首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we assessed the potential of using photogrammetric data for species-specific forest inventories. The method is based on a combination of Dirichlet and ordinary linear regression models. This approach was used to predict species proportions, main tree species, total, and species-specific volume. Structural and spectral variables were used as predictors. The models were validated using 63 independent validation stands. The results from airborne laser scanning (ALS) data combined with spectral data and photogrammetric data obtained using aerial imagery with different forward overlaps of 80% and 60% were compared. The best photogrammetry-based models predicted species proportions with a relative root mean square error (RMSE) of 21.4%, classified dominant species with 79% accuracy, predicted total volume with relative RMSE of 13.4%, and predicted species-specific volume with relative RMSE of 36.6%, 46.5%, and 84.9% for spruce, pine, and deciduous species, respectively. The results were similar for the three point cloud datasets obtained from aerial imagery and ALS and the accuracies of the predictions were comparable to methods used in operational FMI. The study highlights the effectiveness of forest inventories carried out using photogrammetric data, which – differently from ALS, can include species-specific information without relying on multiple data sources.  相似文献   

2.

Key message

We examine how the configurations in nearest neighbor imputation affect the performance of predicted species-specific diameter distributions. The simultaneous nearest neighbor imputation for all tree species and separate imputation by tree species are evaluated with total volume calibration as a prediction method for diameter distributions.

Context

This study considers the predictions of species-specific diameter distributions in Finnish boreal forests by means of airborne laser scanning (ALS) data and aerial images.

Aims

The aim was to investigate different configurations in non-parametric nearest neighbor (NN) imputation and to determine how changes in configurations affect prediction error rates for timber assortment volumes and the error indices of the diameter distributions.

Methods

Non-parametric NN imputation was used as a modeling method and was applied in two different ways: (1) diameter distributions were predicted at the same time for all tree species by simultaneous NN imputation, and (2) diameter distributions were predicted for one tree species at a time by separate NN imputation. Calibration to a regression-based total volume prediction was applied in both cases.

Results

The results indicated that significant changes in the volume prediction error rates for timber assortment and for error indices can be achieved by the selection of responses, calibration to total volume, and separate NN imputation by tree species.

Conclusion

Overall, the selection of response variables in NN imputation and calibration to total volume improved the predicted diameter distribution error rates. The most successful prediction performance of diameter distribution was achieved by separate NN imputation by tree species.
  相似文献   

3.
Digital maps of forest resources are a crucial factor in successful forestry applications. Since manual measurement of this data on large areas is infeasible, maps must be constructed using a sample field data set and a prediction model constructed from remote sensing materials, of which airborne laser scanning (ALS) data and aerial images are currently widely used in management planning inventories. ALS data is suitable for the prediction of variables related to the size and volume of trees, whereas optical imagery helps in improving distinction between tree species. We studied the prediction of forest attributes using field data from National Forest Inventory complemented with ad hoc field plots in combination with ALS and aerial imagery data in Aland province, Finland. We applied feature selection with genetic algorithm and greedy forward selection and compared multiple linear and nonlinear estimators. Maximally around 40 features from a total of 154 were required to achieve the best prediction performances. Tree height was predicted with normalized root mean squared error value of 0.1 and tree volume with a value around 0.25. Predicting the volumes of spruce and broadleaved trees was the most challenging due to small proportions of these tree species in the study area.  相似文献   

4.
Forest inventories based on airborne laser scanning (ALS) have already become common practice in the Nordic countries. One possibility for improving their cost effectiveness is to use existing field data sets as training data. One alternative in Finland would be the use of National Forest Inventory (NFI) sample plots, which are truncated angle count (relascope) plots. This possibility is tested here by using a training data set based on measurements similar to the Finnish NFI. Tree species-specific stand attributes were predicted by the non-parametric k most similar neighbour (k-MSN) approach, utilising both ALS and aerial photograph data. The stand attributes considered were volume, basal area, stem number, mean age of the tree stock, diameter and height of the basal area median tree, determined separately for Scots pine, Norway spruce and deciduous trees. The results obtained were compared with those obtained when using training data based on observations from fixed area plots with the same centre point location as the NFI plots. The results indicated that the accuracy of the estimates of stand attributes derived by using NFI training data was close to that of the fixed area plot training data but that the NFI sampling scheme and the georeferencing of the plots can cause problems in practical applications.  相似文献   

5.
The three nonparametric k nearest neighbour (kNN) approaches, most similar neighbour inference (MSN), random forests (RF) and random forests based on conditional inference trees (CF) were compared for spatial predictions of standing timber volume with respect to tree species compositions and for predictions of stem number distributions over diameter classes. Various metrics derived from airborne laser scanning (ALS) data and the characteristics of tree species composition obtained from coarse stand level ground surveys were applied as auxiliary variables. Due to the results of iterative variable selections, only the ALS data proved to be a relevant predictor variable set. The three applied NN approaches were tested in terms of bias and root mean squared difference (RMSD) at the plot level and standard errors at the stand level. Spatial correlations were considered in the statistical models. While CF and MSN performed almost similarly well, large biases were observed for RF. The obtained results suggest that biases in the RF predictions were caused by inherent problems of the RF approach. Maps for Norway spruce and European beech timber volume were exemplarily created. The RMSD values of CF at the plot level for total volume and the species-specific volumes for European beech, Norway spruce, European silver fir and Douglas fir were 32.8, 80.5, 99.0, 137.0 and 261.1%. These RMSD values were smaller than the standard deviation, although Douglas fir volume did not belong to the actual response variables. All three non-parametric approaches were also capable of predicting diameter distributions. The standard errors of the nearest neighbour predictions on the stand level were generally smaller than the standard error of the sample plot inventory. In addition, the employed model-based approach allowed kNN predictions of means and standard errors for stands without sample plots.  相似文献   

6.
7.
ABSTRACT

Forest productivity is a crucial variable in forest planning, usually expressed as site index (SI). In Nordic commercial forest inventories, SI is commonly estimated by a combination of aerial image interpretation, field assessment and information obtained from previous inventories. Airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) data can alternatively be used for SI estimation, however the economic utilities of the inventory methods have not been compared. We compared seven methods of SI estimation in a cost-plus-loss analysis, by which we added the expected economic losses due to sub-optimal treatment decisions to the inventory costs. The methods comprised direct and indirect estimation from combinations of ALS, DAP and stand register data, and manual interpretation from aerial imagery supported by field assessment and information from previous inventories (conventional practices). The choice of method had great impact on both the accuracy and the economic value of the produced estimates. Direct methods using bitemporal ALS and DAP data gave the best accuracy and the smallest total cost. DAP was a suitable and low-cost data source for SI estimation. Estimation from single-date ALS and DAP data and age obtained from the stand register provided practical alternatives when applied to even-aged stands.  相似文献   

8.
利用东北林区云冷杉林、落叶松林、樟子松林、红松林、栎树林、桦树林、杨树林、榆树林、椴树林和水胡黄林10种森林类型的1947个样地的激光雷达数据和地面实测蓄积量数据,首先通过多元线性回归和非线性回归方法,分别建立基于机载激光雷达数据的森林蓄积量回归估计模型,并通过对比分析,确定统一形式的基础回归模型;然后利用哑变量建模方法,建立基于不同森林类型参数和相同激光雷达变量的蓄积量模型。结果表明,研究建立的10种森林类型的线性蓄积量回归模型的解释变量个数在2~7之间,确定系数在0.460~0.858之间;非线性蓄积量回归模型的解释变量个数在2~4之间,确定系数在0.461~0.846之间。基于点云平均高度和平均强度建立的10种森林类型的二元蓄积量模型(研究称之为标准模型),其确定系数在0.440~0.815之间,平均预估误差在2.88%~4.42%之间,平均百分标准误差在16.76%~25.52%之间,预估精度基本达到森林资源规划设计调查技术规定要求。依据研究建立的10种森林类型的蓄积量模型,可以编制基于激光雷达数据的航空林分材积表,在森林资源调查实践中推广应用。  相似文献   

9.

This study investigated the stand structure in pine, spruce and deciduous forests in the border district of Finland and Russia. A total of 46 mature forest stands was selected as pairs, the members of each pair being as similar as possible with respect to their forest site type, age, moisture and topography. The stands were then compared between the two countries by means of basal areas and number of stems. The proportions of dominating tree species were 2-12% lower, and correspondingly the proportions of secondary tree species higher, in Russian forests. The density of the forest stock was also higher in each forest type in Russia. The forests in the two countries differed most radically in terms of the abundance of dead trees. The amount was two to four times higher in Russian deciduous and spruce forests, and in pine forests the difference was 10-fold. The stand structures indicated that Russian coniferous stands, in particular, were more heterogeneous than intensively managed pine and spruce stands in Finland.  相似文献   

10.
The aim of this study was to examine whether pre-classification (stratification) of training data according to main tree species and stand development stage could improve the accuracy of species-specific forest attribute estimates compared to estimates without stratification using k-nearest neighbors (k-NN) imputations. The study included training data of 509 training plots and 80 validation plots from a conifer forest area in southeastern Norway. The results showed that stratification carried out by interpretation of aerial images did not improve the accuracy of the species-specific estimates due to stratification errors. The training data can of course be correctly stratified using field observations, but in the application phase the stratification entirely relies on auxiliary information with complete coverage over the entire area of interest which cannot be corrected. We therefore tried to improve the stratification using canopy height information from airborne laser scanning to discriminate between young and mature stands. The results showed that this approach slightly improved the accuracy of the k-NN predictions, especially for the main tree species (2.6% for spruce volume). Furthermore, if metrics from aerial images were used to discriminate between pine and spruce dominance in the mature plots, the accuracy of volume of pine was improved by 73.2% in pine-dominated stands while for spruce an adverse effect of 12.6% was observed.  相似文献   

11.

Context

Uneven-aged management systems based on selection silviculture have become popular in European mountain forests and progressively replace other silvicultural practices. In time, this trend could lead to a homogenisation of the forest mosaic with consequences on structural indices recognised as beneficial to forest biodiversity.

Aims

This study was conducted to investigate the potential effects of a generalisation of the selection silvicultural system on structural diversity in the forest landscape with consequences for forest biodiversity conservation.

Methods

We compared four structural indices (tree species richness, diameter heterogeneity, deadwood volume and basal area of mature trees) in five different stand types typical of the northern French Alps, using forest plot data in the Vercors mountain range. Through virtual landscape simulations, we then calculated predicted mean proportions of stand types under two different conservation strategies: (i) maximising mean index values at the landscape level and (ii) maximising the number of plots in the landscape with index values above given thresholds.

Results

Multi-staged forests did not maximise all indices, the best solution being to combine the five stand types in uneven proportions to improve biodiversity conservation.

Conclusion

The expansion of selection silviculture in European heterogeneous forest landscapes could enhance biodiversity conservation if other stand types with complementary structural characteristics are maintained.  相似文献   

12.
Statistical mapping of tree species over Europe   总被引:1,自引:1,他引:0  
In order to map the spatial distribution of twenty tree species groups over Europe at 1 km × 1 km resolution, the ICP-Forest Level-I plot data were extended with the National Forest Inventory (NFI) plot data of eighteen countries. The NFI grids have a much smaller spacing than the ICP grid. In areas with NFI plot data, the proportions of the land area covered by the tree species were mapped by compositional kriging. Outside these areas, these proportions were mapped with a multinomial multiple logistic regression model. A soil map, a biogeographical map and bioindicators derived from temperature and precipitation data were used as predictors. Both methods ensure that the predicted proportions are in the interval [0,1] and sum to 1. The regression predictions were iteratively scaled to the National Forest Inventory statistics and the Forest map of Europe. The predicted proportions for the twenty tree species were validated by the Bhattacharryya distance between predicted and observed proportions at 230 plot data separated from the calibration data. Besides, the map with the predicted dominant species was validated by computing the error matrix. The median Bhattacharryya distance in the subarea with NFI plot data was 1.712, whereas in the subarea with ICP-Level-I data, this was 2.131. The scaling did not significantly decrease the Bhattacharryya distance. The estimated overall accuracy of this map was 43%. In areas with NFI plot data, overall accuracy was 57%, outside these areas 33%. This gain was mainly attributable to the much denser plot data, less to the prediction method.  相似文献   

13.
Abstract

The rapid development in aerial digital cameras in combination with the increased availability of high-resolution Digital Elevation Models (DEMs) provides a renaissance for photogrammetry in forest management planning. Tree height, stem volume, and basal area were estimated for forest stands using canopy height, density, and texture metrics derived from photogrammetric matching of digital aerial images and a high-resolution DEM. The study was conducted at a coniferous hemi-boreal site in southern Sweden. Three different data-sets of digital aerial images were used to test the effects of flight altitude and stereo overlap on an area-based estimation of forest variables. Metrics were calculated for 344 field plots (10 m radius) from point cloud data and used in regression analysis. Stand level accuracy was evaluated using leave-one-out cross validation of 24 stands. For these stands the tree height ranged from 4.8 to 26.9 m (17.8 m mean), stem volume 13.3 to 455 m3 ha?1 (250 m3 ha?1 mean), and basal area from 4.1 to 42.9 m2 ha?1 (27.1 m2 ha?1 mean) with mean stand size of 2.8 ha. The results showed small differences in estimation accuracy of forest variables between the data-sets. The data-set of digital aerial images corresponding to the standard acquisition of the Swedish National Land Survey (Lantmäteriet), showed Root Mean Square Errors (in percent of the surveyed stand mean) of 8.8% for tree height, 13.1% for stem volume and 14.9% for basal area. The results imply that photogrammetric matching of digital aerial images has significant potential for operational use in forestry.  相似文献   

14.
【目的】无人机机载激光雷达能够准确地测定单木、林分乃至大尺度森林结构参数(树高和树冠因子)。为应用无人机激光雷达技术准确估测森林蓄积量、生物量和碳储量提供计量依据和技术支撑。【方法】以150株实测马尾松生物量样本数据为研究对象,采用非线性回归估计方法和度量误差联立方程组方法,分析立木材积和地上生物量与树高、树冠因子的相关性,并在此基础上研究建立基于树高和树冠因子的立木材积与地上生物量相容模型。【结果】单株材积和地上生物量与树高因子的相关性最为紧密,其次才是树冠因子;基于树高和冠幅因子的二元材积和地上生物量模型预估精度较高,达到92%以上,再考虑冠长因子的三元模型预估精度改进不大;基于树高和冠幅因子的二元立木材积与地上生物量相容模型估计效果更好,相对于一元相容模型系统而言,二元相容模型拟合效果有较大幅度提高,预估精度达到92%以上。【结论】采用度量误差联立方程组方法可以有效解决基于树高和树冠因子的立木材积与地上生物量相容问题,并且预估精度达到92%以上,所建二元立木材积与地上生物量相容模型可为应用激光雷达技术反演森林蓄积量和生物量提供计量依据。  相似文献   

15.
Airborne laser scanning (ALS) data are not usually considered to be very informative with respect to tree species, and this information is often obtained by combining such data with spectral image material. The aim was to test the ability of height, density, intensity and applied 2D and 3D texture variables derived solely from a very high-density ALS point cloud to describe the crown shape and structure characteristics required for tree species discrimination. Linear discriminant analysis was used to find optimal combinations of variables within the predictor groups, and classifications based on variables from different groups were compared. The third power of the tree diameter was used as a stem volume approximate, and rather than examining species alone, the classification was evaluated with respect to the volume approximates assigned to the predicted species. The sensitivity of pulse density to the methodology presented here was determined by simulating thinned data sets by reducing the initial pulse density. The reliability of the estimates was analysed both with functions generated using the original data and with new functions for each thinning level. Alpha shape metrics developed for describing tree crowns constructed from the 3D point clouds proved capable of discriminating between all three species groups evaluated, and several height distribution and textural variables were found to discriminate between the coniferous tree species. The results demonstrate the importance of species interpretation in forest inventories based on allometric modelling, but then indicate that species-specific estimation could be carried out using ALS-derived variables alone.  相似文献   

16.
Stand density management tools help forest managers and landowners to more effectively allocate growing space so that specific silvicultural objectives can be met. Due to the economic importance of Oriental beech (Fagus orientalis Lipsky) forests in Turkey, a stand density management tool was developed for this species to optimize regeneration success rate and tree growth. For the development of this tool, named stand density management diagram (SDMD), we utilized forest inventory data from the Kastamonu Regional Forest Directorate in Turkey. Previously published forest management approaches and models were employed during the development of the tool. The SDMD illustrates the relation among four forest indexes: the basal area per hectare, number of trees per hectare, forest stand volume per hectare, and quadratic mean diameter of the beech stands. The stand stocking percent (SSP) can be determined based upon any two of these four measurements. The results suggest that SSP is a better predictor of tree growth than BA in Oriental beech forests. The newly developed SDMD allows for a more effective use of the growing space to achieve specific silvicultural objectives including tree regeneration, timber production, thinning planning, and wildlife protection in Oriental beech forests.  相似文献   

17.
Abstract

The purpose of the study was to evaluate tree species composition estimated using combinations of different remotely sensed data with different inventory approaches for a forested area in Norway. Basal area species composition was estimated as both species proportions and main species by using data from airborne laser scanning (ALS) and airborne (multispectral and hyperspectral) imagery as auxiliary information in combination with three different inventory approaches: individual tree crown (ITC) approach; semi-individual tree crown (SITC) approach; and area-based approach (ABA). The main tree species classification obtained an overall accuracy higher than 86% for all ABA alternatives and for the two other inventory approaches (ITC and SITC) when combining ALS and hyperspectral imagery. The correlation between estimated species proportions and species proportions measured in the field was higher for coniferous species than for deciduous species and increased with the spectral resolution used. Especially, the ITC approach provided more accurate information regarding the proportion of deciduous species that occurred only in small proportions in the study area. Furthermore, the species proportion estimates of 83% of the plots deviated from field measured species proportions by two-tenths or less. Thus, species composition could be accurately estimated using the different approaches and the highest levels of accuracy were attained when ALS was used in combination with hyperspectral imagery. The accuracies obtained using the ABA in combination with only ALS data were encouraging for implementation in operational forest inventories.  相似文献   

18.
Fine roots absorb nutrients and water for photosynthesizing leaves, which in return provide them with hydrocarbon products. Knowledge of the fine root biomass (FRB) at the individual tree level and its relationships with other components related to tree growth, especially leaves aboveground, is scarce. Therefore, we reviewed the FRB of major forest-forming species using a database of 518 forest stands compiled from the literature, including 21 tree species and 16 shrub species, in order to confirm the relationships between environmental or forest stand variables and FRB at the stand and tree levels, and we further determine the relationships between fine roots belowground and leaves aboveground. Correlations between FRB and site characteristics (latitude, elevation, age, density, and basal area) appeared to be species-specific. There were hardly any significant correlations between stand FRB and latitude, elevation, stand age and stand density. Tree FRB was better correlated with tree basal area than stand FRB with stand basal area. There was a significant linear relationship between tree FRB and tree basal area. In addition, individual FRB was significantly linearly related to leaf biomass for all analyzed species. When these species were grouped into coniferous and deciduous, or all species together, there were still significant linear relationships between tree FRB and tree basal area and leaf biomass. The ratios of FRB to leaf biomass varied between and among species and even among regions for the same species. For both Picea abies and Pinus sylvestris, the ratio of FRB to leaf biomass was negatively related to the ratio of annual actual evapotranspiration to annual potential evapotranspiration, which was an indicator of water availability.  相似文献   

19.
Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers increasingly practice uneven-aged management. We established 84 clusters of four plots, one where bark beetle-caused mortality was present and three uninfested plots. For all plot trees we recorded species, tree diameter, and crown position and for ponderosa pine whether they were killed or infested by mountain pine beetle. Elevation, slope, and aspect were also recorded. We used classification trees to model the likelihood of bark beetle attack based on plot and site variables. The probability of individual tree attack within the infested plots was estimated using logistic regression. Basal area of ponderosa pine in trees ≥25.4 cm in diameter at breast height (dbh) and ponderosa pine stand density index were correlated with mountain pine beetle attack. Regression trees and linear regression indicated that the amount of observed tree mortality was associated with initial ponderosa pine basal area and ponderosa pine stand density index. Infested stands had higher total and ponderosa pine basal area, total and ponderosa pine stand density index, and ponderosa pine basal area in trees ≥25.4 cm dbh. The probability of individual tree attack within infested plots was positively correlated with tree diameter with ponderosa pine stand density index modifying the relationship. A tree of a given size was more likely to be attacked in a denser stand. We conclude that stands with higher ponderosa pine basal area in trees >25.4 cm and ponderosa pine stand density index are correlated with an increased likelihood of mountain pine beetle bark beetle attack. Information form this study will help forest managers in the identification of uneven-aged stands with a higher likelihood of bark beetle attack and expected levels of tree mortality.  相似文献   

20.
Large areas of forests in the Pacific Northwest are being transformed to younger forests, yet little is known about the impact this may have on hydrological cycles. Previous work suggests that old trees use less water per unit leaf area or sapwood area than young mature trees of the same species in similar environments. Do old forests, therefore, use less water than young mature forests in similar environments, or are there other structural or compositional components in the forests that compensate for tree-level differences? We investigated the impacts of tree age, species composition and sapwood basal area on stand-level transpiration in adjacent watersheds at the H.J. Andrews Forest in the western Cascades of Oregon, one containing a young, mature (about 40 years since disturbance) conifer forest and the other an old growth (about 450 years since disturbance) forest. Sap flow measurements were used to evaluate the degree to which differences in age and species composition affect water use. Stand sapwood basal area was evaluated based on a vegetation survey for species, basal area and sapwood basal area in the riparian area of two watersheds. A simple scaling exercise derived from estimated differences in water use as a result of differences in age, species composition and stand sapwood area was used to estimate transpiration from late June through October within the entire riparian area of these watersheds. Transpiration was higher in the young stand because of greater sap flux density (sap flow per unit sapwood area) by age class and species, and greater total stand sapwood area. During the measurement period, mean daily sap flux density was 2.30 times higher in young compared with old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Sap flux density was 1.41 times higher in young red alder (Alnus rubra Bong.) compared with young P. menziesii trees, and was 1.45 times higher in old P. menziesii compared with old western hemlock (Tsuga heterophylla (Raf.) Sarg.) trees. Overall, sapwood basal area was 21% higher in the young stand than in the old stand. In the old forest, T. heterophylla is an important co-dominant, accounting for 58% of total sapwood basal area, whereas P. menziesii is the only dominant conifer in the young stand. Angiosperms accounted for 36% of total sapwood basal area in the young stand, but only 7% in the old stand. For all factors combined, we estimated 3.27 times more water use by vegetation in the riparian area of the young stand over the measurement period. Tree age had the greatest effect on stand differences in water use, followed by differences in sapwood basal area, and finally species composition. The large differences in transpiration provide further evidence that forest management alters site water balance via elevated transpiration in vigorous young stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号