首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
活性氧(ROS)和丙酮醛(MG)是植物响应非生物胁迫过程中不可或缺的组成部分。低剂量的ROS或MG参与信号交流、种子萌发、植物生长发育及非生物胁迫应答等过程,而过量的ROS或MG具有高反应性和细胞毒性,会导致植物处于氧化胁迫或MG胁迫状态。为了维持植株体内ROS和MG的动态平衡,植物自身进化出了一系列的ROS和MG产生及清除机制。文章归纳总结了植物体内ROS和MG的合成代谢过程、分解代谢过程以及两者合成和分解代谢间的关系,阐明了不同非生物胁迫 (干旱、温度、盐、碱、盐碱和重金属胁迫)条件下植物体内ROS和MG代谢间的调节情况。提出今后应加强植物体内MG的信号作用、乙二醛酶系统响应非生物胁迫的机理以及乙二醛酶系统耐逆基因工程开发的深入研究,以期为非生物胁迫下植物体内ROS和MG代谢机制的深入研究提供借鉴。  相似文献   

2.
活性氧(Reactive oxygen species,ROS)是植物体内正常代谢的信号小分子,在植物的生长发育和抗逆反应中具有重要作用。综述了植物体内ROS产生的过程、对植物蛋白的修饰及在植物体内的主要功能。  相似文献   

3.
活性氧和一氧化氮在植物-病原体互作反应中的作用   总被引:1,自引:0,他引:1  
植物被病原体感染后,植物体内活性氧产量急剧增加,这一现象被称为氧爆。活性氧族包括如单线态氧^1O2、超氧阴离子自由基O2^-、氢过氧自由基HO2·、过氧化氢H2O2、羟自由基·OH等。与ROS关系密切的一氧化氮,属于活性氮族。ROS和NO参与植物生长发育调控和对环境胁迫的应答反应,特别是在对抗外来病原体的入侵的防卫过程中发挥了重要作用。本文主要讨论ROS和NO在植物与病原体相互作用中发挥的作用。  相似文献   

4.
活性氧(ROS)在植物生长发育和对各种逆境适应过程中扮演双面角色:高浓度下引起氧化损伤、低浓度下发挥第二信使作用,其角色转换取决于其产生和清除之间的平衡状态,并严格受控于体内一套由酶和非酶组分构成的双元抗氧化系统。在抗氧化酶类中,位居细胞质的抗坏血酸过氧化物酶1(APX1)在胞内氧化还原态水平调控中起到关键作用,在ROS清除网络中居于核心地位,已被视作ROS功能的重要杠杆,并因而获得相对最广泛的研究关注。着重介绍了其酶学特性、基因表达和调控、生物学作用及目前主要在植物抗逆基因工程中的应用研究进展,以期为日后植物ROS和抗逆性研究提供有用信息和思路。  相似文献   

5.
为了明确苗期水稻对干旱胁迫的生理反应,笔者从光合作用、水分生理、植株体内的氧化逆境、渗透调节物质代谢以及细胞膜的完整性等几个方面分析了粳稻品种Dongjin(OryzasativaL.subsp.japonica)在干旱胁迫处理下的生理变化。结果表明:干旱胁迫过程中,叶片的净光合速率与植株地上部相对含水量在处理5d内均已显著降低,5d后大幅度下降;植株地上部丙二醛含量的显著增加以及相对电导率的快速上升发生在处理5d以后,并且二者的变化趋势相类似;脯氨酸含量在处理6d时有所增加,处理6d后快速上升;叶片的活性氧含量在处理6d时略微下降,6d后逐渐上升,处理8d时显著升高。光合速率与相对含水量最先响应旱胁迫信号,与活性氧、丙二醛、脯氨酸含量和相对电导率一起可用作综合评价水稻苗期耐旱性的指标。  相似文献   

6.
An experiment was carried out to determine plant growth, mineral uptake, lipid peroxidation, antioxidative enzymes, and antioxidant of cucumber plants (Cucumis sativus L. cv. Xintaimici) under copper stress, either ungrafted or grafted onto the rootstock (Cucurbitaficifolia). Excess Cu inhibited growth, photosynthesis, and pigment synthesis of grafted and ungrafted cucumber seedlings and significantly increased accumulation of Cu in roots besides reducing mineral uptake. Cu concentration in roots of grafted cucumber plants was significantly higher than that of ungrafted plants and obviously lower in leaves. The accumulation of reactive oxygen species (ROS) significantly increased in cucumber leaves under Cu stress and resulted in lipid peroxidation, and the levels of ROS and lipid peroxidation were greatly decreased by grafting. Activities of protective enzymes (superoxide dismutase, SOD; peroxidase, POD; catalase, CAT; ascorbate peroxidase, APX; dehydroascorbate reductase, DHAR; glutathione reductase, GR) and the contents of ascorbate and glutathione in leaves of grafted plants were significantly higher than those of ungrafted plants under Cu stress. Better performance of grafted cucumber plants were attributed to the higher ability of Cu accumulation in their roots, better nutrient status, and the effective scavenging system of ROS.  相似文献   

7.
  目的  盐害作为影响植物生长发育的非生物胁迫因子,严重威胁林木生长。在受到盐胁迫时,植物内源活性氧(ROS)水平增加,造成氧化胁迫,影响植株正常生长发育。因此,可通过增强过氧化物酶PRX家族成员表达水平,改变ROS水平,以增强杨树Populus耐盐能力,揭示PRX成员参与调控杨树盐胁迫响应的机制。  方法  以银腺杨‘84K’ Populus alba × P. glandulosa ‘84K’为材料,生物信息学分析选取PRX家族成员PagPRX19进行克隆并构建过表达载体,农杆菌Agrobacterium tumefaciens介导叶盘转化法获得过表达植株。以银腺杨‘84K’ PagPRX19过表达植株生长45 d的组培苗和生长2个月的土培苗为实验材料,进行盐胁迫处理,以非转基因植株为对照。观察植株表型,检测脯氨酸、丙二醛、电解质渗透率等生理指标并进行分析。  结果  ①克隆了PagPRX19基因,构建过表达载体,获得转基因阳性植株。经分子鉴定选取2个过表达株系OE#1和OE#2为实验材料做后续分析。②与对照相比,过表达植株株高下降,地径增加。③盐胁迫处理下,过表达植株相较于对照表现为叶片皱缩以及植株生长受到抑制程度低,组培苗的盐胁迫处理表现为相似结果。④转基因植株的ROS水平降低,而且在盐胁迫下过表达植株叶片和根的ROS仍保持较对照低的水平。盐胁迫下过表达植株较对照脯氨酸增加,叶片持水能力增强,丙二醛和电解质渗透率降低。从生理方面显示转基因植株具有较高的耐盐能力。  结论  过表达PagPRX19可降低盐胁迫下杨树转基因植株的ROS水平,缓解氧化胁迫,增强了植株耐盐性。图11参23  相似文献   

8.
Plant secondary metabolites play vital role in plant stress response. In this study we investigated whether root colonization of tomato(Solanum lycopersicum) infected by Trichoderma harzianum leads to alterations in the biosynthesis of secondary plant metabolites including phytohormones and osmolyte proline under drought stress. Exposure of tomato to drought caused a drastic decline in plant growth and physiological parameters. Tomato inoculated with T. harzianum showed increased root and shoot growth and chlorophyll pigments as compared to uninoculated controls as well as drought stressed plants. Proline and total soluble protein content was increased in plants inoculated with T. harzianum under both normal as well as drought conditions. An obvious increase in phenol and flavonoid content was observed due to T. harzianum. In addition, T. harzianum inoculated plants maintained higher levels of growth regulators indole acetic acid, indole butyric acid, and gibberellic acid under drought stress. Improved secondary metabolites which play an important role in plant stress tolerance by T. harzianum may have coordinately worked for bringing the growth regulation by protecting membranes from reactive oxygen species(ROS) and enhance plant growth through accessing more nutrients by root system.  相似文献   

9.
细胞程序性死亡(PCD)发生在许多植物生长发育过程中和非生物的逆境条件下,是由细胞自身基因编码的、主动的、有序的细胞死亡形式。活性氧(ROS)在植物的生长、发育和对外界生物和非生物环境刺激的反应及细胞程序性死亡等调控过程中是一个重要的信号分子。本文综述了ROS的产生、对植物在环境胁迫下防御反应的作用以及与其他一些信号分子在植物PCD中的相互作用。  相似文献   

10.
Intensively farmed crops used to experience numerous environmental stresses. Among these, shade and drought significantly influence the morpho-physiological and biochemical attributes of plants. However, the interactive effect of shade and drought on the growth and development of soybean under dense cropping systems has not been reported yet. This study investigated the interactive effect of PEG-induced osmotic stress and shade on soybean seedlings. The soybean cultivar viz., C-103 was subjected to PEG-induced osmotic stress from polyethylene glycol 6000(PEG-6000) under shading and non-shading conditions. PEG-induced osmotic stress significantly reduced the relative water contents, morphological parameters, carbohydrates and chlorophyll contents under both light environments. A significant increase was observed in osmoprotectants, reactive oxygen species and antioxidant enzymes in soybean seedlings. Henceforth, the findings revealed that, seedlings grown under non-shading conditions produced more malondialdehyde and hydrogen peroxide contents as compared to the shade-treated plants when subjected to PEG-induced osmotic stress. Likewise, the shaded plants accumulated more sugars and proline than non-shaded ones under drought stress. Moreover, it was found that nonshaded grown plants were more sensitive to PEG-induced osmotic stress than those exposed to shading conditions, which suggested that shade could boost the protective mechanisms against osmotic stress or at least would not exaggerate the adverse effects of PEG-induced osmotic stress in soybean seedlings.  相似文献   

11.
【目的】光系统II的非光化学叶绿素荧光淬灭是高等植物响应环境变化最快速的光保护机制,玉米具备叶肉和维管束鞘2种叶绿体结构,本研究通过比较2个玉米品种的光合耐旱能力,探究维管束鞘叶绿体的非光化学淬灭对玉米耐旱性的意义。【方法】以成单30和仲玉3号2个玉米品种为研究材料,设置土壤相对含水量为70%—80%田间持水量(FWC)(充足浇水,对照)、50%—60% FWC(中度干旱胁迫)和35%—45% FWC(重度干旱胁迫)3个土壤水分梯度处理。测定玉米叶片的水分状况、叶绿素含量、活性氧积累、质膜透性和气体交换等参数;应用叶绿素荧光动力学显微成像观测,比较玉米叶肉和维管束鞘叶绿体的叶绿素荧光参数Fv/Fm和NPQ;通过免疫印迹法,分析玉米叶肉和维管束鞘细胞光系统II亚基S(PsbS)稳态水平的变化差异;采用蓝-绿胶温和电泳分离,检测玉米光系统II蛋白复合体的水平。【结果】干旱胁迫导致叶片气孔导度和蒸腾速率下降,2个玉米品种间没有明显差异。但成单30在重度干旱下表现出更好的水分状况、更低的活性氧损伤以及更高的光合速率。玉米叶肉和维管束鞘叶绿体的NPQ水平及PsbS蛋白含量受干旱诱导明显上升,维管束鞘中的上升更显著,成单30表现尤为突出。不同于仲玉3号光系统II蛋白复合体水平的下降,重度干旱胁迫后,成单30的捕光蛋白三聚体水平在叶肉和维管束鞘细胞中均有所升高。【结论】2个玉米品种的光合机构对干旱胁迫的气孔响应能力相当,但相较仲玉3号,成单30的维管束鞘叶绿体具备更优越的非光化学淬灭能力,这对其更强的非气孔限制的光合耐旱性具有积极意义。  相似文献   

12.
植物在受到渗透胁迫后会产生活性氧基团等有害物质,活性氧能够导致蛋白质、膜脂、DNA及其他细胞组分的严重损伤。因此,活性氧的清除对于维持植物正常的功能具有重要意义。启动抗氧化防御系统是植物免受渗透胁迫伤害的主要防御机制之一。综述了渗透胁迫对超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)这3种抗氧化酶及其基因表达的影响。  相似文献   

13.
水分胁迫下外源ABA对甘蔗叶绿素荧光特性的影响(英文)   总被引:2,自引:0,他引:2  
李长宁  农倩  李杨瑞 《广西农业科学》2009,40(11):1411-1417
以抗旱甘蔗品种ROC 22与不抗旱品种ROC 16为材料,研究水分胁迫条件下外源ABA对2个甘蔗品种叶片叶绿素含量及叶绿素荧光特性的影响。结果表明,水分胁迫下,ROC 16的叶绿素降解程度高于ROC 22,而外源ABA能够缓解这种降解作用;随着水分胁迫的加剧,两个甘蔗品种叶片的基础荧光(Fo)显著升高,PSⅡ原初光能转化效率(Fv/Fm)和PSⅡ的潜在活性(Fv/Fo)显著下降,光适应下PSⅡ最大光化学效率(Fv’/Fm’)、PSⅡ实际光化学效率(ΦPS2)、光化学猝灭系数(qP)显著下降,表明水分胁迫使甘蔗叶片PSⅡ反应中心受到伤害,施加外源ABA能部分减轻这种伤害,以对ROC 22作用尤为显著。  相似文献   

14.
为探明外源H_2S缓解水稻盐胁迫的作用机理,以水稻日本晴为材料,在水培条件下,研究H_2S对NaCl胁迫下5叶期水稻幼苗生长与活性氧(ROS)代谢和抗氧化酶系统的影响。结果表明:100mmol/L NaCl处理严重抑制水稻幼苗的生长,诱导ROS的产生,造成氧化损伤;盐胁迫下添加抗氧化酶抑制剂(二乙基二硫代氨基甲酸钠DDC或3-氨基-1,2,4-三唑AT),活性氧(ROS)得不到及时有效分解而高水平累积,加剧了氧化胁迫对植物的伤害;在盐胁迫条件下添加100μmol/L NaHS(外源H_2S供体)处理,能显著增加叶片内H_2S水平,加快活性氧的清除,从而减轻盐胁迫下的膜脂过氧化程度,促进植物生长。H_2S具有抗氧化作用,外施H_2S可提高植物耐盐性。  相似文献   

15.
16.
High concentrations of Cd can inhibit growth and reduce the activity of the photosynthetic apparatus in plants. In several plant species, aldo-keto reductases (AKRs) have been shown to enhance tolerance to various abiotic stresses by scavenging cytotoxic aldehydes; however, few AKRs have been reported to enhance Cd stress tolerance. In this study, the gene IbAKR was isolated from sweet potato. The relative expression levels of IbAKR increased significantly (approximately 3-fold) after exposure to 200 mmol·L1 CdCl2 or 10 mmol·L1 H2O2. A subcellular localization assay showed that IbAKR is predominantly located in the nucleus and cytoplasm. IbAKR-overexpressing tobacco plants showed higher tolerance to Cd stress than wild-type (WT). Transgenic lines showed a significant ability to scavenge malondialdehyde (MDA) and methylglyoxal (MG). In addition, proline content and superoxide dismutase activity were significantly higher and H2O2 levels were significantly lower in the transgenic plants than in the WT. Quantitative real-time PCR analysis showed that the reactive oxygen species (ROS) scavenging genes encoding guaiacol peroxidase (GPX), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR) and peroxidase (POD) were significantly upregulated in transgenic plants compared to WT under Cd stress. These findings suggest that overexpressing IbAKR enhances tolerance to Cd stress via the scavenging of cytotoxic aldehydes and the activation of the ROS scavenging system.  相似文献   

17.
胡艺珂  张霞霞  陈萍  邵晨 《安徽农业科学》2013,41(8):3397-3399,3487
氧气对大多生物体至关重要,但是氧气能转变为活性氧从而对机体产生毒性。多种冷血脊椎动物可耐受自然条件下产生的氧化压力,如某些鱼、蛙、龟和蛇等。综述了缺氧/低氧耐受性动物在环境、代谢产生供氧不足时的应对方式。对比这些动物的应对方式后发现了某些抗氧化能力提高的规律。机体一般采用关键抗氧化酶的酶活增强、谷胱甘肽含量增多来抵御氧化压力。  相似文献   

18.
• A total of 8 SOD genes from watermelon were identified and bioinformatically analyzed. • The SOD proteins from watermelon and other different plant species can be classified into five groups consistent with their metal cofactors. ClSOD genes exhibited distinctive tissue-specific and abiotic stress responsive expression patterns. Superoxide dismutase (SOD) is an important enzyme in the antioxidant system of plants and plays a vital role in stress responses by maintaining the dynamic balance of reactive oxygen species (ROS) concentrations. Genome-wide analysis of the SOD gene family in various plant species has been conducted but little is known about this gene family in watermelon (Citrullus lanatus). Here, eight SOD genes were identified in the watermelon genome and are designated ClCSD1-5, ClFSD1-2 and ClMSD according to their metal cofactors. Phylogenetic analysis shows that SOD proteins from various plant species can be classified into five groups and members in the same group possess the same metal cofactor and similar subcellular localizations. Expression analysis of the ClSOD genes indicates that they had tissue-specific expression patterns with high expression in different tissues including the leaves, flowers and fruit. In addition, the expression of ClSOD genes differed appreciably under salinity, drought and abscisic acid (ABA) treatments, indicating that they may be involved in ROS scavenging under different abiotic stresses via an ABA-dependent signaling pathway. These results lay the foundation for elucidating the function of ClSOD genes in stress tolerance and fruit development in watermelon.  相似文献   

19.
碱蓬属(Suaeda)植物是一类典型的真盐生植物,属于重要的盐生植物资源,全球广泛分布.人们已经对20种碱蓬属植物进行了观察和盐胁迫实验,研究了不同器官或组织的生理生化特征及其对盐胁迫的反应,并基于这些研究分析了盐胁迫的应答机制.叶片肉质化、细胞内离子区域化、渗透调节物质增加和抗氧化系统能力增强是碱蓬属植物响应和适应盐胁迫的重要方式和途径.但迄今为止的研究工作尚有一定的局限性,主要包括:研究工作主要集中在植物地上部分,而对植物地下部分的研究较少;多是少数生物学指标或生理学现象的单独观察,而缺乏对生理代谢过程的整体和综合分析;针对某种碱蓬的独立分析较多,而与近缘种的比较研究较少;植物对中性盐胁迫的反应研究较多,而对碱性盐的研究较少.为进一步系统阐明碱蓬属植物的耐盐机制,今后的工作应注重碱蓬属植物响应和适应盐胁迫的信号网络和调控机制研究,基于系统生物学研究思路,采用现代组学技术探索该属植物响应盐胁迫的由复杂信号网络调控的特殊生理特征和特异代谢途径.  相似文献   

20.
干旱胁迫对烟叶膜脂过氧化特性的影响   总被引:5,自引:0,他引:5  
以烤烟品种NC89为材料,研究了干旱胁迫对烟叶膜脂过氧化及其保护酶活性的影响。结果表明,在干旱胁迫下烟叶中超氧物歧化酶活性先上升后下降,过氧化珠酶活性持续上升,过氧化氢酶活性一直下降,丙二醛含量和细胞膜相对透性逐渐增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号