首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To improve interfacial adhesion between carbon fiber and epoxy resin, the epoxy matrix is modified with N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane (YDH602) and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (YDH792), respectively. And the effect of matrix modification on the mechanical performance of carbon/epoxy composites is investigated in terms of tensile, flexural and interlaminar properties. The flexural properties indicate that the optimum concentration of silane coupling agents YDH602 and YDH792 for the matrix modification is approximately 0.5 wt% of the epoxy resin system, and the mechanical properties of the YDH792-modified epoxy composites is better than that of the YDH602-modified epoxy composites at the same concentration. Compared to unmodified epoxy composite, the incorporation of 0.5 wt% YDH792 results in an increase of 4, 44 and 42 % in tensile, flexural and interlaminar shear strength (ILSS) values of the carbon/epoxy composite, respectively, while the corresponding enhancement of tensile and flexural modulus is 3 and 15 %. These improvements in mechanical properties can be considered to be an indication of better fiber/matrix interfacial adhesion as confirmed by SEM micrographs of the fracture surface after interlaminar shear testing. The viscosity of the modified epoxy resin system can be reduced by incorporation of silane coupling agent YDH792, which is beneficial for fiber impregnation or wetting during liquid composite molding process.  相似文献   

2.
In this study, a new approach consisting of chemical treatment steps followed by electrospinning process was applied to produce cellulose nanofibers from wheat straws. Wheat straws were initially pretreated by NaOH solution to open the complex structure of raw materials and remove non-cellulosic materials. Then, acid and alkali hydrolysis was separately performed to eliminate hemicellulose and soluble lignin. Also, bleaching processes were implemented to remove the insoluble lignin. Cellulose nanofibers were produced by electrospinning of various concentrations of cellulose in different solvents including sodium hydroxide/urea/thiourea, pure trifluoroacetic acid (TFA), and TFA/methylene chloride. Images obtained by Scanning Electron Microscope (SEM) showed long and uniform nanofibers produced from electrospinning of cellulose/TFA/methylene chloride solution. An epoxy based laminated composite was prepared by a lamina of cellulose microfiber and electrospun nanofiber mat using hand lay-up composite manufacturing method. The fracture surface of the epoxy nanocomposite was analyzed by SEM images. In addition, the mechanical properties of laminated epoxy composites were compared with pure epoxy by conducting tensile and impact tests. Tensile test results showed that the ultimate tensile strength, elongation, and modulus of laminated epoxy nanocomposites were significantly increased. Moreover, it was found that by adding a nanofiber lamina in the epoxy composite, the impact resistance was significantly improved as a result of crack growth prevention.  相似文献   

3.
In this study, we report the fabrication and evaluation of a hybrid multi-scale basalt fiber/epoxy composite laminate reinforced with layers of electrospun carbon nanotube/polyurethane (CNT/PU) nanofibers. Electrospun polyurethane mats containing 1, 3 and 5 wt% carbon nanotubes (CNTs) were interleaved between layers of basalt fibers laminated with epoxy through vacuum-assisted resin transfer molding (VARTM) process. The strength and stiffness of composites for each configuration were tested by tensile and flexural tests, and SEM analysis was conducted to observe the morphology of the composites. The results showed increase in tensile strength (4–13 %) and tensile modulus (6–20 %), and also increase in flexural strength (6.5–17.3 %) and stiffness of the hybrid composites with the increase of CNT content in PU nanofibers. The use of surfactant to disperse CNTs in the electrospun PU reinforcement resulted to the highest increase in both tensile and flexural properties, which is attributed to the homogeneous dispersion of CNTs in the PU nanofibers and the high surface area of the nanofibers themselves. Here, the use of multi-scale reinforcement fillers with good and homogeneous dispersion for epoxy-based laminates showed increased mechanical performance of the hybrid composite laminates.  相似文献   

4.
The interface of fiber-reinforced composites has remained a vexing problem that limits the use of the excellent properties of carbon fiber (CF) in composite applications. In the present study, waterborne polyurethane (WPU) hybrid sizing agents were prepared to improve the performances of CFs and the interface strength of CF/PA6 composites. The structural and mechanical properties of the single-CF and CF/PA6 composites were systematic investigated. The results showed that the mechanical properties of the CF/PA6 composites were significantly improved by adding of WPU hybrid sizing agent. The tensile and flexural strengths of the WPU/SiO2/Al2O3 hybrid sizing agent treated CF/PA6 composites were increased by 24.0 % and 25.7 % than those of no-sizing treated CF/PA6 composites, respectively.  相似文献   

5.
The multi-walled carbon nanotube (MWNT)/cellulose nanocomposites were prepared by using monohydrated Nmethylmorpholine-N-oxide (NMMO) as a solvent for dispersing the acid-treated MWNTs (A-MWNTs) as well as for dissolving the cellulose. The A-MWNTs were well dispersed in both monohydrated NMMO and the nanocomposite films. The nanocomposite films were prepared by a film-casting method onto a glass plate. The tensile strain at break, Young’s modulus, and toughness of nanocomposite films increased by ~5, ~2 and ~12 times, respectively at ? (A-MWNT content in the nanocomposite)=0.8 wt%, as compared to those of the pure cellulose film. The thermal degradation temperature of the nanocomposite films also increased from 329 to 339 oC by incorporation of 1 wt% A-MENTs. The electric conductivities of the A-MWNT/cellulose nanocomposites at ? =1 and 10 wt% were 2.09×10?5 and 3.68×10?3 S/cm, respectively. The transmittances were 86, 69 and 55 % at 550 nm for 0.4, 0.8 and 1 wt% nanocomposite films, respectively. Thus, these nanocomposites are promising materials in terms of all the properties studied in this paper and can be used for many applications, such as toughened cellulose fibers, transparent electrodes, etc.  相似文献   

6.
A useful reinforcement for carbon fiber (CF) composites was found by performing the assisted electrophoretic deposition (EPD) of graphene oxide (GO) for carbon nanotubes (CNTs) onto the CF surface. GO-assisted EPD of CNTs was conducted without the use any other pre-treatment or additives in order to avoid destroying the structure of the CNTs and to facilitate preparation of stable dispersion that was suitable for EPD. The presence of GO-CNTs may effectively increase both the roughness and wettability of the CF surface, resulting in an improvement to the interfacial bonding strength between the CF and the epoxy (EP). In contrast to the pristine CF/EP composite, the GO-CNTs/CF/EP composite exhibited a 64.6 % increase in interlaminar shear strength. Meanwhile, the water absorption of the composites decreased from 0.36 wt.% to 0.14 wt.%. The variable surface morphology, surface roughness, surface free energy and surface chemical composition of the CF were considered to have had an effect on the interfacial properties of the CF/EP composites; these effects could be seen using atomic force microscopes, scanning electron microscopes, X-ray photoelectron microscopes and contact angle analysis characterizations.  相似文献   

7.
The present paper compares the mechanical, electrical and thermal properties of epoxy nanocomposites (prepared by solution blending method) by adding four different multi-walled carbon nanotubes (MWCNTs), which are pristine, cationic, anionic and non-ionic surfactant functionalized MWCNTs, respectively. This investigation focused on the effects of dispersion of MWCNTs on the physical properties. Systematical characterization on the dispersion of MWCNTs in different solvents were did via UV-Vis spectrophotometer. The Hansen solubility parameters (HSPs) and dispersion of MWCNTs in solvent and epoxy were both changed after surfactants introduced especially for the non-ionic surfactant. Finally, mechanical, fracture toughness, electrical and thermal properties of epoxy composites were found can be improved because of good dispersion of MWCNTs (especially non-ionic surfactant).  相似文献   

8.
Biodegradable nanocomposites were prepared by mixing a polymer resin and layered silicates by the melt intercalation method. Internal structure of the nanocomposite was characterized by using the small angle X-ray scattering (SAXS) and transmission electron microscope (TEM). Nanocomposites having exfoliated and intercalated structures were obtained by employing two different organically modified nanoclays. Rheological properties in shear and extensional flows and biodegradability of nanocomposites were measured. In shear flow, shear thinning behavior and increased storage modulus were observed as the clay loading increased. In extensional flow, strain hardening behavior was observed in well dispersed system. Nanocomposites with the exfoliated structure had better biodegradability than nanocomposites with the intercalated structure or pure polymer.  相似文献   

9.
Poly(ethylene 2,6-naphthalate)/multi-walled carbon nanotube (PEN/MWNT) nanocomposites are prepared by in situ condensation polymerization in the presence of various acid-treated MWNT (a-MWNT) contents and their morphology, rheological and mechanical properties are investigated as a function of the a-MWNT content. SEM image of a plasma-etched nanocomposite exhibits that a-MWNTs are dispersed well in the PEN matrix by forming an interconnected network structure. Accordingly, rheological properties such as complex viscosities and shear moduli of PEN/a-MWNT nanocomposites at the terminal region of low frequency are much higher than those of pure PEN. Glass transition temperatures of nanocomposites also increase with the increment of the a-MWNT content, which stems from the reduced chain mobility due to the specific interaction between a-MWNTs and PEN matrix. Dynamic and tensile mechanical properties of nanocomposites are also higher than those of pure PEN and they increase with the increment of the a-MWNT content. The highly improved mechanical properties of PEN/a-MWNT nanocomposites are explained to originate from the interconnected network structure of a-MWNTs in PEN matrix as well as the strong interfacial adhesion between a-MWNTs and PEN matrix.  相似文献   

10.
Composite materials have a wide range of applications in structural components because of their high strength-to-weight and stiffness-to-weight ratios. However, the most crucial and common life-restricting crack growth mode in laminated composites i.e. delamination is of great concern. Air jet texturing was selected to provide a small amount of bulk to the glass yarn. The purpose was to provide more surface contact between the fibres and resin and also to increase the adhesion between the neighbouring layers. These were expected to enhance the resistance to delamination in the woven glass composites. The development and characterisation of core-and-effect textured glass yarns was presented in the previous paper. This paper describes the comparison of the mechanical properties of composites produced from air-textured glass yarns and the composites made from locally manufactured carbon fabrics. The tensile, flexure and inter-laminar shear strength (ILSS) were compared and it was observed that although glass fibres are inferior to carbon fibres in terms of mechanical properties however, the flexure strength and ILSS of glass based composites increases after texturing and were found closer to the properties of carbon based composites.  相似文献   

11.
A study on the tensile and flexural properties of jute-glass-carbon fibers reinforced epoxy hybrid composites in inter-ply configuration is presented in this paper. Test specimens were manufactured by hand lay-up process and their tensile and flexural properties were obtained. The effects of the hybridization, different fibers content and plies stacking sequence on the mechanical properties of the tested hybrid composites were investigated. Two-parameter Weibull distribution function was used to statistically analyze the experimental results. The failure probability graphs for the tested composites were drawn. These graphs are important tools for helping the designers to understand and choose the suitable material for the required design and development. Results showed that the hybridization process can potentially improve the tensile and flexural properties of jute reinforced composite. The flexural strength decreases when partial laminas from a carbon/epoxy laminate are replaced by glass/epoxy or jute/epoxy laminas. Also, it is realized that incorporating high strength fibers to the outer layers of the composite leads to higher flexural resistance, whilst the order of the layers doesn’t affect the tensile properties.  相似文献   

12.
Ni-coated short carbon fibers (Ni-SCFs) were prepared using an electrodeposition method. Short carbon fiber (SCF) reinforced epoxy composites were prepared by changing the fiber content (0.1–0.7 wt%). To investigate the effect of Ni-coated short carbon fibers on the mechanical and electrical properties of the composites, we prepared two kinds of reinforcements: the short carbon fibers treated by 400 °C (400 °C treated SCFs) and Ni-SCFs. Fracture characteristics of the composites revealed the Ni coatings and the epoxy matrix had a better interface, so that the results of tensile and bending strength were better in epoxy/Ni-SCFs composites than those in epoxy/400 °C treated SCFs composites. The 400 °C treated SCFs decreased the electrical resistivity of the epoxy composites, compared to the pure epoxy. However the epoxy/Ni-SCFs composites had lower electrical resistivity than epoxy/400 °C treated SCFs with the same fiber content.  相似文献   

13.
The present study represents the influence of adding different weight fractions (0, 0.1, 0.25 and 0.4 wt.%) of multi-walled carbon nanotubes (MWCNT) on the high velocity impact behavior of anisogrid stiffened composite (AGSC) plates. AGSC plates were fabricated through hand lay-up method where E-glass woven fabrics and unidirectional carbon fiber rovings were used as fibrous reinforcement of ribs and skin, respectively. High velocity impact test was performed on these plates by cylindrical projectile with conical nose. Obtained results revealed that the maximum improvement of the high velocity impact properties of AGSC plates were obtained through addition of 0.4 wt.% of MWCNTs. Field emission scanning electron microscopy (FESEM) examinations of the fracture surfaces clearly indicated the improvement in the interfacial adhesion between the fibers and epoxy matrix in the case of the nanocomposite specimens. Also, it was observed that the addition of MWCNTs to the AGSC specimens led to reduce the damage area and increased the damage tolerance, considerably.  相似文献   

14.
Epoxy resin containing bromine compound was melt blended with PET to obtain flame retardant polymer. The blend product was characterized by DSC, SEM, intrinsic viscosity and melt index measurements. The reaction between the epoxy group of DGEBBA (diglycidyl ether of brominated bisphenol A) and the carboxyl (or hydroxyl) end group of PET led to cross-linking of PET chains, and the intrinsic viscosity and melt index (MI) were increased in the range of equivalent amount of epoxy resin (within 1 %). DSC data revealed that the epoxy resin was not located in the crystalline region but was appeared in the amorphous region of PET matrix. Good miscibility of epoxy resin resulted in the decrease of crystallization temperature and glass transition temperature of PET. The blend was spun into fiber without any problems such as swelling or draw resonance, however, the mechanical properties were decreased as the amount of the DGEBBA was increased.  相似文献   

15.
Poly(ethylene terephthalate) (PET)/CaCO3 and PET/modified-CaCO3 (m-CaCO3) nanocomposites were prepared by melt blending. The morphology indicated that m-CaCO3 produced by reacting sodium oxalate and calcium chloride, was well dispersed in PET matrix and showed good interfacial interaction with PET compared to CaCO3. No significant differences in the thermal properties such as, glass transition, melting and degradation temperatures, of the nanocomposites were observed. The thermal shrinkage of PET at 120 °C was 10.8 %, while those of PET/CaCO3 and PET/m-CaCO3 nanocomposites were 2.9–5.2 % and 1.2–2.8 %, respectively depending on filler content. The tensile strength of PET/CaCO3 nanocomposite decreased with CaCO3 loading, whereas that of PET/m-CaCO3 nanocomposites at 0.5 wt% loading showed a 17 % improvement as compared to neat PET. The storage modulus at 120 °C increased from 1660 MPa for PET to 2350 MPa for PET/CaCO3 nanocomposite at 3 wt% loading, and 3230 MPa for PET/m-CaCO3 nanocomposite at 1 wt% loading.  相似文献   

16.
The main objective of this research was to study the effect of fiber content variation and stearic acid (SA) treatment on the fundamental properties of unidirectional coir fiber (CF) reinforced polypropylene (PP) composites. Several percentages of filler contents were used (10–40 wt %) in order to gain insights into the effect of filler content on the properties of the composites. Coir/PP composites were fabricated by compression molding, and the properties of composites were studied by physico-mechanical and thermal properties. The results from mechanical properties such as tensile strength (TS), tensile modulus (TM) and impact strength (IS) of the CF/PP composites were found to be increased with increasing fiber content, reached an optimum and thereafter decreased with further increase in fiber content. Treatment of the coir with SA as the coupling agent enhanced the mechanical properties, crystallization temperature and crystallinity of virgin PP and water desorption of the resulting composites, resulting from the improved adhesion between the CF and PP matrix. Scanning electron micrographs (SEM) of the tensile fractured samples showed improved adhesion between fiber and matrix upon treatment with SA. Interfacial shear strength (IFSS) of the composites was measured by single fiber fragmentation test (SFFT).  相似文献   

17.
Single walled carbon nanotubes (SWNTs) are considered as a highly potential reinforcement material for the epoxy composites. Dispersion of SWNTs in epoxy and poor interfacial strain transfer are two major challenges. Surface functionalization is one efficient way to change the dispersion and interfacial properties of SWNTs. In this study, five different modification methods of SWNTs were used, and the functional groups on the SWNTs were tested by X-ray photoelectron spectroscopy and Raman spectroscopy. The SWNTs/epoxy composite were prepared using dimethylformamide (DMF) as the solvent. SWNTs at two concentration levels of 0.05 wt% and 0.5 wt% and with five different surface modifications were filled in to epoxy resins. The dispersion of the nanotubes in epoxy resin was evaluated by light optical microscope (LOM), with high content of SWNTs more aggregates appear. The interfacial strain transfer was tested by Raman shift of the 2D band when applying a strain on the epoxy composite sample. With equal strain levels in the composite more strain was transferred from epoxy matrix to SWNTs with 0.05 wt% of SWNTs than the 0.5 wt% of SWNTs filled epoxy resin. Mechanical properties were influenced by the strain transfer efficiency and the curing degree of the samples.  相似文献   

18.
Intra-layer and inter-layer hybrid composite laminates were made with epoxy resin and compositions were varied in six different proportions. In-plane compressive mechanical properties were studied using finite element analysis and experiments, and the results found were in good agreement. Properties of intra-layer and inter-layer hybrids were compared with plain carbon/epoxy and plain glass/epoxy composites, and a comparison among themselves was also made. It was found that intra-layer hybrids to some extent exhibit better compressive properties compared to inter-layer hybrids. Percentage enhancement in compressive failure strain was noticed. Negative hybrid effects on compressive strength was noticed for both intra-layer and inter-layer hybrid configurations. It was found that proportion of carbon fiber content plays a key role in determining the compressive properties. According to macro-scale observation all composite laminates failed catastrophically under compressive loading. SEM observation depicted that under compressive loading carbon fibers break first followed by glass fiber.  相似文献   

19.
Thermal and oxidation resistant coating is necessary for carbon fiber (CF) in CF reinforced concrete (CFRC) composite application in order to fulfil a high level of safety standard in case of fire. Pre-ceramic coatings such as Polysilazane, Polysiloxane, and Methyl silicone resin have been deposited on CF filament yarn by means of wet chemical continuous dip coating method. The surface analyses e.g. scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR) results showed the changes of surface morphology by the coatings. Thermo gravimetric analysis (TGA) revealed that the high temperature (up to 800 °C) oxidation stability of CF was significantly improved with coatings. Thermo-mechanical properties also significantly enhanced up to 600 °C. CF yarn retains its original strength and elasticity modulus/stiffness at 700 °C due to thermal and oxidation resistant coatings.  相似文献   

20.
Poly(2-hydroxyethylmethacrylate) (PHEMA)/hydroxyapatite (HAP) nanocomposites were synthesized through a new route involving nano-sized HAP (nHAP) particles or modified nHAP mixed with monomer 2-hydroxyethylmethacrylate via in situ polymerization in supercritical carbon dioxide (scCO2). Fourier-transform infrared spectroscopy showed phosphate peak increased with nHAP content in composite. X-ray diffraction patterns of PHEMA/nHAP revealed the presence of crystallized nHAP. Thermogravimetric analysis showed that the ultimate nHAP content in PHEMA/nHAP composites is consistent with its initial amount. Scanning electron microscopy revealed that nanocomposite particles are much smaller than PHEMA particles. PHEMA/nHAP composites with average diameter of approximately 600 nm were obtained in scCO2 with 94 % yield. Mechanical properties of PHEMA/nHAP nanocomposites were better than those of PHEMA, and compressive modulus and strength of composites with 30 wt.% nHAP were 193 and 29 MPa, respectively. Nanocomposite adsorption toward bovine serum albumin was evaluated, and results indicated that analyte adsorption amount can reach up to 282 mg/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号