首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
干旱胁迫对杨树幼苗生长的影响   总被引:1,自引:1,他引:0  
干旱是主要的环境胁迫因子之一,严重影响植物的分布与生长发育。通过选用辽宁阜新章古台沙地1年生杨树幼苗为材料,采用盆栽控水方法研究了不同土壤水分处理对幼苗生长状况、生物量分配、叶面积、组织器官含水量及水分利用效率等指标的影响。结果表明:干旱胁迫抑制了杨树幼苗株高和基径的生长,降低了叶片和茎生物量的积累,然而却增加了根系生物量,杨树将更多的碳水化合物分配到地下部分,导致其单位质量的根系更长,有利于其吸收水资源;同时轻度胁迫下,杨树幼苗增加了茎和根系的含水量,提高了水分利用效率;在科尔沁沙地,栽植杨树幼苗保证生长存活的最低土壤含水量为10.72%。  相似文献   

2.
干旱胁迫对蚬木幼苗生长及光合特征的影响   总被引:1,自引:0,他引:1  
为探讨蚬木(Excentrodendron hsienmu)幼苗对干旱的适应能力,采用盆栽水分胁迫试验法,比较了田间最大持水量的65%~75%(对照)、50%~60%(轻度胁迫)、35%~45%(中度胁迫)和20%~30%(重度胁迫)4个水分梯度下,蚬木幼苗的生长、生物量分配及光合参数的变化。结果显示,重度胁迫显著抑制了幼苗的株高生长,地径生长受干旱影响不明显;中度和重度胁迫对植株茎、叶及总生物量积累产生显著影响,地上生物量比随土壤干旱增强下降、根生物量比和根冠比增加。干旱胁迫显著降低蚬木幼苗叶片的净光合速率、蒸腾速率和气孔导度。胞间CO2浓度在干旱初期先降后升、气孔限制值逐渐增加;随干旱时间延长和胁迫增强,胞间CO2浓度显著上升,气孔限制值变化趋势与之相反。水分利用效率总体上表现为随胁迫加剧而增强的趋势。胁迫初期,气孔限制因素与非气孔限制因素的共同作用可能导致了蚬木幼苗净光合速率的下降。蚬木幼苗在干旱胁迫下采取降低光合、增加地下生物量分配并减缓生长等适应策略,对干旱具有一定的耐受能力。土壤含水量低于最大田间持水量的65%~75%时,及时补充水分可以保证幼苗正常生长。  相似文献   

3.
以贵州主要阔叶造林树种楸树为研究对象,采用人工控制土壤含水量的盆栽试验方法,研究楸树苗木速生期不同水分管理对幼苗苗高、地径、根系生长、生物量分配以及生理质量指标的影响。结果表明:速生期楸树幼苗最适宜的土壤含水量为100%田间持水量,一般应保持在80%~100%田间持水量之间,低于80%田间持水量,会使楸树幼苗的苗高与地径生长、根系发育、生物量积累都受到严重的限制,苗木生理质量指标叶绿素含量、根系活跃吸收面积和叶片相对含水量明显降低,而叶片质膜透性增加,细胞膜受到严重伤害;在40%田间持水量时,幼苗因干旱而死亡。  相似文献   

4.
以科尔沁沙地1年生榆树幼苗为材料,采用盆栽控水方法,设置适宜条件、轻度、中度和重度干旱胁迫等4个水分处理梯度,研究干旱胁迫对榆树幼苗含水量、水分利用效率以及叶片面积、比叶面积和比根长的影响。结果表明:随着干旱胁迫程度增加,幼苗叶片含水量逐渐降低,茎含水量先升高后降低,根系含水量在轻度和中度胁迫下大于适宜条件;叶片面积在适宜条件和轻度胁迫下显著增加,在中度胁迫下下降;比根长和水分利用效率随着干旱胁迫程度增加而增加;重度干旱胁迫下幼苗无法存活。在科尔沁沙地,栽植榆树幼苗保证存活生长的最低土壤含水量为7.15%。  相似文献   

5.
根据土壤的田间持水量设置不同的土壤水分含量梯度,通过对不同梯度下清香木幼苗的株高、叶片性状、生物量以及幼苗生长状态的观测和分析,旨在探讨清香木幼苗在水分缺失及过量的情况下对水分的利用情况及清香木幼苗在不同水分条件下生长的性状,了解幼苗对水分过多或过少胁迫的响应,以期在云南干热河谷地区的植被恢复、清香木的培育种植中能提供一定的理论指导和技术参考。研究结果表明,清香木幼苗期需水量较多,在田间持水量充足的条件下,幼苗生长较好,在相对田间持水量较小的条件下,幼苗虽然较正常水分条件下生长减慢,但仍能生长。研究结果表明,清香木幼苗对极端干旱的耐受性要高于对极端降水,同时随植株的生长,清香木对水分需求的敏感度降低。研究还表明,在不构成胁迫的环境中,幼苗的地上部分生物量的增加明显高于地下部分的生物量的增加,而在水分过多或过少胁迫下幼苗的地下部分生物量的增加会高于地上部分,而且在胁迫强度和胁迫时间的推移下,表现的更为明显,此种适应对策可以帮助幼苗吸收更多的水分和养分,以及减少蒸腾等损耗,从而适应逆境。  相似文献   

6.
干旱胁迫对竹节树幼苗生长的影响   总被引:1,自引:0,他引:1  
为探明竹节树对干旱环境条件的适应性,以1年生竹节树(Carallia brachiata)幼苗为材料,研究不同干旱条件下(轻度、中度、严重干旱,土壤含水量分别为田间持水量的70%~80%、50%~60%、30%~40%)竹节树幼苗生长特征和生物量分配。结果表明:轻度干旱胁迫可促进竹节树幼苗生长,重度干旱胁迫使竹节树的叶片数、苗高、地径和冠幅减小,叶、茎、根和总生物量均大幅下降。随着干旱胁迫程度加剧,叶生物量比例先减小后增大,根生物量比例先增大后减小,地上与地下部分生物量的比值呈逐渐增大趋势。表明竹节树具有较强的抗旱性。  相似文献   

7.
以楝树1年生根插幼苗为试验材料,研究模拟自然干旱5,10,15,20 d条件下,干旱胁迫对幼苗生长和生物量分配的规律。结果表明:干旱胁迫初期土壤水分含量的降低在一定程度上促进了其苗高和地径的生长,胁迫0—10d土壤水分的缺失对地径生长的影响大于对株高生长的影响,15—20 d时则反之;主根长、根幅和株高/主根长比值先升后降,地径/株高比值先降后升,说明楝树幼苗具有为适应胁迫环境提高根系主动吸水能力的适应机制,而根系对干旱胁迫较株高生长敏感;总生物量先增后减说明干旱胁迫初期,土壤水分的缺失能促进其生物量的积累,但随着胁迫的增强,植株生长发育受到抑制,生长趋势向根系转移,根质量比显著增大;干旱胁迫使幼苗根、茎、叶含水率显著降低,且叶片含水率降幅最大。  相似文献   

8.
以采自四川省红原县的中国沙棘、西藏沙棘幼苗为试材,采用盆栽试验法,对不同土壤水分(对照,即100%田间持水量;中度干旱,即50%田间持水量;极度干旱,即30%田间持水量)条件下中国沙棘和西藏沙棘幼苗生长速率、根超微结构以及不同器官中的碳水化合物含量进行测定。结果表明:在不同水分处理下,中国沙棘生长速率明显高于西藏沙棘;但与对照相比,水分胁迫对中国沙棘的抑制效应更显著。与对照相比,水分胁迫均显著影响了2种沙棘幼苗不同器官中的碳水化合物的积累和分配。极度干旱胁迫下,中国沙棘有更多的根部淀粉、根可溶性总糖、根蔗糖和根果糖含量,表现出较强的根渗透调节能力;而水分胁迫对西藏沙棘地上茎和叶碳水化合物的影响比地下部分更显著。中度水分胁迫时,2种沙棘的根系超微结构未有明显变化;而极度水分胁迫时,2种沙棘均显示根细胞超微结构的损伤。表明中度水分胁迫下,中国沙棘和西藏沙棘表现出较好的适应能力,而极度水分胁迫不同程度地影响了2种沙棘幼苗的生长和碳代谢能力。  相似文献   

9.
高宗渊 《绿色科技》2023,(3):169-172
为研究干旱程度对落叶松幼苗生长和生理特性的影响,以正常水分为对照(CK):土壤田间持水量为70%~75%;设置3个干旱处理,分别为轻度干旱:田间持水率55%~60%(LD);中度干旱:田间持水率45%~50%(MD);重度干旱:田间持水率35%~40%(SD),研究了落叶松生长、光合参数、渗透调节物质和抗氧化酶活性的变化特征。结果表明:随着干旱程度的增加,落叶松幼苗株高、地径、净光合速率、气孔导度和蒸腾速率呈逐渐减小的趋势,在轻度干旱下影响较小。SOD、POD、CAT活性和可溶性糖、可溶性蛋白含量随含水量的降低先升高后降低。说明在干旱胁迫下植物通过提高渗透调节物质含量和抗氧化酶活性以抵抗伤害,当伤害程度超过植物承受范围时调节能力下降。因此落叶松幼苗可以在轻度干旱下正常生长,随着干旱程度的加重,对落叶松幼苗的伤害增加。  相似文献   

10.
通过菌根接种技术,研究干旱胁迫下丛枝菌根化香椿幼苗的生长及N、P元素含量的变化.结果表明:干旱胁迫下,丛枝菌根化香椿幼苗的苗高、地径与未接种处理相比,均显著增加了,且随着胁迫程度增加苗木生长增值越大.接种丛枝菌根真菌,对香椿幼苗整株N含量影响不大,但明显增加了全株P含量.在不同程度干旱胁迫下,以W1干旱胁迫处理下(田间持水量40%),菌根化香椿幼苗根、茎、叶及全株P含量最高.这说明,接种丛枝菌根能有效促进苗木的生长和对养分的吸收,且干旱胁迫程度越重,效果越明显.  相似文献   

11.
The adaptation responses to different water conditions and the drought tolerance of Sophora davidii seedlings were assessed in a greenhouse experiment. Two-month-old seedlings were subjected to the following water supplies for 95 days: 100, 80, 60, 40 and 20% of field water capacity. The seedlings at 100% FC had the greatest productivity, height, basal diameter, branch number, leaf number and leaf area. Water supply <80% FC was the threshold of drought-initiated negative effects on seedling growth, yield and physiological processes; these parameters were severely reduced at 20% FC, however, there was no plant death during the experiment. Moreover, water stress decreased leaf relative water content, specific leaf area, leaf area ratio, and water-use efficiency (WUE), whereas it increased the biomass allocation to roots, which resulted in a higher root:stem mass ratio under drought. The S. davidii seedlings tolerated drought by maintaining high leaf relative water content and by reducing branching and leaf expansion. However, low productivity and WUE at 20% FC suggested that seedlings did not produce high biomass under severe drought. Therefore, prior to introducing S. davidii in forestation efforts, a water supply >40% FC is recommended for seedlings to maintain growth and productivity. These results provide insights into limitations and opportunities for establishment of S. davidii in arid regions.  相似文献   

12.
Responses of the endemic leguminous shrub Bauhinia faberi var. microphylla, to various soil water supply regimes were studied in order to assess water stress tolerance of seedlings. Two-month-old seedlings were grown under water supply regimes of 100, 80, 60, 40, and 20% water field capacity (FC), respectively, in a temperature and light-controlled greenhouse. Plant height and leaf number were measured monthly over a 4-month period, while water use (WU), water-use efficiency (WUE), leaf relative water content (RWC), biomass production and its partitioning were recorded at the end of the experiment. Seedlings exhibited the greatest biomass production, height, basal diameter, branch number, leaf number, and leaf area when soil content was at 100% FC, and slightly declined at 80% FC. These parameters declined significantly under 60% FC water supply, and severely reduced under 40 and 20% FC. RWC, WU and WUE decreased, while the ratio of root mass to stem mass (R:S) increased in response to decreasing water supply. Water stress caused leaf shedding, but not plant death. The results demonstrated that B. faberi var. microphylla seedlings could tolerate drought by reducing branching and leaf area while maintaining a high R:S ratio. However, low dry mass and WUE at 40 and 20% FC suggested that the seedlings did not produce significant biomass under prolonged severe water deficit. Therefore, before introducing B. faberi var. microphylla in vegetation restoration efforts, water supply above 40% FC is recommended for seedlings to maintain growth.  相似文献   

13.
紫穗槐幼苗在不同干旱胁迫下生长特性的研究   总被引:1,自引:0,他引:1  
干旱对紫稳槐幼苗的茎高、地径、叶片外部形态、生长状态等生态指标的影响的结果表明:干旱胁迫对植株的生长有明显的抑制作用。随着干旱胁迫时问的延长、胁迫强度的加剧,其株高和地径减小,复叶叶柄总长度、小叶数量,叶面积也逐渐减小;在长时间干旱胁迫下紫穗槐采用脱落下部枝叶的方式,确保个体生存以增强抗旱性。  相似文献   

14.
水分胁迫对白杨杂种无性系生理和生长的影响   总被引:7,自引:0,他引:7  
为探索水分胁迫对白杨杂种无性系气体变换和生长的影响,以白杨双杂交杂种新无性系B430苗木为试验材料,在3种水分胁迫条件下,对各无性系生理和生长指标进行了分析。结果表明,在不同水分胁迫下,无性系苗木的Pn、Tr,Gs,La,Ci等日变化模式基本一致,但受胁迫的苗木各生理过程受到明显抑制。各生长指标对水分胁迫的敏感性不同,苗高和单叶叶面积对水分胁迫最敏感,叶片数和生物量的敏感性较差,随着水分胁迫加强,  相似文献   

15.
Cyclobalanopsis glauca is an important afforestation tree species that is widely used for revegetating the karst region of southwest China. Vegetation in this region is regularly commonly subjected to drought stress because of the geology and water shortages. Here, we investigated the influence of two arbuscular mycorrhizal fungi (AMF) Glomus mosseae and Glomus intraradices on the drought tolerance of C. glauca seedlings under greenhouse conditions. AMF-treated and non-AMF-treated C. glauca seedlings were maintained under two different water regimes (well watered: 80 % field capacity; drought stress: 40 % field capacity) for 90 days. The AMF colonization rate was higher under well-watered conditions compared to drought stress conditions. The growth and physiological performance of C. glauca seedlings were significantly affected by drought stress. Under drought stress conditions, mycorrhizal seedlings had greater height, base diameter, leaf area, and biomass compared to non-mycorrhizal seedlings. In addition, under drought conditions, AMF-inoculated seedlings had greater superoxide dismutase and peroxidase activity, higher soluble sugar content, and lower proline content compared to non-inoculated seedlings. Furthermore, AMF colonization increased the phosphorus and potassium content of seedling shoots under both well-watered and drought stress conditions. Therefore, AMF colonization enhanced the drought tolerance of C. glauca seedlings by improving growth performance, nutrient content, the quantity of osmotic adjustment compounds, and antioxidant enzyme activity. The results indicate that AMF are of potential use for the restoration of vegetation in the karst region of southwest China.  相似文献   

16.
To alleviate the combined effects of water and heat stress prevailing in drylands, the choice and introduction of appropriate plant species to these conditions is essential for the success of planting in rehabilitation projects. The argan tree (Argania spinosa) is a vigorous plant, admirably adapted to dry climates, with indisputable physiological and ecological characteristics that make of this tree an ideal plant to fight against erosion and desertification process, which seriously threaten arid lands. However, the geographical origin of seeds/seedlings represents a determining factor. In this context, we investigated the morphological responses of growth in two provenances of argan, the provenance of Tindouf ‘PT’ from Algeria and that of Agadir ‘PA’ from Morocco; under water stress conditions. The experiment attempts to evaluate the level of drought tolerance of these two provenances for selecting the planting material that copes and adapts better to hot arid lands. Argan seedlings of both provenances (PA and PT) were submitted to a water stress gradient (75, 40, 20, and 10% of field capacity), then morphological parameters (shoot height, number of leaves, number of spines, root collar diameter, length of taproot) were measured after 3, 6, 9 and 12 months of growth. All variables of morphological growth varied significantly (P < 0.001) between water stress levels, seed geographical provenances and seedling growth ages. The overall of results concerning morphological parameters indicated that the increase of water stress induced in both argan provenances: a decrease in shoot height associated with an increase in length of taproot that resulted in the reduction of leaf numbers and radial growth but the increase the number of spines. The argan plantlets of Agadir have completely failed to tolerate water stress of 10% FC. Under water stress (40, 20, 10% FC), argan seedlings of Tindouf revealed higher growth results than those of Agadir. PT seedlings offset the water deficit by root elongation to ensure growth of the various components of the aerial part. PT seedlings were more resilient to drought stress as compared to those of PA. The highest growth results were obtained with 40% FC in PT seedlings, and with 75% FC among PA seedlings. It is recommended to use the PT seeds in planting projects under drought conditions, while PA seeds are more suitable under conditions of non-water deficit.  相似文献   

17.
D. S. Thomas 《New Forests》2009,38(3):245-259
Forestry requires low mortality of transplanted seedlings. Mortality shortly after planting is often associated with inadequate hydration of transplants. Seedlings can be hardened to the drought conditions they may experience after transplanting by exposing them to controlled drought conditions in the nursery. Eucalyptus pilularis Sm. seedlings were drought hardened by providing nil (severe treatment) or half (mild treatment) the daily irrigation routinely received (control treatment) for up to two non-consecutive days per week during the last 4 weeks of growth in the nursery. Drought hardening reduced stem diameter, seedling leaf area, leaf area per root biomass and seedling quality measured by the Dickson quality index, but increased root:shoot ratio. Hardened seedlings had lower stomatal conductance and leaf water potential on the days they received less irrigation that the control treatment. Hardened seedlings had greater stomatal conductance and were less water stressed than seedlings experiencing drought for the first time indicating hardened seedlings had adjusted physiologically to drought. Survival after transplanting in the controlled drought environment in a glasshouse was enhanced by the hardening treatments. Non hardened seedlings that had had their upper leaves manually removed immediately prior to transplanting to reduce leaf area (top-clipped) had similar survival to hardened seedlings. Stomatal conductance and leaf water potential after transplanting were higher in hardened and top-clipped seedlings than unhardened control seedlings or vegetative cuttings. Survival in the field trial was over 95% for all treatments, possibly as rain fell within 4 days of planting and follow-up rain occurred in the subsequent weeks. Neither the hardened or top-clipped seedlings planted in the field trial had reduced growth, increased propensity to form double leaders or worse stem form than control seedlings when measured at age 3 years.  相似文献   

18.
不同滩面高程和光照条件下白骨壤幼苗的早期生长差异   总被引:1,自引:0,他引:1  
对厦门杏林曾营海岸低、中、高3个高程(分别为厦零3.35 m、3.74 m和4.15 m)滩面上红树人工幼林林内、林外自然生长的白骨壤2月龄幼苗的生长状况进行对比分析。结果表明:在林外,中高程滩面上的白骨壤幼苗单叶面积、基径、茎高、叶生物量、茎生物量和总生物量均最大;低高程滩面上叶片较厚,肉质化程度高,叶片数最多;3个高程的根生物量差异不显著。在林内,不同高程间幼苗生长差异主要体现在叶片和茎高,低、中高程之间差异不大,但比高高程的叶片厚,肉质化程度高,叶片数多。除茎高外,林外3个高程的其它指标都明显高于林内。光照对幼苗生长的影响大于高程的影响。综合分析结果表明,厦门海域白骨壤红树林生态恢复的适宜高程为厦零3.74 m(相当于本研究的中高程样地),且白骨壤为不耐阴植物,人工造林时,应为后代幼苗的自然更新预留空间。  相似文献   

19.
We assessed interactive effects of varying levels of applied phosphorus fertilizer and water stress on growth, productivity, and mineral accumulation in container-grown Dalbergia sissoo L. seedlings. Height, collar diameter, leaf size and area, root volume and total biomass were reduced, and dry matter allocation to root was increased with increasing levels of soil water stress. The reduction was >32% in growth, >50% in leaf, and >77% in biomass when seedlings were grown with <50% of soil field capacity. Phosphorus application at the level of 10 mg kg?1 soil enhanced stems and leaf biomass and nutrient accumulation at all irrigation levels, and thus tolerance to drought. Phosphorus responses to growth and biomass production increased with irrigation levels. Thus, 20 mg P kg?1 soil is beneficial at sufficient soil water availability and a lower dose (i.e., 10 mg P kg?1) is recommended under high soil water stress conditions to benefit growth and productivity of D. sissoo.  相似文献   

20.
通过人工控水土培方法,研究了干旱胁迫对真桦的根系形态、分级特征、苗高生长以及生物量分配的影响。结果表明,干旱胁迫显著影响真桦根系形态及构型,随着土壤含水量的降低,真桦根系质量和平均直径降低。轻度和中度干旱使真桦根系总长度、根系表面积、比根长降低;重度干旱下,直径小于0.5 mm的细根比例显著提高,根系总长度、根系表面积、比根长显著提高。随着土壤含水量的降低,真桦苗木的高生长受到抑制,生物量降低,根冠比明显提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号