首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Experiments were conducted between 2003 and 2008 to examine how N additions influence soil organic C (SOC) and its fractions in forests at different succession stages in the subtropical China. The succession stages included pine forest, pine and broadleaf mixed forest, and old‐growth monsoon evergreen broadleaf forest. Three levels of N (NH4NO3)‐addition treatments comprising control, low‐N (50 kg N ha–1 y–1), and medium‐N (100 kg N ha–1 y–1) were established. An additional treatment of high‐N (150 kg N ha–1 y–1) was established in the broadleaf mixed forest. Soil samples were obtained in July 2008 for analysis. Total organic C (TOC), particulate organic C (POC, > 53 μm), readily oxidizable organic C (ROC), nonreadily oxidizable organic C (NROC), microbial biomass C (MBC), and soil properties were analyzed. Nitrogen addition affected the TOC and its fractions significantly. Labile organic‐C fractions (POC and ROC) in the topsoil (0–10 cm) increased in all the three forests in response to the N‐addition treatments. NROC within the topsoil was higher in the medium‐N and high‐N treatments than in the controls. In the topsoil profiles of the broadleaf forest, N addition decreased MBC and increased TOC, while no significant effect on MBC and TOC occurred in the pine and mixed forests. Overall, elevated N deposition increased the availability of labile organic C (POC and ROC) and the accumulation of NROC within the topsoil irrespective of the forest succession stage, and might enhance the C‐storage capacity of the forest soils.  相似文献   

2.
In many regions worldwide, silvopastoral systems are implemented to enable sustainable land use allowing short, medium, and long‐term economic returns. However, the short‐term production in silvopastoral systems is often limited due to nonappropriate soil‐fertility management. This study evaluated the effects of two doses of lime (0 and 2.5 t CaCO3 ha–1) and three sewage‐sludge treatments (0, 200, and 400 kg total N ha–1 y–1 applied in 2 consecutive years) on soil characteristics (soil pH, soil organic matter [SOM], soil nitrogen, cation‐exchange capacity [CEC]), pasture production, and tree growth in a silvopastoral system of Populus × canadensis Moench in Galicia, northern Spain during 6 years after establishment. Soil pH increased during the experimental period for all treatments, although this effect was more pronounced after lime application. Changes in SOM and soil nitrogen content were not consistent over time, but sewage‐sludge application seemed to result in higher values. Higher CEC was found for treatments with lime and sewage‐sludge application. Following incorporation of lime and sewage sludge, pasture production was significantly enhanced (cumulative pasture production 51.9 t DM ha–1 for Lime/N400 compared to 39.0 t DM ha–1 for No lime/N0). This higher pasture production also affected tree growth due to more severe competition between pasture and tree resulting in slower tree growth. Liming and application of sewage sludge are relevant measures to improve soil fertility and thereby optimizing the overall production of silvopastoral systems. However, it is important not to overintensify pasture production to ensure adequate tree growth.  相似文献   

3.
The fate of fertilizer sulphur (S) applied as single superphosphate (SSP) to grazed pasture was examined in a field experiment for a period of 18 months using 35S-labelled SSP. Four sites were selected on the basis of contrasting fertilizer history and land slope. The fertilizer histories since 1981 for the sites were 125 (LF) and 375 (HF) kg ha-1 a-1 SSP and the slope gradients were low (LS, 0-12°) and medium (MS, 13–26°). The amount of fertilizer S taken up by pasture as a fraction of total applied was greater at the LF (12%) than the HF (6%) site, suggesting that pasture at the LF site depended more on fertilizer than pasture at the HF site. At the LF site, fertilizer application did not significantly increase leaching losses of S (13 and 8.6 kg S ha-1 for fertilized and unfertilized plots, respectively). At the HF site, fertilizer application significantly increased leaching losses of S (38 and 21 kg S ha-1 for fertilized and unfertilized plots, respectively). The amount of fertilizer S lost by leaching as a fraction of total applied was greater at the HF (20%) than the LF site (7.6%). Most fertilizer S remained as soil organic matter. Plant uptake and leaching losses of fertilizer S were greater in the first year after application. The amount of N lost by leaching was very small in terms of N cycled through soil-plant system (1 to 6 kg N ha-1). The majority (> 80%) of the S and N taken up by pasture and lost by leaching was derived from the mineralization of soil organic matter and not from freshly applied fertilizer.  相似文献   

4.
When fertilizing with compost, the fate of the nitrogen applied via compost (mineralization, plant uptake, leaching, soil accumulation) is relevant both from a plant‐production and an environmental point of view. In a 10‐year crop‐rotation field experiment with biowaste‐compost application rates of 9, 16, and 23 t ha–1 y–1 (f. m.), the N recovery by crops was 7%, 4%, and 3% of the total N applied via compost. Due to the high inherent fertility of the site, N recovery from mineral fertilizer was also low. In the minerally fertilized treatments, which received 25, 40, and 56 kg N ha–1 y–1 on average, N recovery from mineral fertilizer was 15%, 13%, and 11%, respectively. Although total N loads in the compost treatments were much higher than the N loads applied with mineral fertilizer (89–225 kg Ntot ha–1 y–1 vs. 25–56 kg Ntot ha–1 y–1; both on a 10‐year mean) and the N recovery was lower than in the treatments receiving mineral N fertilizer, soil NO ‐N contents measured three times a year (spring, post‐harvest, autumn) showed no higher increase through compost fertilization than through mineral fertilization at the rates applied in the experiment. Soil contents of Norg and Corg in the plowed layer (0–30 cm depth) increased significantly with compost fertilization, while with mineral fertilization, Norg contents were not significantly higher. Taking into account the decrease in soil Norg contents in the unfertilized control during the 10 years of the experiment, 16 t compost (f. m.) ha–1 y–1 just sufficed to keep the Norg content of the soil at the initial level.  相似文献   

5.
Vegetable‐production systems often show high soil mineral‐N contents and, thus, are potential sources for the release of the climate‐relevant trace gas N2O from soils. Despite numerous investigations on N2O fluxes, information on the impact of vegetable‐production systems on N2O emissions in regions with winter frost is still rare. This present study aimed at measuring the annual N2O emissions and the total yield of a lettuce–cauliflower rotation at different fertilization rates on a Haplic Luvisol in a region exposed to winter frost (S Germany). We measured N2O emissions from plots fertilized with 0, 319, 401, and 528 kg N ha–1 (where the latter three amounts represented a strongly reduced N‐fertilization strategy, a target value system [TVS] in Germany, and the N amount fertilized under good agricultural practices). The N2O release from the treatments was 2.3, 5.7, 8.8, and 10.6 kg N2O‐N ha–1 y–1, respectively. The corresponding emission factors calculated on the basis of the total N input ranged between 1.3% and 1.6%. Winter emission accounted for 45% of the annual emissions, and a major part occurred after the incorporation of cauliflower residues. The annual N2O emission was positively correlated with the nitrate content of the top soil (0–25 cm) and with the N surpluses of the N balance. Reducing the amount of N fertilizer applied significantly reduced N2O fluxes. Since there was no significant effect on yields if fertilization was reduced from 528 kg N ha–1 according to “good agricultural practice” to 401 kg N ha–1 determined by the TVS, we recommend this optimized fertilization strategy.  相似文献   

6.
Classical chemical fractionation of soil sulphur (S) into HI‐reducible S and carbon‐bonded S does not separate S in soil into fractions that have differing mineralization potentials. Other techniques are needed to separate organic S into more labile and less labile fractions of biological significance, irrespective of their bonding relations. We have sequentially fractionated soil S and carbon (C) into their ionic forms released onto ion‐exchange resins and organic S and C extracted in alkali of increasing concentration. We evaluated the technique on pasture and arable soils that had received various fertilizer and cultivation treatments. Total S and C were greater in the soil of the fertilized pasture than in that of the unfertilized pastures. Continuous arable cropping decreased total soil S and C, whereas restoration to pasture caused an accumulation. Resin, 0.1 m NaOH, 1 m NaOH and residual fractions accounted for between 1–13%, 49–69%, 4–16% and 19–38% of total soil S and between 5–6%, 38–48%, 5–7% and 46–53% of total soil C, respectively. Among different S and C fractions, the size of the 0.1 m NaOH and residual fractions changed more with the change in land use and management. The 0.1 m NaOH fraction had a narrower C:S ratio (50–75:1) than did the residual fraction (96–141:1). The significant degree of change in these two fractions, caused by differences in land management, indicates that they may be useful indicators of change in ‘soil quality’.  相似文献   

7.
A field experiment was conducted over 9?years (1999 to 2007 growing seasons) in northeastern Saskatchewan on a S-deficient Gray Luvisol (Typic Haplocryalf) soil. The objective was to determine the relative effectiveness of N alone versus combined annual application of N (120?kg N?ha?1) and S (15?kg S?ha?1) fertilizers to a wheat–canola rotation on storage of total organic C (TOC) and N (TON) and on the light fraction organic C (LFOC) and N (LFON) in soil. Compared to N alone, annual applications of S fertilizer in spring in a combination with N resulted in an increase in soil of TOC (by 2.18?Mg C?ha?1), TON (by 0.138?Mg N?ha?1), LFOC (by 1,018?kg C?ha?1), and LFON (by 42?kg N?ha?1). The relative increases in organic C or N due to S fertilizer application were much higher for the light organic fractions (36.9% for LFOC and 27.5% for LFON) than for the total organic fractions (9.2% for TOC and 7.3% for TON). The findings demonstrate the importance of a balanced/combined application of N and S fertilizers to crops in storing more organic C and N in this S-deficient soil.  相似文献   

8.
Organic farming is considered an effective means of reducing nitrogen losses compared with more intensive conventional farming systems. However, under certain conditions, organic farming may also be susceptible to large nitrogen (N) losses. This is especially the case for organic dairy farms on sandy soils that use grazed grass–clover in rotation with cereals. A study was conducted on two commercial organic farms on sand and loamy sand soils in Denmark. On each farm, a 3‐year‐old grass–clover field was selected. Half of the field was ploughed the first year and the other half was ploughed the following year. Spring barley (Hordeum vulgare L.) was sown after ploughing in spring. Measurements showed moderate N leaching during the pasture period (9–64 kg N ha?1 year?1) but large amounts of leaching in the first (63–216 kg N ha?1) and second (61–235 kg N ha?1) year after ploughing. There was a small yield response to manure application on the sandy soil in both the first and second year after ploughing. To investigate the underlying processes affecting the residual effects of pasture and N leaching, the dynamic whole farm model farm assessment tool (FASSET) was used to simulate the treatments on both farms. The simulations agreed with the observed barley N‐uptake. However, for the sandy soil, the simulation of nitrate leaching and mineral nitrogen in the soil deviated considerably from the measurements. Three scenarios with changes in model parameters were constructed to investigate this discrepancy. These scenarios suggested that the organic matter turnover model should include an intermediate pool with a half‐life of about 2–3 years. There might also be a need to include effects of soil disturbance (tillage) on the soil organic matter turnover.  相似文献   

9.
Studies on N balance due to N inputs and outputs and soil N retention to measure cropping system performance and environmental sustainability are limited due to the complexity of measurements of some parameters. We measured N balance based on N inputs and outputs and soil N retention under dryland agroecosystem affected by cropping system and N fertilization from 2006 to 2011 in the northern Great Plains, USA. Cropping systems were conventional tillage barley (Hordeum vulgaris L.)–fallow (CTB‐F), no‐tillage barley–fallow (NTB‐F), no‐tillage barley–pea (Pisum sativum L.) (NTB‐P), and no‐tillage continuous barley (NTCB). In these cropping systems, N was applied to barley at four rates (0, 40, 80, and 120 kg N ha?1), but not to pea and fallow. Total N input due to N fertilization, pea N fixation, soil N mineralization, atmospheric N deposition, nonsymbiotic N fixation, and crop seed N and total N output due to grain N removal, denitrification, volatilization, N leaching, gaseous N (NOx) emissions, surface runoff, and plant senescence were 28–37% greater with NTB‐P and NTCB than CTB‐F and NTB‐F. Total N input and output also increased with increased N rate. Nitrogen accumulation rate at the 0–120 cm soil depth ranged from –32 kg N ha?1 y?1 for CTB‐F to 40 kg N ha?1 y?1 for NTB‐P and from –22 kg N ha?1 y?1 for N rates of 0 kg N ha?1 to 45 kg N ha?1 y?1 for 120 kg N ha?1. Nitrogen balance ranged from 1 kg N ha?1 y?1 for NTB‐P to 74 kg N ha?1 y?1 for CTB‐F. Because of increased grain N removal but reduced N loss to the environment and N fertilizer requirement as well as efficient N cycling, NTB‐P with 40 kg N ha?1 may enhance agronomic performance and environmental sustainability while reducing N inputs compared to other management practices.  相似文献   

10.
This study aims to examine the effects of long‐term fertilization and cropping on some chemical and microbiological properties of the soil in a 32 y old long‐term fertility experiment at Almora (Himalayan region, India) under rainfed soybean‐wheat rotation. Continuous annual application of recommended doses of chemical fertilizer and 10 Mg ha–1 FYM on fresh‐weight basis (NPK + FYM) to soybean (Glycine max L.) sustained not only higher productivity of soybean and residual wheat (Triticum aestivum L.) crop, but also resulted in build‐up of total soil organic C (SOC), total soil N, P, and K. Concentration of SOC increased by 40% and 70% in the NPK + FYM–treated plots as compared to NPK (43.1 Mg C ha–1) and unfertilized control plots (35.5 Mg C ha–1), respectively. Average annual contribution of C input from soybean was 29% and that from wheat was 24% of the harvestable aboveground biomass yield. Annual gross C input and annual rate of total SOC enrichment from initial soil in the 0–15 cm layer were 4362 and 333 kg C ha–1, respectively, for the plots under NPK + FYM. It was observed that the soils under the unfertilized control, NK and N + FYM treatments, suffered a net annual loss of 5.1, 5.2, and 15.8 kg P ha–1, respectively, whereas the soils under NP, NPK, and NPK + FYM had net annual gains of 25.3, 18.8, and 16.4 kg P ha–1, respectively. There was net negative K balance in all the treatments ranging from 6.9 kg ha–1 y–1 in NK to 82.4 kg ha–1 y–1 in N + FYM–treated plots. The application of NPK + FYM also recorded the highest levels of soil microbial‐biomass C, soil microbial‐biomass N, populations of viable and culturable soil microbes.  相似文献   

11.
The effect of plant growth on the mineralization of organic matter and distribution of soil S fractions (plant available SO42—, adsorbed SO42—, carbon‐bonded S, ester‐bonded S, and residual‐S) in the rhizosphere was studied in a greenhouse experiment using a rhizobag technique. In this study wheat, oilseed rape and radish were grown on two soils, a Haplic Acrisol and a Hortic Anthrosol. Significant differences between S fractions in the rhizosphere and non‐rhizosphere were determined in dependence on soil type and crop species. In all cropped treatments lower amounts of ester‐bonded S and higher levels of residual‐S were found in the rhizosphere than in the non‐rhizosphere, while the amount of carbon‐bonded S fractions was similar. These results indicate firstly, that the arylsulfatase activity was higher in the rhizosphere than in the non‐rhizosphere and secondly, that mass flow of SO42—‐S to the rhizosphere increased after mineralization of residual‐S. Compared to the non‐vegetated soil, the ester‐bonded S fraction of wheat and oilseed rape decreased in the rhizosphere revealing that the mineralization of organic S in the rhizosphere is related to the crop type.  相似文献   

12.
Approximately 40% of New Zealand's land mass is fertilized grassland with entirely non‐native plants, but currently there is substantially increased interest in restoration of native plants into contemporary agricultural matrices. Native vegetation is adapted to more acid and less fertile soils and their establishment and growth may be constrained by nutrient spillover from agricultural land. We investigated plant–soil interactions of native N‐fixing and early successional non N‐fixing plants in soils with variable fertility. The effects of soil amendments of urea (100 and 300 kg N ha?1), lime (6000 kg CaCO3 ha?1), and superphosphate (470 kg ha?1) and combinations of these treatments were evaluated in a glasshouse pot trial. Plant growth, soil pH, soil mineral N, Olsen P and nodule nitrogenase activity in N‐fixing plants were measured. Urea amendments to soil were not inhibitory to the growth of native N‐fixing plants at lower N application rates; two species responded positively to combinations of N, P and lime. Phosphate enrichment enhanced nodulation in N‐fixers, but nitrogen inhibited nodulation, reduced soil pH and provided higher nitrate concentrations in soil. The contribution of mineral N to soil from the 1‐year old N‐fixing plants was small, in amounts extrapolated to be 10–14 kg ha?1 y?1. Urea, applied both alone and in conjunction with other amendments, enhanced the growth of the non N‐fixing species, which exploited mineral N more efficiently; without N, application of lime and P had little effect or was detrimental. The results showed native N‐fixing plants can be embedded in agroecology systems without significant risk of further increasing soil fertility or enhancing nitrate leaching.  相似文献   

13.
Intensive vegetable production in greenhouses has rapidly expanded in China since the 1990s and increased to 1.3 million ha of farmland by 2016, which is the highest in the world. We conducted an 11‐year greenhouse vegetable production experiment from 2002 to 2013 to observe soil organic carbon (SOC) dynamics under three management systems, i.e., conventional (CON), integrated (ING), and intensive organic (ORG) farming. Soil samples (0–20 and 20–40 cm depth) were collected in 2002 and 2013 and separated into four particle‐size fractions, i.e., coarse sand (> 250 µm), fine sand (250–53 µm), silt (53–2 µm), and clay (< 2 µm). The SOC contents and δ13C values of the whole soil and the four particle‐size fractions were analyzed. After 11 years of vegetable farming, ORG and ING significantly increased SOC stocks (0–20 cm) by 4008 ± 36.6 and 2880 ± 365 kg C ha?1 y?1, respectively, 8.1‐ and 5.8‐times that of CON (494 ± 42.6 kg C ha?1 y?1). The SOC stock increase in ORG at 20–40 cm depth was 245 ± 66.4 kg C ha?1 y?1, significantly higher than in ING (66 ± 13.4 kg C ha?1 y?1) and CON (109 ± 44.8 kg C ha?1 y?1). Analyses of 13C revealed a significant increase in newly produced SOC in both soil layers in ORG. However, the carbon conversion efficiency (CE: increased organic carbon in soil divided by organic carbon input) was lower in ORG (14.4%–21.7%) than in ING (18.2%–27.4%). Among the four particle‐sizes in the 0–20 cm layer, the silt fraction exhibited the largest proportion of increase in SOC content (57.8% and 55.4% of the SOC increase in ORG and ING, respectively). A similar trend was detected in the 20–40 cm soil layer. Over all, intensive organic (ORG) vegetable production increases soil organic carbon but with a lower carbon conversion efficiency than integrated (ING) management.  相似文献   

14.
Changes in grain yields and soil organic carbon (SOC) from a 26 y dryland fertilization trial in Pingliang, Gansu, China, were recorded. Cumulative C inputs from straw and root and manure for fertilizer treatments were estimated. Mean wheat (Triticum aestivum L.) yields for the 18 y ranged from 1.72 t ha–1 for the unfertilized plots (CK) to 4.65 t ha–1 for the plots that received manure (M) annually with inorganic N and P fertilizers (MNP). Corn (Zea mays L.) yields for the 6 y averaged 2.43 and 5.35 t ha–1 in the same treatments. Yields declined with year except in the CK for wheat. Wheat yields for N only declined with time by 117.8 kg ha–1 y–1 that was the highest decrease among all treatments, and that for NP declined by 84.7 kg ha–1 y–1, similar to the declines of 77.4 kg ha–1 y–1 for the treatment receiving straw and N annually and P every second year (SNP). Likewise, the corn yields declined highly for all treatments, and the declined amounts ranged from 108 to 258 kg ha–1 y–1 which was much higher than in wheat. These declined yields were mostly linked to both gradual dry weather and nutrients depletion of the soil. The N only resulted in both P and K deficiency in the soil, and soil N and K negative balances in the NP and MNP were obvious. Soil organic carbon (SOC) in the 0–20 cm soil layer increased with time except in the CK and N treatments, in which SOC remained almost stable. In the MNP and M treatments, 24.7% and 24.0% of the amount of cumulative C input from organic sources remained in the soil as SOC, but 13.7% of the C input from straw and root in the SNP, suggesting manure is more effective in building soil C than straw. Across the 26 y cropping and fertilization, annual soil‐C sequestration rates ranged from 0.014 t C ha–1 y–1 for the CK to 0.372 t C ha–1 y–1 for the MNP. We found a strong linear relationship (R2 = 0.74, p = 0.025) between SOC sequestration and cumulative C input, with C conversion–to–SOC rate of 16.9%, suggesting these dryland soils have not reached an upper limit of C sequestration.  相似文献   

15.
The application of density fractionation is an established technique, but studies on short‐term dynamics of labile soil fractions are scarce. Objectives were (1) to quantify the long‐term and short‐term dynamics of soil C and N in light fraction (LFOC, LFON, ρ ≤ 2.0 g cm–3) and microbial biomass C (Cmic) in a sandy Cambisol as affected by 28 y of different fertilization and (2) to determine the incorporation of C4‐C into these labile fractions during one growing season of amaranth. The treatments were: straw incorporation plus application of mineral fertilizer (MSI) and application of farmyard manure (FYM) each at high (MSIH, FYMH, 140–150 kg N ha–1 y–1) and low (MSIL, FYML, 50–60 kg N ha–1 y–1) rates at four field replicates. For all three sampling dates in 2008 (March, May, and September), stocks of LFOC, LFON and Cmic decreased in the order FYMH > FYML > MSIH, MSIL. However, statistical significance varied markedly among the sampling dates, e.g., with LFOC being significantly different (p ≤ 0.05) in the order given above (sampling date in March), significantly different depending on the fertilizer type (May), or nonsignificant (September). The high proportion of LFOC on the stocks of soil organic C (45% to 55%) indicated the low capacity of soil‐organic‐matter stabilization on mineral surfaces in the sandy Cambisol. The incorporation of C4‐C in the LFOC during one growing season of amaranth was small in all four treatments with C4‐LFOC ranging from 2.1% to 3.0% of total LFOC in March 2009, and apparent turnover times of C3‐derived LFOC ranged from 21 to 32 y for the sandy soils studied. Overall, our study indicates that stocks of LFOC and LFON in a sandy arable soil are temporarily too variable to obtain robust significant treatment effects of fertilizer type and rate at common agricultural practices within a season, despite the use of bulked six individual cores per plot, a common number of field replicates of four, and a length of treatments (28 y) in the order of the turnover time (21–32 y) of C3‐derived LFOC.  相似文献   

16.
Leaching losses of N are a major limitation of crop production on permeable soils and under heavy rainfalls as in the humid tropics. We established a field trial in the central Amazon (near Manaus, Brazil) in order to study the influence of charcoal and compost on the retention of N. Fifteen months after organic‐matter admixing (0–0.1 m soil depth), we added 15N‐labeled (NH4)2SO4 (27.5 kg N ha–1 at 10 atom% excess). The tracer was measured in top soil (0–0.1 m) and plant samples taken at two successive sorghum (Sorghum bicolor L. Moench) harvests. The N recovery in biomass was significantly higher when the soil contained compost (14.7% of applied N) in comparison to only mineral‐fertilized plots (5.7%) due to significantly higher crop production during the first growth period. After the second harvest, the retention in soil was significantly higher in the charcoal‐amended plots (15.6%) in comparison to only mineral‐fertilized plots (9.7%) due to higher retention in soil. The total N recovery in soil, crop residues, and grains was significantly (p < 0.05) higher on compost (16.5%), charcoal (18.1%), and charcoal‐plus‐compost treatments (17.4%) in comparison to only mineral‐fertilized plots (10.9%). Organic amendments increased the retention of applied fertilizer N. One process in this retention was found to be the recycling of N taken up by the crop. The relevance of immobilization, reduced N leaching, and gaseous losses as well as other potential processes for increasing N retention should be unraveled in future studies.  相似文献   

17.
Alternative use of poultry litter (PL) for forest rather than pasture fertilization would improve forest soil fertility and reduce nutrient build-up in pasture. Yield and nutrient uptake of Alamo switchgrass (Panicum virgatum L.) in a loblolly pine (Pinus taeda L.) silvopasture annually fertilized with PL or urea at 80 and 160 kg N ha?1 for four years, and without fertilization were compared. Treatment effects on soil fertility and effect of PL on runoff water quality were also determined. Fertilization with N increased yields 120% to an average of 3.8 Mg ha?1 yr?1. Since nutrient removal was small, P, base cations and pH increased in the ≤30 cm depth soil with PL. Total P in edge-of-plot runoff was increased by 0.31 kg ha?1 y?1 at the higher PL rate. Two applications at this rate per tree rotation might be justified based on increased soil fertility and infrequently increased P load.  相似文献   

18.
Renovation of grassland may increase the mineralization of organic material and leads to a high amount of mineral N in soil which can be leached in the winter period. Soil mineral N (SMN) in autumn and calculated nitrate leaching during winter were measured after the renewal of 8 y–old cut grassland on a sandy soil in NW Germany in 1999 to 2002. Several factors, which may influence the intensity of N mineralization, were investigated in the 2 years following renewal: the season of renovation (spring or late summer/early autumn), the technique (rotary cultivator or direct drilling), and the amount of N fertilization (0 or 320 kg N ha–1 y–1 in the 7 years before the renovation). Calculated nitrate‐N leaching losses during winter were significantly higher following renewal in early autumn (36–64 kg N ha–1) compared to renewal in spring (1–7 kg N ha–1). This effect was only significant in the first, not in the second winter after renovation. The renovation technique had a significant effect on the nitrate‐N leaching losses only in the first year after the renovation. Direct drilling led to higher leaching losses (35 kg N ha–1) than the use of a rotary cultivator (30 kg N ha–1) in the same year. Calculated nitrate losses (on average over 60 kg N ha–1) were highest after renewal of N‐fertilized grassland in late summer/early autumn. To minimize N leaching losses, it would be more effective to plan grassland renewal in spring rather than in late summer/autumn. Another, however, less effective option is to reduce N fertilization before a renovation in autumn.  相似文献   

19.
A computational exercise was undertaken to quantify the percent N derived from atmosphere %Ndfa) in soybean and consequent N benefit from biological N2‐fixation process annually accrued to the soil by the soybean crop using average annual N‐input/‐output balance sheet from a 7 yr old soybean‐wheat continuous rotational experiment on a Typic Haplustert. The experiment was conducted with 16 treatments comprised of combinations of four annual rates of farmyard manure (FYM ? 0, 4, 8, and 16 t ha–1) and four annual rates of fertilizer N (? 0, 72.5, 145, and 230 kg N ha–1) applications. The estimated N contributed through residual biomass of soybean (RBNS) consisting of leaf fall, root, nodules, and rhizodeposition varied in the ranges of 7.02–16.94, 11.65–28.83, 3.31–8.91, and 11.3–23.8 kg N ha–1 yr–1, respectively. A linear relationship was observed between RBNS and harvested biomass N (HBNS) of soybean in the form of RBNS = 0.461 × HBNS – 20.67 (r = 0.989, P < 0.01), indicating that for each 100 kg N assimilated by the harvested biomass of soybean, 25.4 kg N was added to the soil through residual biomass. The Ndfa values ranged between 13% and 81% depending upon the annual rates of application of fertilizer N and FYM. As per the main effects, the %Ndfa declined from 76.4 to 26.0 with the increase in annual fertilizer‐N application from 0 to 230 kg N ha–1, whereas %Ndfa increased from 40.8 to 65.8 with the increase in FYM rates from 0 to 16 t ha–1, respectively. The N benefit from biological N2 fixation accrued to the soil through residual biomass of soybean ranged from 7.6 to 53.7 kg N ha–1 yr–1. The treatments having %Ndfa values higher than 78 showed considerable annual contribution of N from N2 fixation to the soil which were sufficient enough to offset the quantity of N removed from the soil (i.e., native soil N / FYM‐N / fertilizer‐N) with harvested biomass of soybean.  相似文献   

20.
Mineral N accumulates in autumn under pastures in southeastern Australia and is at risk of leaching as nitrate during winter. Nitrate leaching loss and soil mineral N concentrations were measured under pastures grazed by sheep on a duplex (texture contrast) soil in southern New South Wales from 1994 to 1996. Legume (Trifolium subterraneum)‐based pastures contained either annual grass (Lolium rigidum) or perennial grasses (Phalaris aquatica and Dactylis glomerata), and had a control (soil pH 4.1 in 0.01 m CaCl2) or lime treatment (pH 5.5). One of the four replicates was monitored for surface runoff and subsurface flow (the top of the B horizon), and solution NO3 concentrations. The soil contained more mineral N in autumn (64–133 kg N ha?1 to 120 cm) than in spring (51–96 kg N ha?1), with NO3 comprising 70–77%. No NO3 leached in 1994 (475 mm rainfall). In 1995 (697 mm rainfall) and 1996 (666 mm rainfall), the solution at 20 cm depth and subsurface flow contained 20–50 mg N l?1 as NO3 initially but < 1 mg N l?1 by spring. Nitrate‐N concentrations at 120 cm ranged between 2 and 22 mg N l?1 during winter. Losses of NO3 were small in surface runoff (0–2 kg N ha?1 year?1). In 1995, 9–19 kg N ha?1 was lost in subsurface flow. Deep drainage losses were 3–12 kg N ha?1 in 1995 and 4–10 kg N ha?1 in 1996, with the most loss occurring under limed annual pasture. Averaged over 3 years, N losses were 9 and 15 kg N ha?1 year?1 under control and limed annual pastures, respectively, and 6 and 8 kg N ha?1 year?1 under control and limed perennial pastures. Nitrate losses in the wet year of 1995 were 22, 33, 13 and 19 kg N ha?1 under the four respective pastures. The increased loss of N caused by liming was of a similar amount to the decreased N loss by maintaining perennial pasture as distinct from an annual pasture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号