首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Age determination of wild captured Pacific bluefin tuna, Thunnus orientalis, was conducted using sagittal otoliths of 806 specimens (47–260 cm in fork length) caught in the waters off Japan and Taiwan. Otoliths were transversely sectioned and the opaque and translucent zones were analyzed. Opaque zones mainly appeared on the otolith edge from April to July, indicating that the opaque zone is formed annually. The opaque zones formed during later life (age 10+) were more distinct than the earlier zones. The estimated ages of specimens ranged from 1 to 26 years. Parameters of the von Bertalanffy growth function were estimated to be 249.6 cm, 0.173, and −0.254 years for L, k, and t0, respectively. Growth of younger fish was rapid up to 5 years old attaining about 150 cm, and then growth rate decreased. After that, fish attained about 200 cm at 9 years old and about 225 cm (90% of L) at 13 years old (50% of maximum age). This paper updates the biological information on length at age with a large size range to support stock assessment model analyses for this commercially valuable species.  相似文献   

2.
The aims of this experiment were (1) toquantify the ability of grass carp to processduckweed and (2) to assess indirect changes inwater chemistry and phytoplankton community,caused by grass carp feeding. Yearling grass carp sized 126 ± 7.7 mm (TL) and19.6 g in weight were kept in 9 laminate tanksof 1 m3 for 14 days. Two stockingdensities (2 and 6 fish per m3) anda control without fish were used. Standard growthrate (SGR) of grass carp fed exclusively onduckweed was 0.70% body weight (BW) d–1and food conversion ratio (FCR) reached 2.0(average water temperature =21.1 ± 3.8 °C). Daily food intakewas 0.2 g of duckweed dry weight (DW), i.e.,1% of average BW of grass carp. SGR ofduckweed growing in 20 × 20 cm floatingenclosures, differed significantly[F(6,2) = 417.9; p = 0.002] between the twostocking densities of grass carp and thecontrol tanks (without fish). Mean SGR ofduckweed was 0.02 g g–1 day–1 and thehighest SGR was recorded in the control tanks.Both decrease in NH4-N and increase inNO2-N concentrations differedsignificantly between the treatments[F(2,2) = 45.3; p = 0.02 and F(2,2) = 19.2; p = 0.04 respectively]. Changes in other nitrogenand phosphorus components (NO3-N, TN, TPand PO4-P) caused by stocking of grasscarp were not significant. Biomass ofphytoplankton, dominated by filamentous algaeand blue-greens, increased proportionately tostocking density of grass carp. Althoughduckweed has a large potential for nutrientremoval, the most common pathway for thenutrients released through grass carp grazingif duckweed cover is loose is theirincorporation into phytoplankton biomass.  相似文献   

3.
Fast and slow muscle fibers were isolated from the myotomes of atlantic cod (Gadus morhua L.) and sculpin (Myoxocephalus scorpius L.). Epinephrine was found to have no effect on twitch or sub-tetanic contractions in fast muscle fibres. Isoprenaline (10–6M) had no effect on the contractility of slow muscle fibres. In contrast, epinephrine elicited a dose-dependent decrease in the half-time for twitch relaxation (t1/2r), and in most cases a decrease in twitch amplitude. The maximum decrease in t1/2r was around 5–20% of control values (at 10–6M epinephrine), with a half maximal response at about 30 nmol l–1. Responses to epinephrine were unaffected by propranolol and reversed by phentolamine, consistent with the stimulation of -adrenoreceptors. 10–6M epinephrine produced a rise in cAMP levels from 1.8 to 3.1 pmol mg dry wt–1 in cod slow fibres. However, the cellular mechanism underlying the action of epinephrine is unclear since forskolin, a potent activator of adenylate cyclase activity, where it has been investigated, was found to increase not decrease twitch duration and amplitude. The responses of fast and slow fibres to epinephrine and its antagonists were similar in summer (13°C) and winter acclimatized (5–6°C) sculpin.It is suggested that epinephrine may act to modulate the active state of slow muscle fibres at high cruising speeds and thereby increase swimming performance.  相似文献   

4.
The endemic, anadromous cyprinidChalcalburnus tarichi is the only fish species known to occur in alkaline Lake Van (Eastern Anatolia, Turkey). EightC. tarichi were maintained individually in Lake Van water (17 – 19°C; pH 9.8; 153 mEq·I–1 total alkalinity; 22 total salinity) and tank water samples analyzed for 24 h in 2 to 4 h intervals. At zero time, < 1µM ammonia was present and urea was undetectable in the tank water; at 24 h, total ammonia and urea made up 114±32 and 35±25µM, respectively. Over the experimental period, ammonia-N and urea-N excretion averaged 1041±494 and 607±169moles·kg–1 fish·h–1, respectively. The extent of urea excretion was highly variable between specimens. Uric acid excretion was not detectable.Urea was present at high concentrations in all tissues and plasma (25 – 35moles·g–1·ml–1) of freshly caughtC. tarichi; total ammonia content of the tissues was by a factor of 1.9 (liver) to 3.0 (brain) lower. High arginase activity (2.4±0.2 U·min–1·g–1) was detected in the liver ofC. tarichi but ornithine carbamoylphosphate transferase, a key enzyme of the ornithine-urea-cycle, was absent. Ureagenesis is likely through degradation of arginine and/or uricolysis. High glutamine synthetase activity (11±0.6 U·min–1·g–1) and low ammonia content in brain suggest that, like other teleosts,C. tarichi has an efficient ammonia detoxification in the brain, but in no other tissue.Nitrogenous waste excretion at alkaline pH is discussed. The ability ofC. tarichi to excrete high levels of ammonia at extremely alkaline pH is unique among teleosts studied so far. The mechanism of ammonia excretion under Lake Van conditions remains to be elucidated.  相似文献   

5.
Rainbow trout Oncorhynchus mykiss grew from 44 to 326 g in 96days when held at 12 °C. Fish were fed to satiation twice dailywith either high (L1: 30.8%, L2:31.4%) or lower-lipid feeds (C1: 18.8%,C2: 21.8%). Four feeding treatments were studied.Group C1C2 received feed C1 for 43 days(days 0–43) and C2 thereafter (days 44–96).Groups L1L2, L1C2 andC1L2 were subjected to dietary changes asindicated by the feed designations. After a short period of feedadaptation, fish ingested similar amounts of feed energy i.e., they ateless by weight of the lipid-rich (L) feeds. Feed lipid content did notaffect growth but fish fed L-feed had reduced feed conversion ratio(FCR) compared to fish fed C-feed (0.731 vs. 0.773) during days0–43 (P < 0.01). After 96 days,L1L2-fish were lower in body protein(15.8%) than the C1C2-fish (16.8%)(P < 0.01). L-feeds also tended to increase percentage lipidand reduce percentage whole body moisture and ash. A higher net proteinutilisation (NPU) was recorded in fish fed L-feeds (43.6%)compared to fish fed C-feeds (38.8%) in days 0–43(P < 0.05). This seemed to be the result of a lower proteinintake rather than a protein-sparing effect of feed lipid. Above athreshold value of approximately 6.5 mg protein eaten·g bodywtminus 1·day–1, NPU decreased.  相似文献   

6.
The natural mortality of exploited fish populations is often assumed to be a species‐specific constant independent of body size. This assumption has important implications for size‐based fish population models and for predicting the outcome of size‐dependent fisheries management measures such as mesh‐size regulations. To test the assumption, we critically review the empirical estimates of the natural mortality, M (year?1), of marine and brackish water fish stocks and model them as a function of von Bertalanffy growth parameters, L (cm) and K (year?1), temperature (Kelvin) and length, L (cm). Using the Arrhenius equation to describe the relationship between M and temperature, we find M to be significantly related to length, L and K, but not to temperature (R2 = 0.62, P < 0.0001, n = 168). Temperature and K are significantly correlated and when K is removed from the model the temperature term becomes significant, but the resulting model explains less of the total variance (R2 = 0.42, P < 0.0001, n = 168). The relationships between M, L, L, K and temperature are shown to be in general accordance with previous theoretical and empirical investigations. We conclude that natural mortality is significantly related to length and growth characteristics and recommend to use the empirical formula: ln(M) = 0.55 ? 1.61ln(L) + 1.44ln(L) + ln(K), for estimating the natural mortality of marine and brackish water fish.  相似文献   

7.
Abstract. The sex ratio, mean size at maturity (Lm), gonosomatic index (GSI), frequency of distribution of egg diameter of the mature ovaries and fecundity of Oreochromis mossambicus (Peters) populations of 12 man-made lakes were studied using commercial landings from the gill-net fishery. The overall sex ratio was 1·0:0·88 of females to males and that of the individual populations varied from 1·0:0·54 to 1·0:1·34. The Lm ranged from 16·0 to 21·0 cm (TL) and was found to be correlated to the size of the water-body. The GSI of the females in stage V, the stage prior to spawning, did not differ from each other, except in one reservoir. The variations in the mean egg size (μ) of different populations were negatively correlated to the fecundity of a Ash of standard weight (FW200) of the different populations and the relationship was, y =3487·4– 1·14FW200(df = 10; r= -0·64; P < 0·05) The overall fecundity ranged from 318 to 3169 in fish ranging in body length (TL) and body weight from 16·5 to 32·0 cm and 80 to 651 g respectively. Fecundity was linearly related to body weight and curvilinearly to body length. The exponent b of the fecundity (F) length (1) regressions (F = aLb) of the different populations varied between 1·20 and 3·83. The overall relationship of fecundity to body weight (W) and body length (1) for O. mossambicus reservoir populations in Sri Lanka were: F = 3·23W + 357·8 (df = 203; r= 0·73; P < 0·001) F = l·52L2·11(df = 203; r= 0·68; P < 0·001) The variations in the theoretical fecundity calculated for a standard size individual of 200 g in weight (FW200) of the reservoir populations were correlated to the mean fishing pressure (X) exerted on each population according to the equations. (a) FW200= 10–24X+ 896·8 (df 9; r= 0·58; P < 0·05) (b) FW200= 1200 – 422·76e?0·102X (df 9; P < 0·05)  相似文献   

8.
The rate of oxygen consumption of minced whole body was determined volumetrically, as an indication of metabolic rate in vitro (M in vitro ), at 20°C in porgy Pagrus major ranging from 0.0002 g (just after hatch) to 2.9 g (67 days old) in body mass. A triphasic relationship was found between M in vitro of individual fish (l.min–1) and wet body mass W (g). During the prolarval stage accompanied with the transitional period to the postlarval stage (0.00020–0.00023 g, 0–6 days old), the mass-specific metabolic rate in vitro (M in vitro /W in l.g–1.min–1) increased with age (D in days) as expressed by an equation M in vitro /W = 3.88 + 0.74/D. During the postlarval stage (0.00031–0.003 g, 8–22 days old), M in vitro /W remained almost constant, independent of body mass following an equation M in vitro /W = 5.24 W–0.085. During the juvenile and adolescent stages (0.0047–2.9 g, 30–67 days old), M in vitro /W decreased with increasing body mass following an equation M in vitro /W = 1.66 W–0.235. These results correspond with the triphasic relationship between metabolism in vivo and body mass observed in intact porgy of 0.0002–270 g (Oikawa et al. 1991). It is concluded, therefore, that the dependence of mass-specific metabolic rate on body size exists in vitro as well as in vivo, during the early stages in the porgy. Based on these results, factors controlling the metabolism-size relationship are discussed.  相似文献   

9.
Two cultured catfish species (European catfish Silurus glanis, and African catfish Clarias gariepinus) were evaluated for their weight estimation and colors by image analysis. A total of 60 whole fish from each species were first weighed, and then their pictures taken by a digital camera in a light box. Length, weight and color of all fish were determined by image analysis and results were compared between the two fish. Fish weight ranged from 7.4 to 39.61 g and 25.71 to 93.91 g for European and African catfish, respectively. Weight (W) vs length (L) data were fitted linear (W = A + BL), power (W = A LB) and second order polynomial equations (W = C0 + C1 L + C2 L2). The R2 values ranged from 0.835 to 0.974. For the W vs view area (V) relationship, the same equations were used. The R2 values for these equations ranged from 0.927 to 0.972. No significant difference was found between the average color values according to the L*, a* and b* distributions for both fish species (P > .05). Image analysis can easily determine length, view area, and color of fish and help in developing W vs L, and W vs V relationships.  相似文献   

10.
Experimental culture of the native Amazonian fish tambaqui, Colossoma macropomum, in fixed cages was carried out over a period of 8 months, in Lake Urubu (Rio Grande do Norte, Brazil), to assess the viability of fixed cage culture of tambaqui and to test the influence of diet on growth rates. Nine synthetic net cages (1 m3) were each stocked with 45-day-old fish (mean weight 3 g; mean total body length 51 mm) at a density of 34 fry m–3. During the first 2 months of culture, fish were fed a balanced formulated feed on an as-fed basis at the rate of 5% body weight day–1. During months 3–8 this continued for fish in treatment 1 while those in treatment 2 were fed tropical regional fruits, on a wet weight basis at the rate of 5% body wt day–1. Fish in treatment 3 were given no supplementary feed. Monthly biometric measurements were made on all fish. Fixed cage fish culture was shown to be a viable and simple technique. Survival in all treatments was 100%. With balanced supplementary feed, production was 14.4 kg m–3, compared with 4.9 kg m–3 and 2.1 kg m–3, respectively, in the treatments where fish were fed with fruits and were not given any supplementary feed.  相似文献   

11.
The ingestion of an inert feed as a sole food source was investigated in larval silver sea bream (Sparus sarba) fed an alginate-based microparticulate diet. Using the auto-fluorescent properties of pigments associated with the alginate base, ingestion and gut content were investigated over a 6 h experimental period in fed and unfed larvae. By extracting and measuring chlorophyll a (Chl a) and phaeopigment content of feeding larval fish and relating this to standardized Chl a and phaeopigment content of the diet, relative to diet weight, it was determined that individual fed 7-day old larvae had a maximum gut content of 1.05±0.09 g diet while 14-day old fed fish had a maximum gut content of 3.17±0.90 g diet. On average, the gut content of 14-day old fish was 2.89 times greater than the gut content of 7-day old fish. The dry weight of larval sea bream increased from 43±4.2 g at day 7 to 134.3±20.4 g at day 14 indicating that growth of fish fed this inert feed was substantial. Gut pigment dynamics suggested that Chl a was degraded to phaeopigments by 7-day but not 14-day old larvae and the individual gut dietary content varied considerably in 14-day old fish. The maximum Chl a and phaeopigment content in larval sea bream was 0.4 ng ind–1 and 0.55 ng ind–1 for 7-day old fish and 1.54 ng ind–1 and 2.81 ng ind–1 for 14-day old fish respectively. The present method may potentially allow simple and direct assessment of larval fish feed ingestion in both an experimental and commercial setting.  相似文献   

12.
The initial appearance and the development of Leydig cells (LCs), the sites of steroid hormone production in the testis, were investigated ultrastructurally during testicular differentiation in the Japanese eel, Anguilla japonica. In addition, the effects of a single injection of human chorionic gonadotropin (HCG; 5 IU g body weight-1) on histological changes of the testes and serum 11-ketotestosterone (11-KT) were examined at various stages (15–18, 20–23, 26–29, 32–35, 38–41 and 46–50 cm body length (BL)) of testicular differentiation. Testicular differentiation was morphologically characterized by the development of loose connective tissue on the medial side in animals 18–29 cm in BL. Ultrastructurally, LCs were first identified in the loose connective tissue of the testis of the 23 cm fish. In the testes of fish over 32 cm, clusters of LCs were distributed throughout the interstitial region accompanying the increase in number of spermatogonia. In fish larger than 32 cm, spermatogenesis was induced by administration of HCG; serum 11-KT levels were also raised. On the other hand, there was no effect on spermatogenesis or serum 11-KT levels in fish less than 29 cm, or in the controls. These result suggests that morphological differentiation of LCs occurs in testis of the 23 cm eel, and subsequently, the testes of eels of BL more than 32 cm acquire the capability to produce steroid hormones.  相似文献   

13.
Largemouth perch (Percichthys colhuapiensis) represents one of the most economically important fish species in the Argentine Patagonia. However, little research has been done on the age and growth and population dynamics of this fish, though both studies are essential to properly deal with fisheries forecasts and management. As a contribution to elaborating management programmes for P. colhuapiensis, we evaluated the age and growth of this species in the Negro river via scale and whole otolith reading methods. The sample consisted of 579 specimens ranging in total length (TL) from 90 to 475 mm, captured seasonally from December 1994 to December 1995. The formation of scale annuli (end of winter) and the hyaline zone on otoliths (winter) of adult fish coincided with the beginning of the spawning season (end of winter-beginning of spring). The maximum estimated age was 11 years, which indicates that this is a relatively long-lived species. Otoliths were useful for ageing specimens 1–5 years-old, but above this age whole otoliths yielded lower age estimates than scales. Isometric growth of weight with length was found for total population, juveniles, and separate sexes (p > 0.25 in all cases). No significant differences between the length–weight relationships of sexes were observed (p > 0.10). Length at first maturity was significantly higher for males (TL50 = 271 mm TL; r = 0.88) than for females (TL50 = 243 mm TL; r = 0.96) (p < 0.01). Largemouth perch exhibited a consistent pattern of increase in length with age, with a period of fast growth during the first 5 years, and a slow-growing phase during the rest of his life. The growth parameters based on scale data were L∞: 462.1 mm, k = 0.23 and t0 = −0.94 for total population, L∞: 402.3 mm, k = 0.33 and t0 = −0.67 for males, and L∞: 548.4 mm, k = 0.15 and t0 = −1.59 for females, whereas those based on otolith reading were L∞: 537.4 mm, k = 0.17 and t0 = −1.0 for total population, L∞: 497.6 mm, k = 0.21 and t0 = −0.79 for males, and L∞: 582.0 mm, k = 0.14 and t0 = −1.53 for females. Scales are concluded to be the best structure to age P. colhuapiensis because they rendered L∞ values closer to the maximum TL observed, high precision, easiness of collection, low processing time, and the possibility of performing non-destructive monitoring studies.  相似文献   

14.
The impact of feeding, fish size (body weight from 18.5 to 56.5 g) and water temperature (20 and 23 °C) on oxygen consumption (OC, mg O2 kg–1 h–1) and ammonia excretion (AE, mg TAN kg–1 h–1) was studied in Eurasian perch held in recirculation systems. OC for both fed and feed-deprived (3 days) fish was higher at 23 °C (278.5 and 150.1 mg O2 kg–1 h–1) than at 20 °C (249.3 and 135.0 mg O2 kg–1 h–1; P < 0.01). AEs for both fed and feed-deprived fish were also significantly higher at 23 °C than at 20 °C (P < 0.001). Water temperature and fish size had a significant impact on the oxygen:feed ratio (OFR, kg O2 kg–1 feed fed day–1) and ammonia:feed ratio (AFR, kg TAN kg–1 feed fed day–1; P < 0.001). Their average values at temperatures of 20 and 23 °C were 0.17 and 0.19 kg O2 kg–1 feed fed day–1 and 0.009 and 0.011 kg TAN kg–1 feed fed day–1, respectively.  相似文献   

15.
This paper examines the changes in the population ecology parameters and biomass of golden grey mullet (Liza aurata) in Iranian waters of the Caspian Sea from 1991 to 2005. For most years during this 14-year period, we estimated the age structure of the catch, length–weight relationship, von Bertalanffy growth parameters, condition factor, natural and fishing mortality and biomass. Growth parameters were estimated as L = 62.7 cm, K = 0.15 year−1, t0 = −0.23 year−1. The instantaneous coefficient of natural mortality was estimated as 0.350 year−1 and the instantaneous coefficient of fishing mortality varied during the 14-year period between 0.111 to 0.539 year−1. Biomass estimates of golden grey mullet, from the biomass-based cohort analysis were increased from 13,527 mt in 1991–1992 to 23,992 mt in 2002–2003. In 2004–2005, it was estimated to be 23,658 mt. We concluded that at the present time, the stock of golden grey mullet is not being over-fished.  相似文献   

16.
To learn more about the movement patterns of bigeye tuna (Thunnus obesus), we deployed archival tags on 87 fish ranging in fork length from 50 to 154 cm. Thirteen fish were recaptured, from which 11 archival tags were returned, representing in aggregate 943 days‐at‐liberty. We successfully retrieved data from 10 tags, representing 474 days in aggregate. The largest fish recaptured was 44.5 kg [131 cm fork length (FL)] and the smallest 2.8 kg (52 cm). The deepest descent recorded was 817 m, the coldest temperature visited 4.7°C, and minimum oxygen level reached ~1 mL L?1. Fish spent little time at depths where water temperatures were below 7°C and oxygen levels less than ~2 mL L?1. Five fish were recaptured near the offshore weather buoy where they were tagged. Based on vertical movement patterns, it appeared that all stayed immediately associated with the buoy for up to 34 days. During this time they remained primarily in the uniform temperature surface layer (i.e. above 100 m). In contrast, fish not associated with a floating object showed the W‐shaped vertical movement patterns during the day characteristic of bigeye tuna (i.e. descending to ~300–500 m and then returning regularly to the surface layer). Four fish were tagged and subsequently recaptured near Cross Seamount up to 76 days later. These fish exhibited vertical movement patterns similar to, but less regular than, those of fish not associated with any structure. Bigeye tuna appear to follow the diel vertical movements of the deep sound scattering layer (SSL) organisms and thus to exploit them effectively as a prey resource. Average night‐time depth was correlated with lunar illumination, a behaviour which mimics movements of the SSL.  相似文献   

17.
The pineal organ of fish, through its 24h rhythmic release of melatonin, acts as a transducer of the photoperiod, influencing different physiological functions (e.g., reproduction, growth). The target sites for melatonin are poorly known in fish, especially marine species. A radioligand study was undertaken using the gilthead sea bream (Sparus aurata) maintained under natural temperature and photoperiod (at 28°N latitude). This species exhibits the property of changing sex during growth. Brains of one year-old males were collected at 16:00h and brains of three year-old females at 03:00, 10:00, 16:00 and 23:00h. Membrane homogenate receptor assays were run using 2-[125I]iodomelatonin as a ligand. Binding sites were detected in brains of young and old fish. In the younger, the exhibited a Bmax between 3.52 and 4.29 fmol mg protein–1 and a KD between 358–380 pmol l–1. In the older fish, the KD varied according to a daily pattern: values were three times higher at 03:00 and 10:00h (500–600 pmol l–1) than at 16:00 and 23:00h (150–300 pmol l–1). The number of sites also were higher at 03:00 and 10:00h (180–200 fmol mg protein–1) than at 16:00 and 23:00h (95–110 fmol mg protein–1). Melatonin and iodomelatonin displaced 2-[125I]iodomelatonin binding in a dose dependent manner, the second being more potent than the first. Binding was also inhibited by GTP. The results provide the first evidence for the presence of membrane melatonin binding sites in the brain of an exclusively marine fish. They suggest that their number and affinity varies during growth and throughout a light/dark cycle. Future experiments will aim to precise the anatomical location and role of these binding sites.  相似文献   

18.
Asian catfish, Clarias batrachus, were fed semi-purified basaldiets containing 0, 0.1, 0.5, 1, 3 and 5 mg biotin kg–1diet for 60 days. Fish fed the control diet (no biotin) showed(P < 0.05) higher mortality, lower weight gain, specificgrowth rate (SGR), feed efficiency ratio (FER) and protein efficiencyratio (PER) than in fish fed diets supplemented with biotin. The highestweight gain, SGR, FER and PER were noticed in fish fed 1 mg biotinkg–1, followed by 0.5, 5, 3 and 0.1 mg biotinkg–1, except for PER (followed by 0.5, 5, 0.1 and 3 mgbiotin kg–1). Quadratic analysis showed that the optimumdietary biotin requirements for maximal weight gain, PER and PER were2.49, 2.54 and 2.52 mg kg–1, respectively. Liver biotinconcentrations were influenced by levels of biotin in the diet.Concentration of liver biotin increased as level of dietarysupplementation increased and no biotin was detected in the liver of thecontrol fish. Liver pyruvate carboxylase and acetyl CoA carboxylaseactivities were higher in fish fed biotin-supplemented diets than incontrols. Biotin concentrations, pyruvate carboxylase and acetyl CoAcarboxylase activities in liver associated with normal growth rangedfrom 10.59 to 10.66 g g–1, 147.97 to 148.18 units mgprotein–1 and 12.76 to 12.78 units mg protein–1, respectively. Biotin deficiency symptoms such as anorexia, darkskin colour and convulsions were observed in fish fed the control diet.The optimum dietary biotin requirement for maximal growth of C.batrachus is about 2.49 mg kg–1 diet.  相似文献   

19.
Abstract.— The aquaculture performance of mutton snapper Lutjanus analis raised in floating net cages was assessed by measuring their growth, survival, and feed conversion rates during a growout trial conducted in a 3.2‐ha saltwater lake in the Florida Keys, Florida, USA. Approximately 10,500 hatchery‐reared finger‐lings were stocked in two circular, high‐density polyethylene (HDPE) net cages of 7‐m diameter × 7‐m deep (300 m2) and 10‐m diameter × 7‐m deep (600 m3) dimensions. Cages were stocked at 25 fish/m3 (3.2 kg/m3) and 5 fish/m3 (0.72 kg/m3), respectively. Fish grew from a mean of 16.5 g to 302.8 g (25.6 cm TL) in 246 days in the former cage and from a mean of 42.3 g to 245.6 g (23.8 cm TL) in 178 d in the latter cage. Growth rates in weight were best expressed by the following exponential equations: cage 1 (high stocking density): W = 20.716 e0.0112x (r2= 0.83); cage 2 (low stocking density): W = 38.848 e0.0118x (r2= 0.81). Length‐weight data indicate that hatcheryraised, cage‐cultured mutton snapper are heavier per unit length than their wild counterparts. There was no significant difference (P < 0.05) between the slopes of the two lines, indicating that fish in the two cages grew at the same rate. The length‐weight relationships for mutton snapper stocked in cages 1 and 2 are expressed, respectively, by the equations W = 0.000009 L 3.11 (r2= 0.99) and W = 0.000005 L 3.22 (r2= 0.97). Overall feed conversion rate for both cages combined was 1.4. Approximately 10% of the fish sampled exhibited some degree of deformity, particularly scoliosis. Overall survival rate was 70%. Results suggest that L. analis has potential for aquaculture development in net cage systems.  相似文献   

20.
A method was developed to quantify hydrodynamic mixing parameters, and to optimize the physical environmental conditions, in culture tanks. Improved mixing will result in better tank water quality, more efficient use of available volume by the culture animals (leading to optimal stocking densities and better feed management) and possibly reduced water pumping requirements. Experiments were conducted to determine the influence of a range of flow rates, residence times, water depths and stocking densities on hydrodynamics in juvenile turbot (Scophthalmus maximus (L.)) tanks. Decreases in water depth resulted in significant improvements in mixing and the efficiency with which the water was used, as indicated by reductions in dead volumes. A depth of less than 9.4 cm at a flow rate of 2 l min–1 was expected to minimize dead volumes in the tank. This indicated that mixing was better in shallower tanks. Within the range 0–13 l min–1, increased flow rate improved mixing at a constant depth of 9 cm (and water volume of 18.54 l) though increased flow rates greater than about 2.5 l min–1 produced only small improvements in mixing. Within the range 0–50 fish per tank (equivalent to a mean stocking density of 0–1.84 kg m–2), stocking density did not significantly influence mixing in tanks with a depth of 9 cm and flow rate of 2 l min–1. Such depth reductions, for demersal species, may be a useful means to either decrease water use without reducing residence time, or alternatively to increase the flushing rate without increasing water use, at a given stocking density. The large changes in the efficiency with which the tanks were used, which were achieved with ease, indicates that attention to water mixing can give positive benefits to a wide range of land-based farm operators. Care must be taken when adjusting tank hydrodynamics, that water quality is maintained and that biological parameters such as stress levels, sunlight effects and feed management are optimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号