluate the effects of blood meal with different pH (a result of predrying storage time) and irradiation of spray-dried blood meal in nursery pig diets. In Exp. 1, 240 barrows and gilts (17 +/- 2 d of age at weaning) were used to determine the effects of blood meal pH (7.4 to 5.9) in diets fed from d 10 to 31 postweaning (7.0 to 16.3 kg of BW). Different lots of dried blood meal were sampled to provide a range in pH. Overall (d 0 to 21), pigs fed diets containing blood meal had greater ADG (P < 0.05) and ADFI (P < 0.05) than pigs fed diets without blood meal. Ammonia concentrations in blood meal rose as pH decreased. However, blood meal pH did not influence (P > 0.16) ADG, ADFI, or gain:feed (G:F). In Exp. 2, 180 barrows (17 +/- 2 d of age at weaning) were used to determine the effects of post drying pH (7.6 to 5.9) and irradiation (gamma ray, 9.5 kGy) of blood meal on growth performance of nursery pigs from d 5 to 19 postweaning (6.8 to 10.1 kg of BW). One lot of whole blood was isolated with 25% of the total lot dried on d 0, 3, 8, and 12 after collection to create a range in pH. Overall, pigs fed blood meal had improved G:F (P < 0.01) compared to pigs fed the control diet. Similar to Exp. 1, the ammonia concentration of blood meal increased with decreasing pH. Blood meal pH did not influence ADG, ADFI, or G:F (P > 0.21), but pigs fed irradiated blood meal (pH 5.9) had greater ADG and G:F (P < 0.05) than pigs fed nonirradiated blood meal (pH 5.9). In Exp. 3, 300 barrows (17 +/- 6 d of age at weaning) were used to determine the effects of blood meal irradiation source (gamma ray vs. electron beam) and dosage (2.5 to 20.0 kGy) on growth performance of nursery pigs from d 4 to 18 postweaning (8.7 to 13.2 kg of BW). Overall, the mean of all pigs fed blood meal did not differ in ADG, ADFI, or G:F (P > 0.26) compared to pigs fed the control diet without blood meal. Pigs fed irradiated blood meal had a tendency (P < 0.10) for increased G:F compared with pigs fed nonirradiated blood meal. No differences in growth performance were detected between pigs fed blood meal irradiated by either gamma ray or electron beam sources (P > 0.26) or dosage levels (P > 0.11). These studies suggest that pH alone as an indicator of blood meal quality is not effective and irradiation of blood meal improved growth performance in nursery pigs.  相似文献   

5.
Two experiments were conducted to evaluate effects of corn distillers dried grains with solubles (DDGS) on growth performance and health status of weanling pigs. Experiment 1 evaluated effects of increasing concentrations of DDGS on growth performance and health of weanling pigs. Dietary treatments included 1) control (CTL), 2) 0% DDGS (0% DDGS in phase 2 and 30% DDGS in phase 3), 3) 5% DDGS (5% DDGS in phase 2 and 30% DDGS in phase 3), and 4) 30% DDGS (phases 2 and 3). Overall, pigs fed 30% DDGS during phases 2 and 3 had decreased (22.1 vs. 25.1 and 24.0 kg; P = 0.003) BW compared with CTL pigs and pigs that only received DDGS during phase 3. In addition, pigs fed 5 or 30% DDGS in phase 2 had decreased (422.7 or 390.0 vs. 468.2 g; P = 0.003) ADG compared with CTL pigs. However, pigs fed 0% DDGS during phase 2 had similar BW, ADG, and ADFI compared with CTL pigs. Experiment 2 was conducted to evaluate effects of DDGS, lactose, and their interaction on growth performance and health of weanling pigs. Dietary treatments included 1) CTL, 2) lactose (20%), 3) DDGS (15%), and 4) lactose + DDGS. Diets of interest were fed during phase 1 (d 0 to 14), and a common diet was fed during phase 2 (d 14 to 28). Pigs receiving DDGS in phase 1 had greater ADG (576.2 vs. 534.6 g; P = 0.01) and ADFI (814.9 vs. 751.6 g; P = 0.01) during phase 2 compared with non-DDGS-fed pigs. Pigs receiving lactose during phase 1 had greater ADG (214.7 vs. 177.2 g; P = 0.01) and G:F (741.0 vs. 660.3 g/kg; P = 0.01) and tended to have greater ADFI (289.3 vs. 267.6 g; P = 0.07) during phase 1 but decreased (537.7 vs. 573.1 g; P = 0.09) ADG during phase 2. Serum immunoglobulin analyses and fecal microbial profiling were conducted in both experiments as indicators of health status. No effects of dietary treatment were observed for serum immunoglobulin in either experiment. Fecal microbial profiling resulted in statistically significant effects of dietary treatment with respect to microbial similarity and diversity indices (Exp. 1) and lactic acid-producing bacteria (Exp. 2), where main effects of both lactose and DDGS were observed with respect to putative Lactobacillus reuteri (P < 0.05). Results from Exp. 1 indicate that decreased concentrations of DDGS early in the nursery phase may negatively affect growth performance; however, growth performance may be maintained when inclusion of high concentrations (30%) of DDGS is delayed until the late nursery period. Results from Exp. 2 indicate that lactose may be incorporated in nursery diets containing DDGS to help maintain growth performance, and DDGS and lactose may affect fecal microbial profiles.  相似文献   

6.
Two experiments were conducted to determine the interactive effects of phytase with and without a trace mineral premix (TMP) in diets for nursery, growing, and finishing pigs on growth performance, bone responses, and tissue mineral concentrations. Pigs (initial and final BW of 5.5 and 111.6 kg [Exp. 1] or 5.4 and 22.6 kg [Exp. 2]) were allotted to treatments on the basis of BW with eight (Exp. 1) or six (Exp. 2) replications of six or seven pigs per replicate pen. Pigs were started on the diets the day of weaning (average of 18 d). In both experiments, the treatments were with or without 500 phytase units/kg of diet and with or without the TMP in a 2 x 2 factorial arrangement. The Ca and available P concentrations were decreased by 0.10% in diets with phytase. The nursery phase consisted of Phase I (7 d), Phase II (14 d), and Phase III (13 d) periods. In Exp. 1, 26 of 52 pigs fed the diet without the TMP and without phytase had severe skin lesions and decreased growth performance; therefore, pigs fed this diet were switched to the positive control diet. In Exp. 2, the treatment without the TMP and without phytase had 12 replications instead of six. At the end of Phase III, half these replications were switched to the positive control diet and half were switched to the diet without the TMP but with phytase. In Exp. 1 during Phases II and III and in the overall data, pigs fed the diet without the TMP had decreased ADG and ADFI, but the addition of phytase prevented these responses (phytase x TMP; P < 0.02). Growth performance was not affected by diet during the growing-finishing period. Coccygeal bone Zn and Na concentrations were decreased (P < 0.09) in pigs fed the diet without the TMP, and adding phytase increased (P < 0.03) Zn and Fe concentrations. In Exp. 2 during Phases I and II, pigs fed the diet without the TMP had decreased ADG, but the addition of phytase prevented this response (phytase x TMP; P < 0.10). Pigs fed the diet without the TMP had decreased (P < 0.10) ADG (Phase II and overall), ADFI (Phases II and III and in the overall data), and G:F (Phase III). Coccygeal bone Zn and Cu concentrations were decreased (P < 0.09) in pigs fed the diet without the TMP, and adding phytase increased (P < 0.03) Zn concentration in the bones. These data indicate that removing the TMP in diets for nursery pigs decreases growth performance and bone mineral content, and that phytase addition to the diet without the TMP prevented the decreased growth performance.  相似文献   

7.
In each of two experiments, 924 pigs (4.99 kg BW; 16 to 18 d of age) were assigned to 1 of 42 pens based on BW and gender. Pens were allotted randomly to dietary copper (Cu) treatments that consisted of control (10 ppm Cu as cupric sulfate, CuSO4 x 5H2O) and supplemental dietary Cu concentrations of 15, 31, 62, or 125 ppm as cupric citrate (CuCit), or 62 (Exp. 2 only), 125 (Exp. 1 only), or 250 ppm as CuSO4. Live animal performance was determined at the end of the 45-d nursery phase in each experiment. On d 40 of Exp. 2, blood and fecal samples were collected from two randomly selected pigs per pen for evaluation of plasma and fecal Cu concentrations and fecal odor characteristics. In Exp. 1, ADG, ADFI, and G:F were increased (P < 0.05), relative to controls, when pigs were fed diets containing 250 ppm Cu as CuSO4. Pigs fed diets containing 125 ppm Cu as CuCit had increased (P < 0.05) ADG compared with pigs fed diets supplemented with 15 or 62 ppm Cu as CuCit. The ADG, ADFI, and G:F did not differ among pigs fed diets containing 125 and 250 ppm Cu as CuSO4 or 125 ppm Cu as CuCit. In Exp. 2, pigs fed diets containing 250 ppm Cu as CuSO4 had improved (P < 0.05) ADG, ADFI, and G:F compared with controls. In addition, ADG, ADFI, and G:F were similar when pigs were fed diets containing either 250 ppm Cu as CuSO4 or 125 ppm Cu as CuCit. Pigs fed diets containing 62 ppm Cu as CuSO4 or CuCit had similar ADG, ADFI, and G:F. Plasma Cu concentrations were not affected by dietary Cu source or concentration, but fecal Cu concentrations were increased (P < 0.05) as the dietary concentration of Cu increased. Pigs consuming diets supplemented with 125 ppm Cu as CuCit had fecal Cu concentrations that were lower (P < 0.05) than pigs consuming diets supplemented with 250 ppm Cu as CuSO4. Fecal Cu did not differ in pigs receiving diets supplemented with 62 ppm Cu as CuSO4 or CuCit. Odor characteristics of feces were not affected by Cu supplementation or source. These data indicate that 125 and 250 ppm Cu gave similar responses in growth, and that CuCit and CuSO4 were equally effective at stimulating growth and improving G:F in weanling pigs. Fecal Cu excretion was decreased when 125 ppm Cu as CuCit was fed compared with 250 ppm Cu as CuSO4. Therefore, 125 ppm of dietary Cu, regardless of source, may provide an effective environmental alternative to 250 ppm Cu as CuSO4 in weanling pigs.  相似文献   

8.
Two experiments were conducted to refine the Ile needs in 7- to 11-kg pigs. In Exp. 1, 1,680 pigs were fed a 1.25% digestible Lys diet containing 7.5% spray-dried blood cells (as-fed basis) with supplemental crystalline Ile (0.06% increments) to generate seven levels of apparent digestible Ile (0.47 to 0.83%). There were 12 replicates of each treatment with 20 pigs per pen, and treatments were imposed at an initial BW of 7 kg and continued for 16 d. Responses in ADG, ADFI, G:F, and plasma urea nitrogen (PUN) were quadratic (P < 0.01) over the 16-d period. Data were fitted to both a single-slope broken line and a quadratic fit, and when the quadratic response curve was superimposed on the broken line, the points at which the quadratic curve first intersected the plateau of the broken line occurred at 0.70, 0.73, 0.66, and 0.65% digestible Ile for ADG, ADFI, G:F, and PUN, respectively. Using the ADG and ADFI obtained at this intersection point resulted in an estimate of 9.1 mg of digestible Ile per gram of weight gain. In Exp. 2, 1,840 pigs were fed similarly composed diets, except that digestible Lys was lowered in six diets to 1.10% by decreasing soybean meal. Crystalline Ile was supplemented at 0.09% increments to generate six levels of digestible Ile (0.37 to 0.83%). A seventh diet contained 1.25% digestible Lys by supplementing the 0.83% digestible Ile diet with 0.19% L-Lys HCl to verify that 1.10% digestible Lys was deficient for these pigs. There were 12 replicates of each treatment with 22 pigs per pen, and treatments imposed at an initial BW of 7 kg and continued for 16 d. Supplementation of Lys to the 0.83% digestible Ile diet (1.10 vs. 1.25% digestible Lys) did not affect ADG (260 vs. 264 g/d, P = 0.60) and ADFI (359 vs. 343 g/d, P = 0.20), whereas G:F (725 vs. 774 g/kg, P < 0.01) was improved by increasing dietary Lys. Responses in ADG, ADFI, and G:F to the first six diets were quadratic (P < 0.01) over the 16-d period. The points at which the quadratic curve first intersected the plateau of the broken line occurred at 0.686, 0.638, and 0.684% digestible Ile for ADG, ADFI, and G:F, respectively. Using the ADG and ADFI obtained at this intersection point results in an estimate of 9.9 mg of digestible Ile per gram of weight gain. These results suggest that although the percent digestible Ile requirement and digestible Ile:Lys ratio for starter (7 to 11 kg) pigs may be higher than 1998 NRC recommendations, the requirement may be lower than current recommendations when taking gain and feed intake into account.  相似文献   

9.
Three experiments were conducted to evaluate the efficacy of phosphorylated mannans (MAN) and pharmacological levels of ZnO on performance and immunity when added to nursery pig diets. Pigs (216 in each experiment), averaging 19 d of age and 6.2, 4.6, and 5.6 kg of BW in Exp. 1, 2, and 3, respectively, were blocked by BW in each experiment, and penned in groups of six. A lymphocyte blastogenesis assay was performed in each experiment to measure in vitro lymphocyte proliferation response. In Exp. 1, diets were arranged as a 2 x 2 factorial with two levels of Zn (200 and 2,500 ppm) and two levels of MAN (0 and 0.3% from d 0 to 10, and 0 and 0.2% from d 10 to 38). Zinc oxide increased (P < 0.05) ADG, ADFI, and G:F from d 0 to 10, and ADG and ADFI from d 10 to 24. In Exp. 2, diets were arranged as a 2 x 3 factorial with two levels of Zn (200 and 2,500 ppm) and three levels of MAN (0, 0.2, and 0.3%). Pigs fed 2,500 ppm Zn from d 0 to 10 had greater (P < 0.05) ADG, ADFI, and G:F than pigs fed 200 ppm Zn. From d 10 to 24, ADG was similar when pigs were fed 200 ppm Zn, regardless of MAN supplementation; however, ADG increased (P < 0.05) when 0.2% MAN was added to dietscontaining 2,500 ppm Zn (MAN x Zn interaction, P < 0.05). In Exp. 3, diets were arranged as a 2 x 3 factorial with two levels of MAN (0 and 0.3%) and three levels of Zn (200, 500, and 2,500 ppm). Zinc was maintained at 200 ppm from d 21 to 35, so only two dietary treatments (0 and 0.3% MAN) were fed during this period. Average daily gain was greater (P < 0.05) from d 7 to 21 when pigs were fed 2,500 ppm Zn compared with pigs fed 200 or 500 ppm Zn. The addition of MAN improved (P < 0.05) G:F from d 7 to 21 and d 0 to 35. Lymphocyte proliferation of unstimulated cells and phytohemagglutinin-stimulated cells was decreased (P < 0.05) in cells isolated from pigs fed MAN compared with cells isolated from pigs fed diets without MAN. Lymphocyte proliferation of pokeweed mitogen-stimulated cells isolated from pigs fed MAN was less (P < 0.05) than for pigs fed diets devoid of MAN when diets contained 200 ppm Zn; however, MAN had no effect on lymphocyte proliferation when the diet contained 500 or 2,500 ppm Zn (MAN x Zn interaction, P < 0.05). Although the magnitude of response to MAN was not equivalent to that of pharmacological concentrations of Zn, MAN mayimprove growth response when pharmacological Zn levels are restricted.  相似文献   

10.
Two experiments were conducted to determine the effects of rancidity and FFA in choice white grease (CWG) on growth performance and nutrient digestibility in nursery pigs. In Exp. 1,150 crossbred pigs (average initial BW of 6.8 kg and average initial age of 21 d) were used. Treatments (as-fed basis) were a corn-soybean meal-based control with no added fat, 6% CWG, and 6% CWG heated at 80 degrees C, with oxygen gas bubbled through it at 849 mL/min for 5, 7, 9, or 11 d. Peroxide value for the CWG increased as oxidative exposure was increased from 0 to 7 d (i.e., peroxide values of 1, 40, and 105 mEq/kg for d 0, 5, and 7, respectively), but decreased to 1 mEq/kg as the hydroperoxides decomposed after 9 and 11 d of oxidation. Pigs fed the control diet (no added fat) had the same (P = 0.91) overall ADG (d 0 to 35) but lower G:F (P < 0.04) than pigs fed diets with added fat. As for the effects of fat quality, ADG (linear effect, P < 0.01) and ADFI (linear effect, P < 0.001) decreased as the fat was made more rancid. However, there were no changes in digestibility of fatty acids as the rancidity of the fat was increased (P = 0.16), suggesting that the negative effects of rancidity were from decreased food intake and not decreased nutrient utilization. In Exp. 2, 125 crossbred pigs (average initial BW of 6.2 kg and average initial age of 21 d) were used to determine the effects of FFA in CWG on the growth performance and nutrient digestibility in nursery pigs. Treatments (as-fed basis) were a corn-soybean meal-based control with no added fat, 6% CWG, and 6% CWG that had been treated with 872, 1,752 or 2,248 lipase units/g of fat. The FFA concentrations in the CWG were increased from 2% with no lipase added to 18, 35, and 53% as lipase additions were increased. Pigs fed the control diet (no added fat) had the same (P = 0.30) overall ADG (d 0 to 33) but lower G:F (P < 0.01) than pigs fed diets with added fat. There were no effects of FFA concentration on ADG (P = 0.18), and ADFI increased (linear effect, P < 0.04) as FFA concentration in the CWG increased. Fatty acid digestibility was not affected (P = 0.17) by FFA in the diet. In conclusion, our data suggest that as fat is oxidized (especially to peroxide values greater than 40 mEq/kg), ADG and ADFI in nursery pigs will decrease; however, FFA concentrations of at least 53% do not adversely affect utilization of CWG in nursery pigs.  相似文献   

11.
The tryptophan requirement of nursery pigs   总被引:7,自引:0,他引:7  
Five experiments were conducted to determine the true digestible Trp (dTrp) requirement of nursery pigs. Treatments were replicated with four or five pens of five or six pigs each. Pigs were weaned at 21 (Exp. 1, 2, and 5) or 19 d (Exp. 3 and 4), and fed common diets for various times and then experimental diets for 8 (Exp. 1), 13 (Exp. 2 and 3), or 14 d (Exp. 4 and 5). Experiment 1 (160 pigs, initial and final BW of 8.4 and 11.4 kg) evaluated six protein sources low in Trp relative to a positive control diet to identify the protein source to be used in subsequent experiments. The results indicated that a diet with Canadian field peas (CFP) supplemented with Trp resulted in ADG, ADFI, and gain:feed (GF) equal to (P > 0.10) the positive control diet. In Exp. 2, 75 pigs (initial and final BW of 13.2 and 19.2 kg) were fed 1) Trp-deficient diet (0.13% dTrp) with CFP, 2) Diet 1 with added Trp (0.23% dTrp), or 3) positive control diet (0.22% dTrp). Daily gain, ADFI, and GF were decreased (P < 0.01) in pigs fed Diet 1 compared with pigs fed Diets 2 and 3, but ADG, ADFI, and GF were equal (P > 0.10) in pigs fed Diets 2 and 3. Experiments 3 (180 pigs, initial and final BW of 5.2 and 7.3 kg), 4 (120 pigs, initial and final BW of 6.3 and 10.2 kg), and 5 (144 pigs, initial and final BW of 10.3 and 15.7 kg) were conducted to estimate the dTrp requirement of nursery pigs with diets using CFP as a primary protein source. The diets used in Exp. 3, 4, and 5 contained 1.35, 1.19, or 1.01% dLys, respectively, and other amino acids were provided at 105% the ratio relative to Lys. Response variables were ADG, ADFI, GF, and plasma urea N concentrations, and data were analyzed using the broken-line model. The levels of dTrp in the diets for Exp. 3 (Phase I, 5.2 to 7.3 kg) were 0.14, 0.17, 0.20, 0.23, 0.26, and 0.29%. The average dTrp requirement was estimated to be 0.21% (0.24% total Trp). The levels of dTrp in the diets for Exp. 4 (Phase II, 6.3 to 10.2 kg) were 0.13, 0.16, 0.19, 0.22, 0.25, and 0.28%. The average dTrp requirement was estimated to be 0.20% (0.23% total Trp). The levels of dTrp in the diets for Exp. 5 (Phase III, 10.3 to 15.7 kg) were 0.130, 0.155, 0.180, 0.205, 0.230, and 0.255%. The average dTrp requirement was estimated to be 0.18% (0.22% total Trp). These results indicate that the true dTrp requirement is 0.21, 0.20, and 0.18% for Phase I (5.2 to 7.3 kg), II (6.3 to 10.2 kg), and III (10.3 to 15.7 kg) nursery pigs, respectively.  相似文献   

12.
A total of 1,210 nursery pigs was used in two experiments to evaluate the effects of irradiation of typical nursery diet ingredients, specialty protein products, and the whole diet on nursery pig performance. In Exp. 1, 880 barrows and gilts (15 +/- 2 d of age at weaning) were used in two growth trials (14 d and 12 d for Trials 1 and 2, respectively) to determine the effects of individual ingredient and whole-diet irradiation on nursery pig performance. Overall (d 0 to 14 of Trial 1 and d 0 to 12 of Trial 2), ADG was greater (P < 0.05) for pigs fed irradiated animal plasma compared with pigs fed the control, the diet containing irradiated microingredients, and the diet that was manufactured and irradiated. Also, pigs fed irradiated soybean meal had greater (P < 0.05) ADFI compared with pigs fed the manufactured diet that was irradiated. Pigs fed the diet containing irradiated animal plasma had improved feed efficiency (G:F; P < 0.05) compared with those fed the diet with irradiated microingredients and when all ingredients were irradiated before manufacturing of complete feed. Finally, pigs fed irradiated corn, whey, fishmeal, soybean oil, microingredients, or if all ingredients or the whole diet were irradiated, had similar ADG, ADFI, and G:F (P > 0.12) to control pigs. In Exp. 2, 330 nursery pigs (20 +/- 2 d of age at weaning) were used to determine the effects of irradiation of commercially available specialty protein products in diets for nursery pigs. Overall, ADG was greater (P < 0.05) when pigs were fed diets containing nonirradiated spray-dried animal plasma and egg combination (SDAPE) and dried porcine digest (DPD) compared with pigs fed the control diet containing no specialty protein products. In addition, G:F was improved (P < 0.05) when pigs were fed diets containing nonirradiated SDAPE, DPD, spray-dried beef muscle (SDBM), and spray-dried whole egg (SDWE) compared with pigs fed the control diet. Pigs fed irradiated SDAPE and SDBM had greater (P < 0.05) ADG than pigs fed the nonirradiated forms. Pigs fed irradiated SDBM had improved (P < 0.05) G:F compared with pigs fed the nonirradiated form. In Exp. 1 and 2, an irradiation treatment level of 8.5 kGy was effective in reducing the total bacterial concentration of all ingredients evaluated, as well as the whole diet in Exp.1. Irradiation of certain ingredients, but not the complete diet, increased growth performance of nursery pigs.  相似文献   

13.
In Exp. 1, a total of 144 pigs (BW, 6.68 ± 0.17 kg) were weaned at 21 d, blocked by BW, and allocated to 48 pens with 3 pigs per pen. Pens were randomly assigned to 1 of 6 dietary treatments (0, 2.5, 5, 7.5, and 10% glycerol supplemented to replace up to 10% lactose in a basal starter 1 diet containing 20% total lactose, which was fed for 2 wk), and a negative control diet with 10% lactose and 0% glycerol. A common starter diet was fed for the next 2 wk. In Exp. 2, a total of 126 pigs (BW, 6.91 ± 0.18 kg) were weaned at 21 d of age, blocked by BW, and allocated to 42 pens with 3 pigs per pen. Pigs were assigned to 1 of 6 treatments in a 2 × 3 factorial arrangement in a randomized complete block design with factors being 1) glycerol inclusion in replacement of lactose in starter 1 diets (0 or 5%) fed for 2 wk, and 2) glycerol inclusion in starter 2 diets (0, 5, or 10%) fed for 3 wk. In Exp. 1, glycerol supplementation at 10% improved (P=0.01) ADG (266 vs. 191 g/d) and G:F (871 vs. 679 g/kg) during the starter 1 period when compared with the negative control. Incremental amounts of glycerol linearly (P<0.05) increased ADG and ADFI, but did not affect G:F during starter 1. There was no effect of feeding glycerol during the starter 1 phase on subsequent performance during the starter 2 phase or overall. Serum glycerol concentrations increased linearly (P=0.003) with increasing dietary glycerol, and serum creatinine (P=0.004) and bilirubin (P=0.03) concentrations decreased with increasing glycerol. In Exp. 2, glycerol did not affect performance during starter 1, but it linearly increased (P≤0.01) ADG and ADFI during starter 2 (464, 509, and 542 and 726, 822, and 832 g/d, respectively) and overall (368, 396, and 411 and 546, 601, and 609 g/d, respectively). At the end of the study, pigs were 1.0 and 1.5 kg heavier when fed 5 and 10% glycerol, respectively (linear, P<0.01). Serum glycerol concentrations increased linearly during starter 2 (P<0.001), but were not affected during starter 1. Glycerol supplementation increased serum urea N quadratically (P<0.001) and decreased creatinine linearly (P<0.05) in the starter 2 phase. Overall, data indicate that glycerol can be added to nursery pig diets at 10%, while improving growth performance.  相似文献   

14.
Two experiments using 415 weanling pigs (4.8 ± 0.98 kg and 14 ± 4 d of age) were conducted to determine the effect of increasing dietary niacin on pig performance. Pigs were blocked by BW and randomly allotted to one of five dietary treatments. There were five pigs per pen with seven pens per treatment in Exp. 1, and eight pigs per pen with six pens per treatment in Exp. 2. Diets were fed in four phases (d 0 to 4, 4 to 8, 8 to 22, and 22 to 35). Pigs were fed the control diet with no added niacin or the control diet with 28, 55, 83, or 110 mg/kg of added niacin; data from both trials were combined. From d 0 to 22, increasing niacin had no effect (P>0.10) on growth performance. From d 22 to 35, increasing niacin had no effect (P>0.10) on ADG or ADFI, but improved (linear, P<0.04) gain:feed ratio (G:F). Overall (d 0 to 35), increasing niacin had no affect (P>0.10) on ADG or ADFI, but tended to numerically (linear, P<0.10) improve G:F. In summary, diets high in dried whey and other specialty protein sources appear to contain adequate niacin to maximize growth performance for the first 3 wk after weaning. However, in the late nursery phase (d 22 to 35) when pigs are fed corn-soybean meal diets, up to 110 mg/kg of added niacin linearly (P<0.04) improves G:F.  相似文献   

15.
Two experiments were conducted to verify the feeding value of NutriDense (ND) and Nutri-Dense Low-Phytate (NDLP) corn (Exseed Genetics LLC, BASF Plant Science, Research Triangle Park, NC) relative to that of yellow dent (YD) corn in swine diets. NutriDense corn is a high-protein, high-oil variety, and NDLP is a high-protein, high-oil, low-phytate variety. In Exp. 1, 315 nursery pigs that initially weighed 15.2 kg were used in a 21-d growth assay. Dietary treatments were arranged in a 3 x 3 factorial; main effects were corn source (YD, ND, and NDLP) and added fat (0, 3, or 6%, as-fed basis). Diets were formulated to contain 3.83 g of lysine/Mcal using calculated nutrient values. There were no corn source x fat interactions observed. Pigs fed YD, ND, and NDLP had ADG of 750, 734, and 738 g/d and G:F of 0.64, 0.66, and 0.65, respectively. No differences (P > 0.10) in ADG were observed among the three corn sources; however, pigs fed diets containing either ND or NDLP corn had decreased ADFI (P < 0.02) and improved G:F (P < 0.05) compared with pigs fed diets containing YD corn. Increasing dietary fat increased ADG (727, 746, and 748 g/d; linear, P < 0.04) and G:F (0.62, 0.66, and 0.68; linear, P < 0.01) and decreased ADFI (linear, P < 0.01). Using the NRC (1998) value for ME in YD corn, we calculated the energy value for ND and NDLP based on G:F differences compared with pigs fed YD corn. These data indicated the ME values for ND and NDLP corn are 4.5 and 2.5% greater (3,575 and 3,505 Kcal/kg), respectively, than for YD corn (3,420 Kcal/kg). In Exp. 2, 1,144 gilts (initial BW = 50.1 kg) were used in a commercial research facility to evaluate the effects of corn source (ND and YD) and added fat (0, 3, or 6%, as-fed basis) in a 2 x 3 factorial on pig performance and carcass traits. There was a corn source x fat interaction for ADFI and G:F. Increasing added fat resulted in greater changes in ADFI and G:F in pigs fed YD corn diets compared with those fed ND corn. Feeding ND corn increased ADG (main effect, P < 0.04), and greater percentages of added fat increased ADG (main effect; linear, P < 0.01). Results of Exp. 2 suggest that ND corn has 5.3% more ME than YD corn. The additional energy provided by ND corn improves G:F in both nursery and grow-finish pigs, and ND corn offers a means of formulating diets more concentrated in energy than YD corn.  相似文献   

16.
Two experiments were conducted to determine the efficacy of mannan oligosaccharides (MOS) fed at two levels of Cu on growth and feed efficiency of weanling and growing-finishing pigs, as well as the effect on the immunocompetence of weanling pigs. In Exp. 1, 216 barrows (6 kg of BW and 18 d of age) were penned in groups of six (9 pens/treatment). Dietary treatments were arranged as a 2 x 2 factorial consisting of two levels of Cu (basal level or 175 ppm supplemental Cu) with and without MOS (0.2%). Diets were fed from d 0 to 38 after weaning. Blood samples were obtained to determine lymphocyte proliferation in vitro. From d 0 to 10, ADG, ADFI, and gain:feed (G:F) increased when MOS was added to diets containing the basal level of Cu, but decreased when MOS was added to diets containing 175 ppm supplemental Cu (interaction, P < 0.01, P < 0.10, and P < 0.05, respectively). Pigs fed diets containing 175 ppm Cu from d 10 to 24 and d 24 to 38 had greater (P < 0.05) ADG and ADFI than those fed the basal level of Cu regardless of MOS addition. Pigs fed diets containing MOS from d 24 to 38 had greater ADG (P < 0.05) and G:F (P < 0.10) than those fed diets devoid of MOS. Lymphocyte proliferation was not altered by dietary treatment. In Exp. 2, 144 pigs were divided into six pigs/pen (six pens/treatment). Dietary treatments were fed throughout the starter (20 to 32 kg BW), grower (32 to 68 kg BW), and finisher (68 to 106 kg BW) phases. Diets consisted of two levels of Cu (basal level or basal diet + 175 ppm in starter and grower diets and 125 ppm in finisher diets) with and without MOS (0.2% in starter, 0.1% in grower, and 0.05% in finisher). Pigs fed supplemental Cu had greater (P < 0.05) ADG and G:F during the starter and grower phases compared to pigs fed the basal level of Cu. During the finisher phase, ADG increased when pigs were fed MOS in diets containing the basal level of Cu, but decreased when MOS was added to diets supplemented with 125 ppm Cu (interaction, P < 0.05). Results from this study indicate the response of weanling pigs fed MOS in phase 1 varied with level of dietary Cu. However, in phase 2 and phase 3, diets containing either MOS or 175 ppm Cu resulted in improved performance. Pharmacological Cu addition improved gain and efficiency during the starter and grower phases in growing-finishing pigs, while ADG response to the addition of MOS during the finisher phase seems to be dependent upon the level of Cu supplementation.  相似文献   

17.
Effects of soybean meal particle size on growth performance of nursery pigs   总被引:2,自引:0,他引:2  
We used 360 nursery pigs (35 +/- 3 d of age) in two 21-d growth assays to determine the effects of soybean meal particle size on growth performance. In both trials, there were six pigs per pen and 10 pens per treatment. Pigs were weaned on d 21 and fed the same phase I diet for 7 d after weaning, followed by a phase II diet from d 7 to 14. On d 14, all pigs were weighed and randomly allotted to one of three dietary treatments. Experimental diets contained 61.9% corn, 34.4% soybean meal, and 3.7% vitamins and minerals. In Exp. 1, 90 barrows and 90 gilts (9.2 +/- 2.3 kg BW) were fed diets containing extruded-expelled soybean meal ground to 965, 742, or 639 microm, which resulted in whole-diet particle sizes of 728, 719, and 697 microm, respectively. Reducing extruded-expelled soybean meal particle size from 965 or 742 to 639 microm in the diet did not affect (P > 0.10) ADG (541, 538, and 542 g/d), ADFI (886, 875, and 855 g/d; as-fed basis), or gain:feed ratio (0.61, 0.61, 0.64), respectively. In Exp. 2, 90 barrows and 90 gilts (9.9 +/- 2.6 kg BW) were fed diets containing solvent-extracted soybean meal ground to 1,226, 797, or 444 microm, which resulted in whole-diet particle sizes of 732, 681, and 629 microns, respectively. Like Exp. 1, reducing particle size of solvent-extracted soybean meal did not affect (P > 0.10) ADG (482, 487, and 484 g/d), ADFI (738, 742, and 736 g/d; as-fed), or gain:feed (0.65, 0.65, and 0.65). Reducing particle size of extruded-expelled soybean meal or solvent-extracted soybean meal increased the angle of repose (maximum degree at which a pile of material retains its slope), indicating that as particle size decreased, flowability characteristics decreased. However, the angle of repose of the complete diets was greater than that for the soybean meals, which indicates that decreasing the particle size of soybean meal had minimal effects on flow characteristics of the complete diet. Previous research has shown that decreasing grain particle size improves digestibility and feed efficiency, and decreased soybean meal particle size has resulted in improved amino acid digestibility. However, the results of our experiments suggest decreasing particle size of either extruded-expelled soybean meal or solvent-extracted soybean meal does not affect nursery pig growth performance.  相似文献   

18.
Two experiments, each consisting of 2 trials, were conducted to determine the effect of salmon protein hydrolysate (SPH) and spray-dried plasma protein (SDPP) fed during the first week postweaning and their subsequent effect on the growth performance of weanling pigs. Pigs were fed in a 3-phase feeding program with durations of 7 d for phase 1 in both Exp. 1 and 2; 14 or 15 d for phase 2 in Exp. 1 and 2, respectively; and 7 or 8 d for phase 3 in Exp. 1 and 2, respectively. Dietary treatments were fed only during phase 1, whereas the same diet was fed to all pigs in phases 2 and 3. Pigs were blocked by initial BW and sex, and littermates were balanced across treatments. Data from the 2 trials within each experiment were combined and analyzed together; no treatment × trial interactions (P > 0.10) were observed. In Exp. 1, a total of 324 weanling pigs (10 replications of 5 or 6 pigs per pen) with an average initial BW of 6.4 ± 1.3 kg were assigned to 1) a control diet with no SPH or SDPP, 2) 1.5% SPH, 3) 3.0% SPH, 4) 1.5% SDPP, 5) 3.0% SDPP, or 6) 1.5% SPH + 1.5% SDPP. Experiment 2 was similar to Exp. 1, but red blood cells were removed from all diets to reduce diet complexity. In Exp. 2, weanling pigs (n = 320, 14 replications of 5 or 6 pigs per pen) with an average initial BW of 5.4 ± 1.2 kg were assigned to 1) a control diet with no SPH or SDPP, 2) 1.5% SPH, 3) 1.5% SDPP, or 4) 1.5% SPH + 1.5% SDPP. Three batches of SPH were used, and each batch was analyzed for AA composition. In Exp. 1, the inclusion of SDPP or SPH during phase 1 did not affect (P > 0.10) ADG, ADFI, or G:F compared with those of pigs fed the control diet. No carryover effects on growth performance were observed in any of the subsequent phases. Overall, G:F was greater (P = 0.08) in pigs fed the 1.5% diets compared with those fed the 3.0% diets. In Exp. 2, no differences (P > 0.10) were observed in ADG, ADFI, or G:F among pigs fed the SPH or SDPP diets compared with those of pigs fed the control diet. Pigs fed the combined diet had greater (P < 0.10) overall ADFI compared with that of pigs fed the control diet, but ADFI was similar to that of pigs fed the SPH and SDPP diets. These results indicate that inclusion of up to 3% SDPP or SPH in diets fed during the first week postweaning did not affect the growth performance of weanling pigs, and no subsequent carryover effects were observed. Salmon protein hydrolysate did not affect the growth performance of weanling pigs and may be considered an alternative protein source in diets for weanling pigs.  相似文献   

19.
A study with 3 experiments was conducted to determine the AA digestibility and energy concentration of deoiled (solvent-extracted) corn distillers dried grains with solubles (dDGS) and to evaluate its effect on nursery pig growth performance, finishing pig growth performance, and carcass traits. In Exp. 1, a total of 5 growing barrows (initial BW = 30.8 kg) were fitted with a T-cannula in the distal ileum and allotted to 1 of 2 treatments: 1) a diet with dDGS as the sole protein source, or 2) a N-free diet for determining basal endogenous AA losses in a crossover design at 68.0 kg of BW. Apparent and standardized (SID) ileal digestibility of AA and energy concentration of dDGS were determined. In Exp. 2, a total of 210 pigs (initial BW = 9.9 kg) were used in a 28-d experiment to evaluate the effect of dDGS on nursery pig performance. Pigs were allotted to 5 dietary treatments (0, 5, 10, 20, or 30% dDGS) formulated to contain equal ME (increased added fat with increasing dDGS) and SID Lys concentrations based on the values obtained from Exp. 1. In Exp. 3, a total of 1,215 pigs (initial BW = 29.6 kg) were used in a 99-d experiment to determine the effect of dDGS on growth and carcass characteristics of finishing pigs. Pigs were allotted to dietary treatments similar to those used in Exp. 2 and were fed in 4 phases. The analyzed chemical composition of dDGS in Exp. 1 was 35.6% CP, 5.29% ash, 4.6% fat, 18.4% ADF, and 39.5% NDF on a DM basis. Apparent ileal digestibility values of Lys, Met, and Thr in dDGS were 47.2, 79.4, and 64.1%, respectively, and SID values were 50.4, 80.4, and 68.9%, respectively. The determined GE and DE and the calculated ME and NE values of dDGS were 5,098, 3,100, 2,858, and 2,045 kcal/kg of DM, respectively. In Exp. 2, nursery pig ADG, ADFI, and G:F were similar among treatments. In Exp. 3, increasing dDGS reduced (linear; P < 0.01) ADG and ADFI but tended to improve (linear; P = 0.07) G:F. Carcass weight and yield were reduced (linear; P < 0.01), loin depth tended to decrease (linear; P = 0.09), and carcass fat iodine values increased (linear; P < 0.01) as dDGS increased. No difference was observed in backfat, percentage of lean, or fat-free lean index among treatments. In conclusion, dDGS had greater CP and AA but less energy content than traditional distillers dried grains with solubles. In addition, when dietary fat was added to diets to offset the reduced ME content, feeding up to 30% dDGS did not affect the growth performance of nursery pigs but did negatively affect the ADG, ADFI, and carcass fat quality of finishing pigs.  相似文献   

20.
Weanling pigs with mean initial BW of 6.04 kg (Exp.1) and 5.65 kg (Exp. 2) and mean age at weaning of 18.2 d (Exp. 1) and 17.7 d (Exp. 2) were used in two 5-wk experiments (Exp. 1, n = 180; Exp. 2, n = 300) to evaluate the effects of an organic acid blend (Acid LAC, Kemin Americas Inc., Des Moines, IA) and an inorganic/organic acid blend (Kem-Gest, Kemin Americas Inc.) on weanling pig growth performance and microbial shedding. In Exp. 1, the 5 dietary treatments were 1) negative control, 2) diet 1 + 55 ppm carbadox, 3) diet 1 + 0.4% Acid LAC, 4) diet 1 + 0.2% Kem-Gest, 5) diet 1 + 0.4% Acid LAC and 0.2% Kem-Gest. In Exp. 2, the 6 dietary treatments were diets 1 through 4 corresponding to Exp. 1, plus 5) sequence 1: 0.4% Acid LAC for 7 d followed by 0.2% Kem-Gest for 28 d, and 6) sequence 2: 0.2% Kem-Gest for 7 d followed by 0.4% Acid LAC for 28 d. Pigs were housed at 6 (Exp. 1) or 10 (Exp. 2) pigs/pen. Treatments were fed throughout the experiment in 3 phases: d 0 to 7, d 7 to 21, and d 21 to 35. In Exp. 1, there were no differences (P > 0.05) in ADG, ADFI, or G:F among the dietary treatments at any time during the study. In Exp. 2, throughout the study, pigs fed carbadox (diet 2) and sequence 1 (diet 5) diets had the greatest ADG (d 0 to 35; 262, 294, 257, 257, 292, and 261 g/d, diets 1 through 6, respectively; P < 0.05), greater ADFI than all other acid treatments (P < 0.05), and tended to have greater ADFI than diet 1 (P < 0.10). Fecal pH, Escherichia coli concentrations, and Salmonella presence were determined at d 6, 20, and 34 for Exp. 1, and on d 32 for Exp. 2. For both experiments, there was no effect of treatment on the presence of fecal Salmonella (P > 0.10) at any sampling time. In Exp. 1, fecal E. coli concentrations for pigs fed the carbadox (P < 0.05) diet were greater than for pigs fed the combination diet with 0.4% Acid LAC and 0.2% Kem-Gest on d 34, and the pigs fed the negative control diet tended (P < 0.10) to have greater fecal E. coli concentrations than those fed the combination diet on d 34. In Exp. 2, fecal pH of pigs fed sequence 1 tended to be greater than fecal pH of pigs fed diet 1, diet 4, or sequence 2 (P < 0.10), but there was no dietary effect on fecal E. coli. In Exp. 1, growth performance of pigs fed the Acid LAC and Kem-Gest diets was similar to each other and to that of the carbadox-fed pigs. Adding the combination of 0.4% Acid LAC and 0.2% Kem-Gest to nursery pig diets reduced ADFI and pig growth rate. In Exp. 2, pigs fed the acid sequence of Acid LAC-Kem-Gest had similar growth performance to pigs fed carbadox, and this novel dietary acid sequence may have merit as a replacement for antibiotics in the nursery phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号