首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is an economically important pest of a wide range of crops grown throughout the world. Insecticide resistance has been documented in many populations of WFT. Biological and behavioural characteristics and pest management practices that promote insecticide resistance are discussed. In addition, an overview is provided of the development of insecticide resistance in F. occidentalis populations and the resistance mechanisms involved. Owing to widespread resistance to most conventional insecticides, a new approach to insecticide resistance management (IRM) of F. occidentalis is needed. The IRM strategy proposed consists of two parts. Firstly, a general strategy to minimise the use of insecticides in order to reduce selection pressure. Secondly, a strategy designed to avoid selection of resistance mechanisms, considering cross-resistance patterns and resistance mechanisms.  相似文献   

2.
BACKGROUND: The spread of the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), resulted in the worldwide destabilization of established integrated pest management programs for many crops. Efforts to control the pest and the thrips‐vectored tospoviruses with calendar applications of broad‐spectrum insecticides have been unsuccessful. The result has been a classic ‘3‐R’ situation: resistance to numerous insecticides; resurgence of the western flower thrips populations as a result of natural predators and native competitor thrips being eliminated; replacement by various other pests. This paper reports on integrated pest management programs for fruiting vegetables that are effective, economical, ecologically sound and sustainable. RESULTS: The components include the following: define pest status (economic thresholds); increase biotic resistance (natural enemies and competition); integrate preventive and therapeutic tactics (scouting, ultraviolet‐reflective technologies, biological control, compatible insecticides, companion plants and fertility); vertically integrate the programs with other pests; continually communicate latest science‐based management tactics with end‐users. CONCLUSION: These programs have been widely implemented in Florida and have significantly improved the management of western flower thrips and thrips‐transmitted viruses. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
西花蓟马抗药性研究进展   总被引:5,自引:0,他引:5  
西花蓟马是世界范围内蔬菜和花卉上的重要害虫之一,使用化学药剂是防治西花蓟马的主要手段,目前西花蓟马已对有机氯、有机磷、氨基甲酸酯、拟除虫菊酯、阿维菌素和多杀菌素等多种杀虫剂产生了抗药性。本文从抗药性现状、抗性机制和抗性治理等几个方面介绍了国内外有关西花蓟马抗药性的研究进展。  相似文献   

4.
The western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) is a serious pest on a wide range of crops throughout the world. F. occidentalis is difficult to control with insecticides because of its thigmokinetic behaviour and resistance to insecticides. Pesticide resistance can have a negative impact on integrated pest management programmes with chemical control as one of the components. Resistance to a number of different insecticides has been shown in many populations of F. occidentalis. This flower thrips has the potential of fast development of resistance owing to the short generation time, high fecundity, and a haplodiploid breeding system. The mechanisms conferring insecticide resistance in insects can be divided into four levels. First, an altered behaviour can aid the insect to avoid coming into contact with the insecticide. Second, a delayed penetration through the integument will reduce the effect of the insecticide at the target site. Third, inside the insect, detoxification enzymes may metabolise and thereby inactivate the insecticide. Fourth, the last level of resistance mechanisms is alterations at the target site for the insecticide. Knowledge of resistance mechanisms can give information and tools to be used in management of the resistance problem. Recently, studies have been carried out to investigate the underlying mechanisms conferring resistance in F. occidentalis. It appears that resistance in F. occidentalis is polyfactorial; different mechanisms can confer resistance in different populations and different mechanisms may coexist in the same population. Possible resistance mechanisms in F. occidentalis include: reduced penetration, detoxification by P450-monooxygenases, esterases and glutathione S-transferases, and alterations of acetylcholinesterase, the target site for organophosphate and carbamate insecticides. Target site resistance to pyrethroids (knockdown resistance) may also be a resistance mechanism in F. occidentalis.  相似文献   

5.
西花蓟马Frankliniella occidentalis(Pergande)是世界性的大害虫,对温室中蔬菜花卉造成巨大的危害。20世纪70年代后在世界范围内广泛而迅速地传播蔓延,近年入侵中国。西花蓟马对农药产生了广泛的抗性,使得生物防治一直作为其综合治理中的主导措施。本文综述了世界上西花蓟马生物防治的现状,以期为中国西花蓟马的治理提供一定的借鉴作用。  相似文献   

6.
Insecticide resistance management (IRM) is a component of integrated pest management (IPM) that has the goal of forestalling resistance development to all insecticides. Since the advent of the organochlorine insecticides in the 1940s, an average of about one class of insecticide has been lost every 10 years because of resistance. Effective insecticides are necessary for optimum IPM and are too important and too expensive a resource to be lost so rapidly. By adhering to the principles of IPM and utilizing other IPM components such as biological and cultural control, IRM has the potential of conserving the susceptibility of pests to insecticides. Although initial attempts of IRM appear to be successful, it is imperative that research to undergird IRM be greatly accelerated.  相似文献   

7.
The western flower thrips Frankliniella occidentalis (Pergande) is a very significant pest of a number of different agricultural crops in the south-east of Spain. The importance of thrips as a pest is not due mainly to the direct damage inflicted on the plant, but to the loss in commercial value which occurs as a consequence of the development of dark spots caused by the tomato spotted wilt virus (TSWV) which they transmit. The economic threshold is therefore almost zero, which enhances the problems of resistance management. The present work is part of a global project that attempts to evaluate the status of insecticide resistance in field populations of thrips obtained from several agricultural crops. We have studied, in either individual or pooled insects, some enzyme systems classically related to detoxification of insecticides: esterase and glutathione-S-transferase (GST). The activity of these enzymes from laboratory populations selected with various classes of insecticides has also been measured using several appropriate substrates. An increase in GST mean activity was found in two field-collected strains. Differences in frequency distributions of esterase and GST activities were found for both field-collected strains and for a laboratory strain selected with acrinathrin. These activities were compared with those of a wild-type reference strain.  相似文献   

8.
Resistance and cross-resistance to the spinosyns - A review and analysis   总被引:1,自引:0,他引:1  
The spinosyns were introduced in 1997 with the launch of spinosad. Since then, there have been several cases of resistance to spinosad in the field populations of insect pest species that have resulted in reduced efficacy. There have also been a number of studies where spinosad-resistant insect strains were created and characterized in the laboratory. Likewise many studies examining resistance to a variety of other classes of insecticides have included spinosad in the evaluation of their cross-resistance spectrum. Understanding mechanisms of resistance and cross-resistance can provide the basis for developing insecticide resistance management programs, as well as defining the most appropriate tools to address potential resistance issues. This review provides an overview and analysis of resistance and cross-resistance to the spinosyns (spinosad and spinetoram). Although there are more than 30 examples of resistance to the spinosyns, only half of these are related to selection in the field. The majority of these field selected examples occur in either the diamondback moth or western flower thrips. There have also been over 85 studies investigating cross-resistance to the spinosyns. However, in half of these studies spinosad showed no cross-resistance, and in another third of the total studies spinosad cross-resistance was minimal. Therefore, while resistance and cross-resistance to the spinosyns does occur, it is appears to be more limited in impact than might be implied from the large body of literature on the subject.  相似文献   

9.
A complex of events and factors, pertinent to a specific insect and insecticide, governs the development of resistance to insecticides. In Israel, resistance to conventional and novel insecticides occurred in insect pests such asBemisia tabaci andSpodoptera littoralis (that damage agricultural crops),Tribolium castaneum and other flour beetles (that contaminate stored products), andPediculus humanus spp., house flies and mosquitoes (that threaten public health). In the mid-1980s an insecticide resistance management (IRM) strategy was established for all cotton grown in Israel and is being adjusted on a yearly basis as needed. At present, insect pest management and IRM strategies are being developed and implemented area-wide for three regions in Israel: Bet She’an Valley, western Galilee, and western Negev. There are several research groups now working in Israel on various aspects of resistance including occurrence, mechanisms, and management practices. This paper offers a tentative review of the status of insecticide and acaricide resistance in pests in Israel.  相似文献   

10.
Insecticide resistance has developed within many classes of pesticide, and over 500 species of insects and mites are resistant to one or more insecticides. Insecticide resistance and the consequent losses of food and fiber caused by failure to control insect and mite pests causes economic losses of several billion dollars worldwide each year. It is the goal of insect resistance management (IRM) to preserve useful pesticides by slowing, preventing or reversing development of resistance in pests. Important aspects of this goal are understanding the development of resistance and monitoring to determine ways to prevent its development. We describe programs specific to missions of the US Department of Agriculture, Agricultural Research Service, which are designed to characterize insecticide resistance in insects and mites with the goal of managing pests in an ecologically acceptable manner. Resistance management of cotton, potatoes, vegetables, melons, ornamentals, greenhouse crops, corn, stored grains, livestock, honeybees and mites, as well as management of transgenic crops are evaluated. We conclude that IRM is a vital part of stewardship of any pest management product and must be a combined effort of manufacturers, growers, consultants, extension services and grower organizations, working closely with regulators, to achieve logistically and economically feasible systems that prolong the effectiveness of all pest-control products.  相似文献   

11.
Response of western flower thrips, Frankliniella occidentalis (Pergande), to selection for resistance to insecticides commonly used to control this pest in Murcia (south-east Spain) was studied under field and laboratory conditions. In the field, plots within sweet pepper crops in commercial and experimental greenhouses were treated under different selection strategies: insecticide rotation versus formetanate reiteration, formetanate reiteration versus acrinathrin reiteration, and formetanate reiteration versus methiocarb reiteration. Thrips populations were sampled monthly and bioassayed against methiocarb, methamidophos, acrinathrin, endosulfan, deltamethrin and formetanate. In the laboratory, F occidentalis strains were selected against each insecticide for several generations. To evaluate cross-resistance, each selected strain was bioassayed with the other insecticides. Frankliniella occidentalis populations showed a rapid development of acrinathrin resistance, reaching high levels in field and laboratory conditions. Formetanate and methiocarb resistance were also observed, although development was slower and at moderate levels. Cross-resistances between acrinathrin/deltamethrin and acrinathrin/formetanate were detected under field and laboratory conditions. Formetanate/methiocarb cross-resistance was suspected in laboratory selections, but not in field assays. Simultaneous moderate resistance levels to the three specific insecticides against thrips (formetanate, methiocarb and acrinathrin) were shown in laboratory selection strains, indicating a general mechanism of resistance, probably metabolic.  相似文献   

12.
The western flower thrips, Frankliniella occidentalis (Pergande), is a serious pest in the south-east of Spain owing to its direct feeding on crops, transmission of the tomato spotted wilt virus and its very high level of resistance to insecticides. Mechanisms of resistance were examined using field populations of F. occidentalis with different susceptibilities to acrinathrin, methiocarb (selective insecticides), endosulfan, metamidophos and deltamethrin (broad-spectrum insecticides). Esterase activity towards alpha-naphthyl acetate and p-nitrophenyl acetate in resistant strains was significantly higher than in the reference strain (MLFOM) for both model substrates. This higher activity was significantly correlated with acrinathrin and methiocarb resistance.  相似文献   

13.
Insecticides are the most commonly used tactic to control western flower thrips (WFT), Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), on greenhouse cucumber. However, WFT has developed resistance to several of the insecticides presently in use. In addition, some of these insecticides adversely affect greenhouse biological control agents used to control WFT, resulting in subsequent pest resurgence. Therefore, there is a need to identify novel insecticides with unique modes of action for use in integrated pest management (IPM) programs to effectively control WFT with minimal impact on associated biological control agents. In laboratory bioassays conducted in 2001, immature and adult WFT and three associated greenhouse biological control agents: Amblyseius cucumeris Oudemans (Acarina: Phytoseiidae), Orius insidiosus Say (Hemiptera: Anthocoridae) and Encarsia formosa Gahan (Hymenoptera: Aphelinidae) were exposed to direct, direct/residual, and residual contact applications of the novel biopesticide, spinosad (Conserve 120 SC), and the industry standard for whitefly control, endosulfan (Thiodan 50 WP). In all three types of assay, spinosad was effective against immature and adult WFT life stages. It showed low toxicity to A. cucumeris, moderate toxicity to O. insidiosus and high toxicity to E formosa. Greenhouse studies involving exposure of immature and adult WFT and adult biological control agents to cucumber leaves sprayed previously with spinosad supported the laboratory data. Spinosad showed low toxicity to A. cucumeris exposed to leaves 1 day after treatment (DAT), moderate toxicity to O. insidiosus 1 and 8 DAT, and high toxicity to E. formosa up to 28 DAT. These data, along with spinosad's unique mode of action, suggest it would be a valuable reduced-risk control agent for greenhouse cucumber IPM programs.  相似文献   

14.
Abstract

In recent years, nationwide insecticide resistance management (IRM) strategies in Zimbabwe, Egypt and Australia have successfully overcome existing resistance problems on cotton and prevented further outbreaks in some key pests. These strategies, which rely heavily on pragmatic assumptions regarding the efficacy of counter‐measures and the biology of the pest, relate little to theoretical models of resistance management whose tenets have so far not been experimentally appraised. These IRM strategies are compared with a simple but rigid programme used throughout Francophone countries of Africa that has successfully controlled the pest complex on cotton and increased yield without eliciting resistance in any pests. We examine the motivations, philosophies and logistics of these control programmes on cotton, and outline scope for improvements to existing and future IRM.  相似文献   

15.
Two greenhouse experiments, each comprising two trials, were conducted to evaluate medium drenches of insect growth regulators and conventional insecticides to reduce emergence of adult western flower thrips, Frankliniella occidentalis (Pergande), and fungus gnats, Bradysia coprophila (Lintner) from the medium. In the insect growth regulator trials, diflubenzuron and pyriproxyfen provided the greatest reduction in thrips emergence, and fenoxycarb, pyriproxyfen and azadirachtin resulted in the most significant reduction of fungus gnat emergence. Treatments with the contact insecticides, methiocarb and chlorpyrifos, resulted in the greatest reduction of thrips and fungus gnat populations. These data suggest that fungus gnats are susceptible to many compounds used in commercial greenhouse production. Even though medium drenches are not currently used for thrips management, drenches with diflubenzuron, pyriproxyfen, methiocarb and chlorpyrifos could aid in reducing thrips populations in greenhouse management programs. © 2001 Society of Chemical Industry  相似文献   

16.
Due to resistance to insecticides (or plant protecting agents) the western flower thrips Frankliniella occidentalis is difficult to combat in cut roses cultures with conventional methods. In that case the predatory mite Amblyseius cucumeris could be a very effective biological alternative when applied in high numbers of 1000 mites per square meter against low density thrips population. The key to success is early application at the beginning of the vegetative growth before the thirps becomes active and the first larvae appear. The efficiency of the mites is not sufficient when the thirps population density in spring is high. Caused by the fecundity and fast development of Frankliniella occidentalis in higher temperatures, the application of chemical protecting agents in summer could be unavoidable. Because of the proven resistance Western flower thrips developed against the insecticides permitted in Germany, the chemical agents may not be effective. Only an optimal application can provide a satisfactory reduction of the thrips population. The development stage of the roses must be taken into account as well as right application intervals of insecticides. In order to develop a sufficient and effective control of Western flower thrips Frankliniella occidentalis and improve resistance management the application of predatory mites seems to be inevitable in future.  相似文献   

17.
BACKGROUND: Developing scientifically valid, economically acceptable insecticide resistance management (IRM) programs is critical for sustainable insect management. The diamondback moth, Plutella xylostella (L.), has demonstrated an ability to develop resistance to many different classes of insecticides, including proteins produced by the bacterium Bacillus thuringiensis Berliner (Bt). Recently it has developed resistance to the novel compounds spinosad and indoxacarb. In greenhouse cage experiments, a laboratory‐selected population of P. xylostella resistant to spinosad, indoxacarb and Bt was used to compare population growth and resistance evolution if these three insecticides were rotated or used in a mosaic fashion. RESULTS: The average population density through nine generations was lowest in the treatment in which the insecticide was rotated every generation (R‐1) (x? = 20.7 ± 3.20) compared with the treatment in which the insecticide was rotated every third generation (R‐3) (x? = 41.4 ± 17.6) or where the insecticides were applied as a mosaic (M) (x? = 41.8 ± 6.53). After nine generations, the survival of resistant individuals increased for each insecticide (7.2–73.5%) compared with the population without selection (CK) (0.73–3.1%). Survival on spinosad was significantly lower (23.7%) in the single‐generation rotation than for the other two treatments, both of which exceeded 72%. The calculated survival on all three insecticides treated simultaneously, according to the survival on each insecticide, was 0.26, 0.81 and 1.6% for R‐1, R‐3 and M treatments respectively. CONCLUSION: Results of both population density and resistance development indicated that insecticide rotation every generation was better for IRM than if the insecticide was rotated every third generation or if the three insecticides were applied as a mosaic. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
西花蓟马Frankliniella occidentalis(Pergande)是世界性的重要害虫,明确其在广东省的适生区域对该虫的科学监测及防治意义重大。本研究根据西花蓟马的生物学特性,利用气候相似距原理和ArcGIS对西花蓟马在广东省的适生性、寄主分布情况进行了分析,结果表明:西花蓟马在广东省有广泛的适宜分布区,但存在地域性的差异,其中雷州半岛、韶关、清远、河源、梅州、惠州等地区的适生程度相对较高,而珠三角及潮汕地区适生程度较低。有效积温结果表明西花蓟马在广东省一年可发生18~24代。  相似文献   

19.
BACKGROUND: The onion thrips, Thrips tabaci Lindeman, is a major pest of several crop plants in the genus Allium, such as onions, garlic and chives. In Israel, these crops are grown in open fields and in protected housing. This thrips is usually controlled by the application of chemical insecticides. In recent years, spinosad, emamectin benzoate and carbosulfan have been the major insecticides used for the control of the onion thrips. In the last 4 years, growers of chives and green onion from several regions of Israel have reported a significant decrease in the efficacy of insecticides used to control the onion thrips. RESULTS: The susceptibility of 14 populations of the onion thrips, collected mainly from chives between the years 2007 and 2011, to spinosad, emamectin benzoate and carbosulfan was tested using a laboratory bioassay. The majority of the populations showed significant levels of resistance to at least one of the insecticides. LC50 values calculated for two of the studied populations showed that the resistance factor for spinosad compared with the susceptible population is 21 393, for carbosulfan 54 and for emamectin benzoate 36. Only two populations, collected from organic farms, were susceptible to the insecticides tested. CONCLUSION: This is the first report of a high resistance level to spinosad, the major insecticide used to control the onion thrips. Resistance cases to spinosad were associated with failures to control the pest. Populations resistant to spinosad also had partial or complete resistance to other insecticides used for controlling the onion thrips. Copyright © 2012 Society of Chemical Industry  相似文献   

20.

This study represents the first attempt to improve insecticide contact using the dodecyl acetate component of the alarm pheromone of the western flower thrips ( Frankliniella occidentalis Pergande ). Dodecyl acetate dissolved in ethanol was added to both fipronil and maldison and used in three spray applications (7 days apart) against field infestations of F. occidentalis on strawberries in two separate trials. Fipronil alone was highly effective against larvae and to a lesser extent against adults; however, the addition of dodecyl acetate did not significantly enhance thrips mortality. Although maldison was significantly less effective against adults and larvae, the larval mortality rate was significantly increased with the addition of dodecyl acetate. In one trial, dodecyl acetate applied on its own caused a significant reduction in larval numbers. Frequent insecticide applications are recommended for control of F. occidentalis in Australia because of the short-term effectiveness of most insecticides. This may hasten the development of insecticide resistance, which is already evident in F. occidentalis populations across the continent. Hence, either cultural methods, biological control agents or more effective chemicals need to be identified. This study has shown that there is potential for dodecyl acetate to enhance insecticide control of F. occidentalis .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号