首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Forest management practices such as prescribed burning and thinning in forest ecosystems may alter the properties of soil organic matter (SOM).In this study,surface soils from field plots in the Bankhead National Forest,Alabama,USA,were used to investigate possible SOM transformations induced by thinning and burning.Elemental analysis and solid-state 13C cross polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy were used to characterize SOM fractions in whole soils,humic substances,and density fractions.Our data revealed that the changes in SOM fractions due to the repeated burning carried out in the forest ecosystem studied were involved mainly with alkyl C,O-alkyl C,and carbohydrate functional groups,implying that most prominent reactions that occurred involved dehydrogenation,de-oxygenation,and decarboxylation.In addition,burning and thinning might have also affected the distribution and composition of free and occluded particulate SOM fractions.The limited structural changes in SOM fractions suggested that low-intensity prescribed fire in the forest ecosystem studied will not create major structural changes in SOM fractions.  相似文献   

2.
Cross polarization carbon-13 nuclear magnetic resonance spectroscopy with magic angle spinning (CP-MASS) was used to analyse for various forms of carbon in soils, a moss peat, hydrochloric acid insoluble residues from soils and peat, and litter from beech and pine trees. The chemical composition of the litters was also investigated by conventional techniques. The results show that hydrolysis with hydrochloric acid extraction removes nearly all oxygenated alkyl carbon from the soils used. It is shown that humification pathways in which carbohydrates are incorporated into humic substances via nonhydrolysable linkages are not important for the soils investigated in this work. CP-MASS data suggest that the percentage of aromatic carbon in pine leaves increases with increase in ageing time. The results for the beech leaves are not sharply defined.  相似文献   

3.
Abstract

A method for the semiquantitative estimation of charcoal (char) in soils is reported. The technique, performed on the <53 μm fraction of soils, utilizes the highly aromatic nature of char and its relative stability to two hours of high energy ultraviolet photo‐oxidation compared to other soil carbon fractions. The proportion of char in the <53 μm fraction is estimated as the aromatic carbon (C) content measured by solid‐state nuclear magnetic resonance spectroscopy using cross polarization and magic angle spinning. Corrections are made for the underestimate of aryl C by the cross polarization method in highly condensed aromatic char structures and for the small lignin content that occurs in some samples. Evidence is also provided for the occurrence of >90% of soil char in the <53 μm fraction. Because of the assumptions used, estimates of char by this approach must be considered to be semiquantitative, but are conservative and provide estimates of the minimum char content of a soil.  相似文献   

4.
固态13C和15N核磁共振法研究15N标记土壤的腐殖质组分   总被引:1,自引:0,他引:1  
Five humic fractions were obtained from a uniformly ^15N-labelled soil by extraction with 0.1 mol L^-1 Na4P2O7,0.1mol L^-1 NaOH ,and HF/HCl-0.1 mol L^-1 NaOH,consecutively,and analyzed by ^13C and ^15N CPMAS NMR (cross polarization and magic angle spinning nuclear magnetic resonace).Compared with those of native soils humic fractions studied as a whole contained more alkyls ,methoxyls and O-alkyls,being 27%-36%,17%-21%and 36%-40%,respectively,but fewer aromatics and carboxyls(bein 14%-20% and 13%-90%,respectively),Among those humic fractions ,the humic acid(HA)and fulvic acid(FA) extracted by 0.1 mol L^-1 Na4P2O7 contained slightly more carboxyls than corresponding humic fractions extracted by 0.1 mol L^-1 NaOH ,and the HA extacted by 0.1 mol L^-1 NaOH after treatment with HF/HCl contained the least aromatics and carboxyls.The distribution of nitrogen functional groups of soil humic fractions studied was quite similar to each other and also quite similar to that of humic fraction from native soils.More than 75% of total N in each fraction was in amide from,with 9%-13% present as aromatic and /or aliphatic amines and the remainder as heerocyclic N.  相似文献   

5.
l3C–nuclear magnetic resonance (NMR) spectra taken using magic–angle spinning (MAS), cross polarization (CP) and with total suppression of side bands (TOSS) are reported for soils from two long–term field experiments. One set of soils was from the Broadbalk Experiment at Rothamsted, UK (monoculture of winter wheat since 1843) and the other was from the Lermarken site of the Askov Long–Term Experiment on Animal Manure and Mineral Fertilizers (arable rotation since 1894). At both sites soil samples were taken from three fertilizer treatments: nil, inorganic fertilizers, animal manure. Spectra were obtained from whole soil samples and from the size fractions clay (<2 μrn), silt (2–20 μm) and, in some cases, sand (20–2000 μm). Comparison of the total strengths of the 13C–NMR signal for each size separate in relation to its total organic C content shows that clay, particularly, contains large percentages of C not detected by NMR because of the large magnetic susceptibilities of the soil minerals. It is proposed that the observed signals come from the more labile pools of soil organic matter (SOM), on the presumption that these pools are less closely associated with soil minerals and iron oxides and are likely to be less protected from microbial or enzymic decomposition. For both Rothamsted and Askov, functional groups in the 45–110 ppm region (N– and O–alkyls) dominate in the spectra for whole soils, with aromatics (110–160 ppm) and alkyls (0–45 ppm) signals being the next prominent. In the Askov whole soil samples 13C–NMR revealed no differences between nil, inorganic fertilizer and animal manure treatments but in the Rothamsted whole soil there were some small differences. Clay and silt fractions from Askov contain more alkyls and less aromatics than those from Rothamsted. For both sites clay in enriched in alkyls and depleted in aromatics relative to silt. Clay from Askov, but not Rothamsted, contains more N–alkyls (45–65 ppm) and less acetals (90–110 ppm) than silt. O–alkyls (65–90 ppm) account for more than 20% of the total signal in clay and silt from both sites. Fertilization regimes have not significantly affected the chemical composition of SOM associated with clay– and silt–sized fractions in the soils at either site. We conclude that the chemical composition of SOM is determined primarily by the interaction between the organisms responsible for decomposition and the mineral soil matrix rather than the nature of substrate input.  相似文献   

6.
The principal aim of this research was to determine the influence of wildfires on soil organic matter (SOM) content and composition in soils located on the northern slope of the Cantabrian Cordillera, an Atlantic mountainous region in the North West of Spain, where wildfires are frequent. Samples from soils with similar aspect, slope, elevation and vegetation characteristics, but with different wildfires histories were collected. Total organic carbon and total nitrogen contents were determined as well as the C/N ratio. Furthermore, a qualitative characterization of the soil organic carbon (SOC) was carried out by 13C variable amplitude cross polarization magic angle spinning (VACP/MAS) Nuclear Magnetic Resonance (NMR) spectroscopy. Our results show that, on the one hand, all the sampled soils can be considered important pools of carbon in this Atlantic mountainous region, especially in the heath areas. On the other hand, the fire-affected soils present higher SOM contents than their unburnt counterparts. This could be attributed to an important reaccumulation of fresh vegetal material, which is probably a consequence of the decrease of SOM decomposition rates after fire. Moreover, charred organic compounds are not found in all the burnt soils, which could be due to the long time since the last fires events took place, to different fire severities, or to different post-fire erosion processes in the studied soils.  相似文献   

7.
干湿循环条件下重庆地区三种土壤抗剪强度的动态变化   总被引:7,自引:1,他引:6  
倪九派  高明  魏朝富  谢德体 《土壤学报》2013,50(6):1090-1101
选择广泛分布于重庆丘陵山区的黄壤、钙质紫色土和中性紫色土3种土壤,通过对室内三轴剪切试验,测定含水率和干密度交互作用对土壤抗剪强度指标的影响,在含水率和干密度对土壤抗剪强度影响分析的基础上,3土壤按各自最优含水率和干密度制作干湿循环试验土样,进行干湿循环条件下土壤抗剪强度的动态变化分析。试验结果显示:(1)在相同干密度情况下,3种土壤粘聚力c值随着含水率的增加呈现出先增加后减小的趋势,在相同土壤含水率水平下,土壤粘聚力c值随干密度增大而增大,3种土壤内摩擦角φ值在各干密度条件下均随着含水率增加呈明显减小的趋势。(2)含水率和干密度的交互作用对土壤粘聚力c值有显著影响,粘聚力c值在1.3-1.7g/cm3干密度范围内随着干密度的增大而增大,且每一个干密度都有一个含水率与之对应,在这样一个交互作用下粘聚力c值达到最大,含水率和干密度的交互作用对内摩擦角φ值影响相对较小,同一干密度下,其φ值差异不大,随干密度的增大缓慢增大。(3)3种土壤的粘聚力c值均随干湿循环次数的增加均呈减小趋势,且前两次循环c值衰减幅度都很大,从第三次干湿循环到第五次干湿循环粘聚力c值衰减幅度很小,趋于稳定。(4)3种土壤在干湿循环后内摩擦角φ值总体呈减小趋势,但不同土壤类型间存在差异,第五次循环结束后,黄壤为24.6?,中性紫色土为22.6?,钙质紫色土为19.3?。  相似文献   

8.
To determine whether there is a relationship between the composition of soil organic matter and the activity of the soil microbial biomass, the composition of the organic matter in 12 typical arable soils in Northwest Germany was investigated by wet chemical analysis and CPMAS cross polarization magic angle spinning 13C-NMR spectroscopy. The data were correlated with the microbial biomass as estimated by substrate-induced respiration. A strong correlation between the microbial biomass and alkylic C compounds was observed (r=-0.960***). Recalcitrant substances were enriched in this fraction, which were classified as humic acids according to the wet chemical procedure. The microbial decomposition of these humic acids is probably retarded, due to their chemical structure and/or physical bonding, when the soil microbial biomass activity is limited.  相似文献   

9.
To assess the effect of continuous organic material (OM) application on soil humic acids, the amount and chemical characteristics of humic acids in various types of soils (n = 10) were compared between plots treated with farmyard manure (FYM) or rice straw compost (RSC) plus chemical fertilizer (CF) and plots treated with CF alone. The degree of humification (degree of darkening), molecular size distribution and 13C cross polarization/magic angle spinning nuclear magnetic resonance spectra of humic acids from CF‐treated soils showed wide variation among the soils. Humic acid content was generally larger in OM + CF soils than in corresponding CF soils, and the stable C isotopic ratio suggested partial replacement of indigenous humic acids with OM‐derived ones even where no apparent increase in humic acid content was observed. The rate of OM application and the indigenous humic acid content were related positively and negatively, respectively, to the apparent accumulation rate of humic acids among soils. The degree of humification of humic acids was generally smaller in OM + CF soils than in CF soils. Humic acids extracted from FYM and RSC exhibited chemical characteristics typical of humic acids having a smaller degree of humification, which suggested the contribution of OM‐derived humic acids to the differences between OM + CF and CF soil humic acids, such as larger average molecular sizes and smaller and larger proportions of aromatic C and O‐alkyl C, respectively, relative to total C in the OM + CF soil humic acids. Little change was observed in the chemical characteristics of humic acids when the degree of humification of indigenous humic acids was small. The effect of OM application on the chemical characteristics of humic acids was most conspicuous in soils containing humic acids having an intermediate degree of humification, possibly resulting from the combination of accelerated degradation of indigenous humic acids and the accumulation of OM‐derived humic acids.  相似文献   

10.
Sterilized soil is often used, for example in degradation studies, sorption experiments, microbiological tests and plant test systems, to distinguish between microbial processes and abiotic reactions. The most commonly used technique for sterilization is autoclaving of the soil. Another technique is irradiation with high‐level gamma radiation (γ‐radiation). One major drawback of sterilization procedures is the possible alteration of the structure of soil components, for example the organic matter. A change in the chemical structure of the soil organic matter can cause different reactions in the above‐mentioned experiments and hence interfere with the aim of clearly distinguishing between biotic and abiotic processes. Two soils (Gleyic Cambisol and Orthic Luvisol) were sterilized by two γ‐irradiation procedures (4 kGy hour?1 for 9 hours and 1.3 kGy hour?1 for 27 hours) and repeated autoclaving at 121°C. Gentle physical aggregate fractionation of the sterilized soils revealed a decrease in the aggregation of the soil, which was reflected in an increase of the clay fraction. Subsequent analysis of the aqueous phase revealed much more dissolved organic matter (DOM) in the γ‐sterilized and autoclaved soils than in the untreated soils. Ultraviolet (UV) and fluorescence spectra of the DOM showed a decrease in the aromaticity and polycondensation of the dissolved organic carbon (DOC). 13C cross‐polarization/magic‐angle spinning nuclear magnetic resonance (13C‐CP/MAS NMR) spectra of the unfractionated soils and their respective soil fractions before and after sterilization showed that the most important change occurred in the carbohydrate and N‐alkyl region, the main components of microorganisms. In general, the impact of the sterilization method was stronger for autoclaving. The γ‐sterilized soils and fractions displayed both fewer and smaller changes in the soil organic matter.  相似文献   

11.
Is the composition of soil organic matter changed by adding compost? To find out we incubated biowaste composts with agricultural soils and a humus‐free mineral substrate at 5°C and 14°C for 18 months and examined the products. Organic matter composition was characterized by CuO oxidation of lignin, hydrolysis of cellulosic and non‐cellulosic polysaccharides (CPS and NCPS) and 13C cross‐polarization magic angle spinning nuclear magnetic resonance (CPMAS 13C‐NMR) spectroscopy. The lignin contents in the compost‐amended soils increased because the composts contained more lignin, which altered little even after prolonged decomposition of the composts in soil. A pronounced decrease in lignin occurred in the soils amended with mature compost only. Polysaccharide C accounted for 14–20% of the organic carbon at the beginning of the experiment for both the compost‐amended soils and the controls. During the incubation, the relative contents of total polysaccharides decreased for 9–20% (controls) and for 20–49% (compost‐amended soils). They contributed preferentially to the decomposition as compared with the bulk soil organic matter, that decreased between < 2% and 20%. In the compost‐amended agricultural soils, cellulosic polysaccharides were decomposed in preference to non‐cellulosic ones. The NMR spectra of the compost‐amended soils had more intense signals of O–alkyl and aromatic C than did those of the controls. Incubation for 18 months resulted mainly in a decline of O–alkyl C for all soils. The composition of the soil organic matter after compost amendment changed mainly by increases in the lignin and aromatic C of the composts, and compost‐derived polysaccharides were mineralized preferentially. The results suggest that decomposition of the added composts in soil is as an ongoing humification process of the composts themselves. The different soil materials affected the changes in soil organic matter composition to only a minor degree.  相似文献   

12.
Although acid soils are common in forest ecosystems, and there is documented evidence of pH influencing transformations of organic matter in soil, there are surprisingly few studies on the influence of soil pH on the chemical structure of physically fractionated soil organic matter (SOM). The aim of this study was to characterize the influence of pH on the chemical and physical processes involved in SOM stabilization. Forest soils of different pH (4.4 and 7.8) sampled from two long‐term experiments at Rothamsted Research (UK) were physically fractionated. The free light fraction (FLF), the intra‐aggregate light fraction and the fine silt and clay (S + C, <25 µm) were characterized using elemental, isotopic (δ13C), thermogravimetric, differential thermal, diffuse reflectance infrared Fourier transform spectroscopy and high‐resolution magic angle spinning 1H nuclear magnetic resonance analyses. The quantitative distribution of carbon (C) between SOM fractions differed between the two soils. Carbon contents in the light fractions from the acid soil were significantly greater than in those of the alkaline soil. In contrast, in S + C fractions, C content was greater in the alkaline soil. FLF from the acid soil was characterized by a greater C:N ratio, smaller δ13C and greater content of thermo‐labile compounds compared with FLF from the alkaline soil. In contrast, there was only a weak effect of soil pH on the chemical composition of the organic matter in S + C fractions. Irrespective of soil pH, these latter fractions contained mainly aliphatic compounds such as carbohydrates, carboxylic acid, amide and peptide derivates. This suggested that physical mechanisms, involving the interactions between SOM and mineral surfaces, are of greater importance than the presence of chemically recalcitrant species in protecting SOM associated with the finest soil fractions.  相似文献   

13.
In semi‐arid Mediterranean soils, water availability is the most limiting factor, negatively affecting the organic matter (OM) degradation. The aim of this work is to study under controlled laboratory conditions how three sources of OM [municipal solid waste (MSW), sheep manure (SM) and cow manure (CM)] behave when they are applied to an agricultural soil subjected to a severe year‐long drought. In order to apply the same concentration of OM to the soil (16·92 Mg OM ha−1), 2 kg of soil was mixed with 30, 67·41 and 55·25 Mg ha−1 (dry matter) of MSW, CM and SM, respectively. Two levels of irrigation were employed: (i) watered soils and (ii) non‐watered soils. Soil's chemical properties [water soluble carbon (WSC), humic acids, fulvic acids and protein mass distribution], biological properties (soil microbial biomass carbon and o‐diphenoloxidase activity) and solid‐state 13C cross‐polarisation magic angle spinning nuclear magnetic resonance spectroscopy were determined. In watered soils, the soil microbial biomass carbon was higher in the SM than in CM and MSW treatments (9·9% and 23·1%, respectively). The WSC was significantly higher in SM than in CM (55·7%) and MSW (78·7%) treatments. A decrease in the content of O‐alkyl C and an increase in alkyl C, aromatic C and carboxyl C were observed. In non‐watered soils, the biochemical properties and alkyl C and alkyl/O‐alkyl ratio decreased, whereas WSC content and O‐alkyl C increased. These results indicated that the evolution of OM and the activity of the microbial community in non‐watered soils were very different to those in the watered soils. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The 0 to 20-cm surface layer of a sandy loam soil was sampled in early autumn from plots where straw had either been removed or incorporated annually for 22 years. Denitrification in whole soils, 1–2-mm wet-stable aggregates, clay and silt size fractions was determined by acetylene blocking during anaerobic incubation with excess nitrate. Thus available organic matter was the limiting factor. Samples were exposed to one or two freeze/thaw cycles, or used unfrozen. K2SO4-extractable carbon (C) was determined before and after CHCI, fumigation. Freeze/thaw increased denitrification in whole soils and in aggregates. In aggregates and in whole soil without straw the increase in denitrification was similar following two freeze/thaw cycles, and well above the amount that could be fed by extractable soil C. In whole soils with straw addition, an extra denitrification increase occurred at first thaw only. This straw-induced denitrification surplus was matched by a decline in soil microbial biomass. For other samples and treatments, the freeze/thaw released C from additional organic matter sources. The availability of C in clay for denitrification was twice that of silt-associated C. Straw disposal generally had no effect on the bioavailability of particle-bound C. In contrast to whole soils and aggregates, the availability of organic matter in clay and silt after one freeze/thaw cycle was only half that observed from unfrozen samples. The effect of freeze/thaw on whole soils and aggregates may be to release organic matter available for denitrification by killing the microbial biomass and by disintegrating aggregates. However, the impact of freeze/thaw on completely dispersed samples such as clay and silt may be to promote the formation of granular structures (micro-aggregation) in which organic matter may become less accessible to denitrifiers.  相似文献   

15.
Nuclear magnetic resonance (NMR) spectra were obtained for solid samples of whole soils from three long–term field sites at Rothamsted Experimental Station, UK. In all sites, soil organic matter content was either increasing or decreasing due to contrasted long–continued treatments. Two soils were from Highfield, one from under old grassland (47 g organic C kg?1) and one from an area kept as bare fallow following ploughing of grass 21 years previously (14 g organic C kg?1). Three soils were taken from Broadbalk, two from plots within the Broadbalk Continuous Wheat Experiment which had received no fertilizer or animal manure annually for 148 years (7 and 27 g organic C kg?1, respectively) and one from Broadbalk Wilderness, wooded section (38 g organic C kg?1). Broadbalk Wilderness was arable until 1881 and has reverted to deciduous woodland in the subsequent 110 years. Two soils were from Geescroft, one from an arable field (9 g organic C kg?1) and one from Geescroft Wilderness (35 g organic C kg?1) which began reversion to deciduous woodland at the same time as Broadbalk Wilderness but is now acid (pH = 4.2) in contrast to Broadbalk which is calcareous (pH = 7.3). Solid–state 13C NMR spectra were obtained on a 300–MHz instrument using cross polarization (CP) and magic angle spinning (MAS). All samples exhibited peaks in the following spectral regions: 0–45 ppm (alkyl), 45–60 ppm (methoxyl, carbohydrate and derivatives), 60–110 ppm (carbohydrates and derivatives, C–α of peptides), 110–160 ppm (aromatics) and 160–185 ppm (carboxyl groups and derivatives). Within the spectrum of a specific sample it was not possible to determine the relative proportions of soil organic carbon in the different forms identified because a range of factors can potentially alter the relative areas of peaks in different regions of the spectrum. However, from a comparison of relative peak areas within a set of soils from a given site, differing only in organic matter content, information can be deduced regarding the forms of C that are more or less subject to change in response to land use or management. At all sites carbohydrate C appears to be the form that is most subject to change, suggesting that it is an ‘active’ fraction compared with the other forms. It was greatest where organic matter inputs were greatest (due to inputs of farmyard manure or reversion to woodland) and declined relative to other forms following ploughing of old grassland. Alkyl C increased as total C accumulated but did not decline relative to other forms following ploughing of grass. One reason for the non–quantitative nature of the soil 13C CPMAS spectra was a short (approximately 1 ms) component of the rotating–frame TI relaxation time for H nuclei (T1pH). This problem was not overcome by acquiring data at – 60°C. In principle, solid–state spectra of soils obtained by direct polarization (i.e. without CP) might produce quantitative results, but the low C content of most mineral soils (10–50 g C kg?1) precludes this, given current instrumentation.  相似文献   

16.
We studied the impact of climate, soil texture and iron mineralogy on the content and composition of organic matter in Ferralsols along a climosequence in southern Brazil. We characterized the organic matter by solid‐state cross‐polarization magic angle spinning (CPMAS) 13C nuclear magnetic resonance (NMR) spectroscopy. The organic matter content in the Ferralsols increased from the lowest to the highest sites (440–950 m altitude) as a result of the increase in humidity and the decrease in temperature. This influence was more pronounced in the heavy clayey Ferralsols, suggesting that the accumulation of organic matter was enhanced by organo‐mineral interactions. Iron oxides contributed to the stabilization of the organic matter in these soils, which was dominated by O–alkyl C structures followed by aromatic and alkyl C groups. The aromatic C contribution to the total organic C increases with depth at the expense of O–alkyl C, regardless of the site altitude and climate. Although the impact of the environment on the amount of organic matter and its chemical composition is confirmed, our results clearly show that this is so only for the surface horizons. With increasing soil depth the climatic influence decreased, showing that other factors become more important for the accumulation of organic matter.  相似文献   

17.
Modelling of sinkage tests in tilled soils for mobility study   总被引:1,自引:0,他引:1  
The study of the mechanical behaviour of breached surface soils allows the optimization of the running gear of the vehicles for the off-road mobility.The sinkage of the running gear causes a motion resistance which is opposed to the tractive capacity of the vehicle. In a homogeneous soil, the sinkage is predicted by the interpretation of plate sinkage tests. In order to make possible and easier the sinkage prediction of a vehicle going in a tilled soil, the article has for objective to present a method to model pressure–sinkage curve for a tilled soil with the pressure–sinkage curve of the same soil before tillage.The tilled soil is considered as two layers of the same soil whose density is lower for the upper layer than for the sub-base. The two-layered soil behaviour is modelled as the combination of the behaviour of the loose soil layer and the behaviour of the dense soil. The link between these two behaviours is a critical depth defined as the depth of the plate when the layer of soil in a critical density reaches the limit between the two layers.Sinkage tests with circular plates were carried out on four soils chosen to represent the mechanical properties of a range of soils: a sand for frictional soils, a silt for cohesive soils and a silty sand and a sandy loam for cohesive frictional soils predominant in the agricultural soils. The soils were tested in one-layered and two-layered configurations in small and large bins with well-known and controlled soil conditions.A theoretical approach allows the calculation of the critical depth with a deformation process of the soil below the plate. The critical depth depends on the density of the soil, the tillage depth, the diameter of the plate and the angle of friction of the soil.The critical depth allows the modelling of the pressure–sinkage curve for the tilled soils using the one-layered soil data. The comparison with the experimental tests in tilled soil validate the approach.  相似文献   

18.
A small increase in soil organic matter (SOM) content can change soil hydrological properties from a completely wettable to a partially water‐repellent state. Although considerable research describes hydrophobic compounds as a primary driver of this shift, the influence of pore shape has only been considered in a few studies and none of these has emphasized the role of different carbon compounds. Using a capillary bundle model of non‐cylindrical (wavy) capillaries, we described measured hydrological properties of five agricultural soils that have a small degree of water repellency and textures ranging from coarse sand to heavy clay. To isolate the influence of SOM, it was removed by combustion to provide an SOM‐free treatment. Water and methanol sorptivities quantified infiltration rates and soil‐water wetting angles in packed soil cores. Different cores were sectioned to measure wetting profiles and calculate diffusivity. The results from natural soils were supplemented by measurements carried out on model ‘soils’ consisting of quartz particles (50–200 µm) with four different hydrophobic states. Soil organic matter removal increased water sorptivity from about 60% for a coarse sandy soil (Haplic Arenosol) to about 290% for a heavy clay soil (Haplic Leptosol), corresponding to a decreased apparent wetting angle of 20–30°. Application of the wavy pore model suggests that the apparent wetting angle resulting from SOM removal can be several times smaller than its Young value. Generally, SOM removal increased water diffusivity values by one to two orders of magnitudes. The SOM components having the greatest impact on contact angle were hexanedioic acid and heneicosanoic acid (both hydrophilic) and docosane (hydrophobic).  相似文献   

19.
In sandy gleyic soils with a low groundwater table under arboriculture in Northwest Germany, a wide variation of groundwater pollution by pesticides has been observed. We therefore examined data on microbial activity and soil organic matter composition by wet chemistry, cross-polarization magic-angle spinning and 13C nuclear magnetic resonance, and pyrolysis-field ionization mass spectromy. However, neither microbial activity nor the soil organic matter composition of cultivated topsoils explained the differences in xenobiotic leaching into the groundwater. Data from Anthrosols suggested that these soils have a higher capacity for pesticide bonding because of high amounts of aromatic and carboxylic C moieties in the soil organic matter. However, despite the same pesticide inputs and time of application, the leached output from these soils was higher than that from the Podzols. Initial data from subsoil investigations suggest that the presence of a spodic horizon most likely reduces groundwater pollution by pesticides. Studies to assess fixation capacity and desorption kinetics in Bh horison seem warranted.Dedicated to Professor J. C. G. Ottow on the occasion of his 60th birthday  相似文献   

20.
不同斥水剂作用下土壤斥水度测定及其变化规律   总被引:3,自引:2,他引:1  
为获得不同斥水剂作用下土壤斥水度的变化规律,分别采用十二烷基硫酸钠、硅烷偶联剂KH-550与二氯二甲基硅烷改性砂土和十八烷基伯胺改性黏土,获得了不同斥水程度的改性土壤,并采用滴水穿透时间法、酒精溶液入渗法和接触角测定法获得了改性后土壤的斥水度及其随时间变化规律。结果表明:1)二氯二甲基硅烷改性砂土表现为极度斥水等级,且斥水性长期稳定,可作为制备斥水砂土的优选;硅烷偶联剂改性砂土的斥水性初期不明显,随着时间增长明显增强,最终可达极度斥水等级;但此类改性砂土易结块,均匀性及分散性较差,不推荐作为制备斥水砂土的优选;十二烷基硫酸钠改性砂土的斥水性不明显,且改性方法复杂耗时,不宜用来制备斥水砂土。2)当十八胺含量分别为0.2%、0.3%和0.6%时,改性黏土分别可达中等、严重和极度斥水等级,斥水性长期稳定,可作为制备斥水黏土的优选。3)将十八胺含量为0.5%的改性黏土掺入天然砂土混合制得的改性混合土,亦有不同程度的斥水性。当改性黏土含量为1%~3%时,改性混合土尚无明显斥水性;当改性黏土含量为3%~10%时,改性混合土斥水等级为中度;当改性黏土含量为10%~50%时,改性混合土斥水等级可达到严重。该成果可为深入研究土壤斥水性及其工程应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号