首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了降低LNG船BOG再液化流程的功耗,在ASPEN PLUS中选择合适的热力学方法和设备模块对LNG船BOG再液化装置进行建模.通过对丙烯的预冷换热器出口温度、压缩机出口压力、节流阀出口压力以及BOG压缩机出口压力等工艺设备运行参数的模拟计算,得到各参数对BOG再液化流程功耗的影响规律.以工艺系统最低功耗为优化目标,采用变量轮换法对优化参数进行优化计算,得出在一定海水温度和液货舱BOG压力变化范围内,BOG再液化系统中重要节点的相关参数、压缩机和换热器最优化性能参数和设备设计参数,优化后流程总功耗比优化前降低了8.82%.  相似文献   

2.
为了有效回收液化天然气接收站产生的BOG,减少BOG的排放,以国内某LNG接收站的BOG增压再液化工艺为例,利用HYSYS模拟设计工况下的运行参数,通过分析混合制冷剂的甲烷含量及组分配比、BOG压缩机出口压力、冷剂压缩机出口压力等参数对再液化系统的影响,获得了混合制冷剂的推荐配比为甲烷24%、氮气12%、乙烯33%、异丁烷31%,冷剂二级压缩机出口压力为4300kPa,BOG二级压缩机出口压力为7200kPa,节流压力为370kPa。在上述条件下,系统功耗为664.935kW,比以往降低了8.45%。  相似文献   

3.
为了明确FLNG(Floating Liquefi ed Natural Gas)开发模式在我国海上气田应用的可行性,对海上气田双氮膨胀天然气液化工艺过程及主要参数进行了模拟分析。以目标气田气体组分和温压数据为基础,在保持气体组分、流量、进入液化段的温度及其压力不变的情况下,利用HYSYS软件分析了预冷、液化及过冷3个阶段的出口温度、液化段与过冷段的制冷剂循环压力对液化工艺流程的压缩功率、换热器功率、制冷剂流量、比功率以及冷箱负荷等的影响。结果表明:当液化段中气体的出口温度设定为-75℃,液化段和过冷段制冷剂的循环入口压力分别为3 450 k Pa和1 710 k Pa时,循环系统压缩机组的压缩功率和比功率达到最小值;预冷段的温度设定对制冷剂总压缩功率没有影响,但能够调整预冷段和液化段之间的换热负荷分配。该研究可以为FLNG开发方案的设备选型、技术和经济评估提供参考。  相似文献   

4.
为了明确FLNG(Floating Liquefi ed Natural Gas)开发模式在我国海上气田应用的可行性,对海上气田双氮膨胀天然气液化工艺过程及主要参数进行了模拟分析。以目标气田气体组分和温压数据为基础,在保持气体组分、流量、进入液化段的温度及其压力不变的情况下,利用HYSYS软件分析了预冷、液化及过冷3个阶段的出口温度、液化段与过冷段的制冷剂循环压力对液化工艺流程的压缩功率、换热器功率、制冷剂流量、比功率以及冷箱负荷等的影响。结果表明:当液化段中气体的出口温度设定为-75℃,液化段和过冷段制冷剂的循环入口压力分别为3 450 k Pa和1 710 k Pa时,循环系统压缩机组的压缩功率和比功率达到最小值;预冷段的温度设定对制冷剂总压缩功率没有影响,但能够调整预冷段和液化段之间的换热负荷分配。该研究可以为FLNG开发方案的设备选型、技术和经济评估提供参考。  相似文献   

5.
针对FLNG/FLPG装置区别于常规FPSO以及陆上LNG工厂的关键和难点技术,以南海某深水气田为研究目标,开展了FLNG/FLPG装置液化工艺方案优化分析,提出了具有自主知识产权的CO2预冷双氮膨胀的海上FLNG液化工艺。对影响该工艺流程性能的关键参数进行了优化,分析了该工艺对于海上FLNG装置的适应性。结果表明:二级制冷工艺用于海上FLNG装置的天然气预冷过程,当二氧化碳一级制冷温度在-20℃左右,二级制冷温度在-50℃左右,氮气循环压缩机出口压力取8MPa,两级氮膨胀制冷分界温度取-98℃,海水换热温差在8℃左右,单列总功耗为6.258×10-4kw,液化率为93.7%,比功耗为0.3271kW·h/m3。该工艺安全性高、流程简单、设备紧凑、经济性较好,具有较好的海上适应性。(图6,表4,参8)。  相似文献   

6.
FLNG(LNG Floating Production Storage and Offloading Unit)液化工艺的关键技术包括液化工艺的选择、晃荡条件下工艺及关键设备的适应性,其对装置的投资、运行稳定性及安全产生很大的影响。根据海上工艺设计标准,对不同液化流程进行比选,分别建造氮膨胀和混合制冷剂两套液化实验装置,并开展晃荡实验,验证工艺及关键设备的海上适应性,实验结果表明:晃荡工况下,丙烷预冷双氮膨胀工艺和双混合制冷剂工艺的液化和处理能力均能保持较高水平,前者适用于处理量小且海况恶劣的海域,后者适用于处理量大且海况平稳的海域;壳侧降膜流动的不稳定性是导致绕管式换热器适应性较板翅式换热器低的主要因素;倾斜和横摇会在较大程度上降低填料塔内液体分布均匀性及传质性能;共振周期直接影响薄膜型液舱的装满度,横摇会提高气液两相分离过程的平衡程度;晃荡对膨胀机工作性能无影响。  相似文献   

7.
天然气液化工艺是海上浮式液化天然气船(Floating Liquid Natural Gas,FLNG)的关键技术之一,目前国内外尚无专门针对FLNG液化工艺设计的标准,有必要针对FLNG的液化工艺流程和优化方法开展研究。以中国南海某深水气田为研究目标,根据海上FLNG的特点和对国外FLNG项目液化工艺的调研,提出了FLNG液化工艺选择原则与优化方法,筛选出6种可能适合于目标气田的液化工艺流程,并对其在压缩功耗、冷却负荷、主要设备等方面进行综合比选,初步筛选出丙烷预冷-双级氮膨胀液化工艺作为目标气田液化工艺,并采用软件动态模拟和试验验证该液化工艺在海上的适应性。软件动态模拟结果和试验结果趋势一致,验证了动态模型的准确性以及利用动态仿真预测试验结果的可行性,表明该液化工艺具有较好的动态性能和海上适应性。最终确定将丙烷预冷-双级氮膨胀液化工艺作为目标气田的FLNG液化工艺,并为其他FLNG项目液化工艺的选择提供了技术支持和参考依据。  相似文献   

8.
LNG储罐在投产前需要进行调试,其中LNG储罐预冷是最重要的环节。采用MATLAB软件,建立16×104 m3地上全容式常压LNG储罐预冷模型,研究预冷过程中LNG喷淋量、BOG排放量、储罐压力、LNG气化率及温降速率的变化规律对LNG储罐预冷的影响。研究结果表明:在恒定温降速率下,LNG喷淋流量逐渐增加、BOG排放流量及储罐压力先增后减、LNG气化率仅在预冷后期逐渐降低;随着温降速率增大,LNG喷淋流量、BOG排放流量及罐内压力均增加,但LNG喷淋总量及BOG排放总量减小,LNG气化率仅在预冷后期随温降速率增大而增大;在温降速率超过3 K/h后,对LNG储罐预冷影响较小;在对LNG储罐进行预冷分析时,太阳辐射的影响不可忽略。为了保障LNG储罐投产工作的顺利开展,建议在预冷前期,将温降速度控制在1 K/h之内;在预冷后期,为提高LNG冷量利用率,应增大温降速率,将平均温降速率控制在2~3 K/h。经过实例验证,LNG储罐预冷模型模拟误差均小于10%,可以满足工程应用要求,对于LNG储罐实际预冷过程、预冷方案设计及预冷参数优化具有参考意义。(图2,表2,参20)  相似文献   

9.
煤层气田具有多井、低压、低产等特点,小规模先导试验井组和偏远气井单独建设管道输送系统经济性较差,导致产出气不能通过集输管道进行有效外输。提出了适合煤层气撬装液化装置的新型混合工质制冷剂液化流程:对原料气进行预冷,利用低温将原料气中杂质析出,然后吸附进入第一显热换热器/第二显热换热器中,并进行脱除;利用原燃料气进行复温吹洗,脱除的杂质随燃料气进入发电机燃烧,第一显热换热器与第二显热换热器交替运行,使其前处理流程更加简单。针对煤层气撬装液化装置使用油润滑螺杆压缩机驱动的方式,提出了混合工质制冷剂节流制冷机结构,实现润滑油与制冷剂的深度分离。对于冷箱结构,采用板翅式换热器与微细管结构绕管式换热器相结合的优化方式。研制了煤层气撬装液化试验样机,试验运行测试结果表明:该装置最小比功耗为0.612(k W·h)/m~3,其液化性能指标与日处理量10×104 m~3的集中式液化装置的性能相当。(图5,表1,参12)  相似文献   

10.
为了减少LNG加气站中BOG直接放空造成的环境污染与能源浪费,以加气能力为1×104 m3/d的LNG加气站为例,计算BOG的日蒸发量,并使用HYSYS软件模拟适用于该LNG加气站的BOG再液化工艺流程,逐步优化制冷网格,计算该加气站BOG再液化所需的LNG流量。对于加气能力为1×104 m3/d的LNG加气站,增设1套BOG再液化装置(1台BOG压缩机、1个BOG缓冲罐、1台再冷凝器及1个调压阀),即可实现BOG的再液化。调节流程中各节点参数后得出:当过冷LNG的流量达到90 kg/h时,BOG完全冷凝。该BOG再液化流程利用LNG自身冷量冷凝BOG,并回注于LNG储罐中,不仅可提高BOG回收率,使其在LNG加气站中循环利用,保证罐内温度、压力在一定范围内,同时可有效地减少LNG冷能浪费。(图4,表7,参10)  相似文献   

11.
FLNG(Floating Liquefied Natural Gas)液化工艺受规模、原料气组分及环境条件等影响较大,为了实现大规模工业化应用,基于南海某目标气田相关情况,建立丙烷预冷双氮膨胀液化工艺的FLNG小试及中试液化试验装置,并对试验结果进行FLNG放大过程的规律分析。结果表明:随着原料气处理规模的增大,丙烷预冷双氮膨胀液化工艺对原料气参数的敏感性变弱,且预冷段作用愈加明显,不仅可以降低装置能耗、氮气液化及过冷负荷,且可以减小氮气循环量,提高整体液化工艺的液化能力。在倾斜及晃荡工况下,冷箱内原料气温度变化不大,整个液化装置对晃动的适应性较强。液化工艺选择、设备选型、回收量对整个液化系统的液化率及液化能力的影响较大。随着液化规模的增大,高效的机组效率和合理的能量回收方式,在保证液化系统正常运行的同时,可以有效降低整个装置的能耗,提高经济效益。  相似文献   

12.
闪蒸气(Boil-off Gas,BOG)的处理关系着LNG接收站的能耗及安全平稳运行。对比了目前常用的BOG直接压缩工艺和再冷凝液化工艺在工艺流程及能耗方面的差异,并分析了外输量、外输压力对BOG处理工艺能耗的影响。由此提出了BOG处理工艺的优化措施:针对现有BOG处理工艺流程加热再冷却过程中存在冷热交换而造成能量损耗的问题,利用LNG冷能通过换热器冷却压缩后的BOG,以LNG自身冷能取代现有BOG处理流程中的耗能元件再冷凝器,同时降低压缩机出口BOG的温度,减少加热再冷却过程的能量损耗。利用HYSYS软件分别对优化前后BOG处理工艺进行能耗分析,结果表明:BOG处理工艺优化前后能耗分别为2 677.82 k W、1 990.77 k W,优化后BOG处理工艺节约能耗约25.66%。  相似文献   

13.
LNG接收站BOG处理工艺优化及功耗分析   总被引:1,自引:0,他引:1  
为优化LNG接收站BOG处理工艺,降低整个接收站的功耗,以外输量为200 t/h、储罐BOG蒸发量为3.04 t/h的某LNG接收站为例,对再冷凝工艺和直接压缩工艺两种典型的BOG处理工艺进行了功耗分析,得出BOG压缩机和LNG高压泵的功耗为整个工艺的主要功耗。运用ASPENHYSYS模拟软件对现有工艺流程进行了优化:在现有BOG处理工艺的基础上,通过对LNG进一步加压至高于外输压力,靠气化后膨胀高压外输天然气做功来实现BOG的压缩和对LNG的加压。优化结果表明:BOG直接压缩工艺和再冷凝工艺分别节约功耗1 616.27 k W、1 270.64 k W。  相似文献   

14.
马华伟  刘春杨  徐志诚 《油气储运》2012,31(10):721-724,732
基于近年各种液化天然气浮式生产储卸装置(FLNG)概念设计,分析了FLNG在船体、LNG储舱、液化工艺、低温换热器和产品装卸等技术的研究历史和最新进展。有关FLNG的研究不断完善,通过计算机模拟和实验模拟的方式验证了FLNG关键技术的可行性和可靠性;FLNG概念设计一般采用双壳式船体,SPB型LNG储舱,简单液化工艺(如混合制冷剂或膨胀制冷工艺)以及并排卸货方式。通过分析FLNG装置的建设投资和运营收益,指出使用二手LNG货轮改造为FLNG,以及采用简单液化工艺,可以使FLNG装置获得更好的经济效益。  相似文献   

15.
我国液化天然气工业的现状及发展前景   总被引:5,自引:1,他引:5  
分析了我国天然气液化装置、液化天然气的储运设备及液化天然气的应用现状和LNG工业链现状,概述了我国LNG工业的发展趋势.分析结果表明,LNG工业在我国将具有广阔的发展前景.  相似文献   

16.
液化天然气BOG的计算方法与处理工艺   总被引:1,自引:0,他引:1  
孙宪航  陈保东  张莉莉  刘杰  李征帛  杜义朋 《油气储运》2012,31(12):931-933,967
介绍了液化天然气蒸发气(BoilOffGas,BOG)的产生原因,不同条件下BOG量的计算方法,以及直接压缩和再冷凝两种BOG处理工艺。利用伯努利方程定量地对两种处理工艺的能耗进行对比,并进行实例验算。结果表明:在相同工况下,再冷凝工艺比直接压缩工艺节能,且处理的BOG量越大、LNG储罐储存压力越低﹑外输管网压力越高,再冷凝工艺的节能效果越明显。得出结论:再冷凝工艺适用于大型LNG接收站处理BOG,直接压缩工艺适用于小型LNG卫星站处理BOG。  相似文献   

17.
李昊  吴晓南  苟珈源  宋俊平 《油气储运》2022,(10):1210-1217
天然气液化工艺系统的投资高、能耗高,可通过热经济学分析来合理评价其工艺设备的技术经济性。依据某天然气液化工厂的实际工艺和运行数据,采用HYSYS模拟工艺流程。在经济分析、?分析基础上,构建各设备的热经济学成本平衡方程组及辅助方程组,分析各物流的热经济学成本。基于设备的燃料-产品定义和各物流的热经济学成本,以相对成本差、?经济系数来评价各设备的技术经济性,指出各设备的优化方向,并分析能量成本和非能量成本对产品单位热经济学成本的影响程度。结果表明:工艺系统中的压缩机3、冷剂泵2的?经济系数偏高,应考虑降低其投资费用或运行维护费用;能量成本是影响液化天然气生产成本的主要因素,其每增加10%,液化天然气的单位热经济学成本增加8.7%。研究成果可为天然气液化工艺系统的优化及运行维护提供指导和建议。  相似文献   

18.
SCV是LNG接收站实现气化外输的重要设备,在投用前需要对其入口管道进行预冷.但如果每次预冷均启动SCV,会造成一定量的燃料气浪费,且预冷初期LNG流量较小,极易引起设备因水浴温度高于设定值而导致联锁跳车.因此,在预冷SCV时,为了保护设备和降低燃烧成本,需要对预冷SCV所引起的水浴温降进行计算.通过现场ORV的实际运行状态及预冷记录,计算得出相同条件下LNG的平均比定压热容和预冷SCV的LNG量.通过牛顿冷却公式,计算得出预冷SCV时LNG与入口管道的表面传热总量.根据热量守恒原理,最终获得了能保证SCV预冷完成的最低水浴温度.为SCV在水浴温度高于7.2℃时不点火也可以实现预冷提供了理论支持.  相似文献   

19.
卸料管道预冷是确保LNG接收站顺利投产试运行的重点工作,既可防止管道温度变化过快造成管材损坏,也可检验和测试低温设备的性能及质量。山东LNG接收站为了缩短LNG船舶靠泊时间、降低接收站运营成本,提出了在首船接气前采用液氮预冷卸料总管的方法:由于山东LNG接收站卸料总管较长,将其分成A、B、C段进行渐进式预冷,当管道顶底部温差超过10℃时,关闭隔断阀门,憋压至0.2 MPa后进行爆吹以消除温差;为了方便操作与控制,按照0℃、-30℃、-60℃、-90℃、-120℃、-150℃温度节点来调整汽化器的工况,以控制预冷速率。实践结果表明:该方法安全性高,可操作性强;在预冷过程中,管顶与管底温差控制在30℃以下,预冷速度应低于10℃/h;分段渐进式预冷法有利于减小管道顶底部温差,可减少预冷时间、提高预冷效率,并缩短LNG船靠泊时间约7天。(图1,表4,参13)  相似文献   

20.
LNG在汽车代用燃料中的优势   总被引:4,自引:0,他引:4  
优化配件设计、合理改善油品质量和采用代用燃料是目前治理尾气污染的3种主要途径,其中代用燃料在降低和控制汽车尾气污染方面效果最好.通过对LPG(液化石油气)、CNG(压缩天然气)和LNG(液化天然气)3种代用燃料的对比分析,指出LPG和CNG作为汽车燃料因受其各自特性的制约,发展较缓,而LNG由于具有清洁高效、经济适用、安全度高、加气快捷、机动性强和冷能回收利用率高等优势,已成为当前最理想的汽车代用燃料,具有较好的发展前景和市场需求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号