首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production in a batch reactor with a solvent-free system of structured triacylglycerols containing short-chain fatty acids by Lipozyme RM IM-catalyzed acidolysis between rapeseed oil and caproic acid was optimized using response surface methodology (RSM). Reaction time (t(r)), substrate ratio (S(r)), enzyme load (E(l), based on substrate), water content (W(c), based on enzyme), and reaction temperature (T(e)), the five most important parameters for the reaction, were chosen for the optimization. The range of each parameter was selected as follows: t(r) = 5-17 h; E(l) = 6-14 wt %; T(e) = 45-65 degrees C; S(r) = 2-6 mol/mol; and W(c) = 2-12 wt %. The biocatalyst was Lipozyme RM IM, in which Rhizomucor miehei lipase is immobilized on a resin. The incorporation of caproic acid into rapeseed oil was the main monitoring response. In addition, the contents of mono-incorporated structured triacylglycerols and di-incorporated structured triacylglycerols were also evaluated. The optimal reaction conditions for the incorporation of caproic acid and the content of di-incorporated structured triacylglycerols were as follows: t(r) = 17 h; S(r) = 5; E(l) = 14 wt %; W(c) = 10 wt %; T(e) = 65 degrees C. At these conditions, products with 55 mol % incorporation of caproic acid and 55 mol % di-incorporated structured triacylglycerols were obtained.  相似文献   

2.
Structured lipids (SL) containing caprylic, stearic, and linoleic acids were synthesized by enzymatic transesterification using Lipozyme IM60. Pure trilinolein and free fatty acids were used as substrates. Incorporation of stearic acid was higher than that of caprylic acid in all parameters. Highest incorporations of both acids were achieved at 32 h, mole ratio of 1:4:4 (trilinolein/caprylic/stearic acids), water content of 1% (wt %), temperature of 55 degrees C, and 10% (wt %) enzyme load. The maximal incorporations of caprylic and stearic acids were 23.73 and 62.46 mol %, respectively. Reaction time, water content, and enzyme load had major influences on the reaction, whereas substrate mole ratio and temperature showed less influence. Lipozyme showed good stability over six reuses. Differential scanning calorimetric analysis of SL gave a melting profile with a very low melting peak of 0-3.3 degrees C and a solid fat content of 25.21% at 0 degrees C. The melting profile and solid fat content of SL were compared with those of fats extracted from commercially available solid and liquid margarine products. The data suggest that enzymatically produced SL could be used in liquid margarine products.  相似文献   

3.
Screening of five commercially available lipases for the incorporation of capric acid (CA) into docosahexaenoic acid single cell oil (DHASCO) indicated that lipase PS-30 from Pseudomonas sp. was most effective. Of the various reaction parameters examined, namely, the mole ratio of substrates, enzyme amount, time of incubation, reaction temperature, and amount of added water, for CA incorporation into DHASCO, the optimum conditions were a mole ratio of 1:3 (DHASCO/CA) at a temperature of 45 degrees C, and a reaction time of 24 h in the presence of 4% enzyme and 2% water content. Examination of the positional distribution of fatty acids on the glycerol backbone of the modified DHASCO with CA showed that CA was present mainly in the sn-1,3 positions of the triacylglycerol (TAG) molecules. Meanwhile, DHA was favorably present in the sn-2 position, but also located in the sn-1 and sn-3 positions. The oxidative stability of the modified DHASCO in comparison with the original DHASCO, as indicated in the conjugated diene values, showed that the unmodified oil remained relatively unchanged during storage for 72 h, but DHASCO-based structured lipid was oxidized to a much higher level than the original oil. The modified oil also attained a considerably higher thiobarbituric acid reactive substances value than the original oil over the entire storage period. However, when the oil was subjected to the same process steps in the absence of any enzyme, there was no significant difference (p > 0.05) in its oxidative stability when compared with enzymatically modified DHASCO. Therefore, removal of antioxidants during the process is primarily responsible for the compromised stability of the modified oil.  相似文献   

4.
Enzymatic acidolysis of borage oil (BO) or evening primrose oil (EPO) with eicosapentaenoic acid (20:5n-3; EPA) was studied. Of the six lipases that were tested in the initial screening, nonspecific lipase PS-30 from Pseudomonas sp. resulted in the highest incorporation of EPA into both oils. This enzyme was further studied for the influence of enzyme load, temperature, time, type of organic solvent, and mole ratio of substrates. The products from the acidolysis reaction were analyzed by gas chromatography (GC). The highest incorporation of EPA in both oils occurred at 45-55 degrees C and at 150-250 enzyme activity units. One unit of lipase activity was defined as nanomoles of fatty acids (oleic acid equivalents) produced per minute per gram of enzyme. Time course studies indicated that EPA incorporation was increased up to 26.8 and 25.2% (after 24 h) in BO and EPO, respectively. Among the solvents examined, n-hexane served best for the acidolysis of EPA with both oils. The effect of the mole ratio of oil to EPA was studied from 1:1 to 1:3. As the mole ratio of EPA increased, the incorporation increased from 25.2-26.8 to 37.4-39.9% (after 24 h). The highest EPA incorporations of 39.9 and 37.4% in BO and EPO, respectively, occurred at the stoichiometric mole ratio of 1:3 for oil to EPA.  相似文献   

5.
Human milk fat substitutes (HMFSs) were synthesized by lipozyme RM IM-catalyzed acidolysis of chemically interesterified palm stearin (mp = 58 °C) with mixed FAs from rapeseed oil, sunflower oil, palm kernel oil, stearic acid, and myristic acid in a solvent-free system. Response surface methodology (RSM) was used to model and optimize the reactions, and the factors chosen were reaction time, temperature, substrate molar ratio, and enzyme load. The optimal conditions generated from the models were as follows: reaction time, 3.4 h; temperature, 57 °C; substrate molar ratio, 14.6 mol/mol; and enzyme load, 10.7 wt % (by the weight of total substrates). Under these conditions, the contents of palmitic acid (PA) and PA at sn-2 position (sn-2 PA) were 29.7 and 62.8%, respectively, and other observed FAs were all within the range of FAs of HMF. The product was evaluated by the cited model, and a high score (85.8) was obtained, which indicated a high degree of similarity of the product to HMF.  相似文献   

6.
Structured triacylglycerols (ST) from canola oil were produced by enzymatic acidolysis in a packed bed bioreactor. A commercially immobilized 1,3-specific lipase, Lipozyme IM, from Rhizomucormiehei, was the biocatalyst and caprylic acid the acyl donor. Parameters such as substrate flow rate, substrate molar ratio, reaction temperature, and substrate water content were examined. High-performance liquid chromatography was used to monitor the reaction and product yields. The study showed that all of the parameters had effects on the yields of the expected di-incorporated (dicaprylic) ST products. Flow rates below 1 mL/min led to reaction equilibrium, and lower flow rates did not raise the incorporation of caprylic acid and the product yield. Incorporation of caprylic acid and the targeted di-incorporated ST was increased by approximately 20% with temperature increase from 40 to 70 degrees C. Increasing the substrate molar ratio from 1:1 to 7:1 increased the incorporation of caprylic acid and the product yield slightly. Water content in the substrate also had a mild influence on the reaction. Water content at 0.08% added to the substrate gave the lowest incorporation and product yield. The use of solvent in the medium was also studied, and results demonstrated that it did not increase the reaction rate at 55 degrees C when 33% hexane (v/v) was added. The main fatty acids at the sn-2 position of the ST were C(18:1), 54. 7 mol %; C(18:2), 30.7 mol %; and C(18:3), 11.0 mol %.  相似文献   

7.
The ability of different lipases to incorporate omega3 fatty acids, namely, eicosapentaenoic acid (EPA, C20:5n-3), docosapentaenoic acid (DPA, C22:5n-3), and docosahexaenoic acid (DHA, C22:6n-3), into a high-laurate canola oil, known as Laurical 35, was studied. Lipases from Mucor miehei (Lipozyme-IM), Pseudomonas sp. (PS-30), and Candida rugosa (AY-30) catalyzed optimum incorporation of EPA, DPA, and DHA into Laurical 35, respectively. Other lipases used were Candida anatrctica (Novozyme-435) and Aspergillus niger (AP-12). Response surface methodology (RSM) was used to obtain a maximum incorporation of EPA, DPA, and DHA into high-laurate canola oil. The process variables studied were the amount of enzyme (2-6%), reaction temperature (35-55 degrees C), and incubation time (12-36 h). The amount of water added and mole ratio of substrates (oil to n-3 fatty acids) were kept at 2% and 1:3, respectively. The maximum incorporation of EPA (62.2%) into Laurical 35 was predicted at 4.36% of enzyme load and 43.2 degrees C over 23.9 h. Under optimum conditions (5.41% enzyme; 38.7 degrees C; 33.5 h), the incorporation of DPA into high-laurate canola oil was 50.8%. The corresponding maximum incorporation of DHA (34.1%) into Laurical 35 was obtained using 5.25% enzyme, at 43.7 degrees C, over 44.7 h. Thus, the number of double bonds and the chain length of fatty acids had a marked effect on the incorporation omega3 fatty acids into Laurical 35. EPA and DHA were mainly esterified to the sn-1,3 positions of the modified oils, whereas DPA was randomly distributed over the three positions of the triacylglycerol molecules. Meanwhile, lauric acid remained esterified mainly to the sn-1 and sn-3 positions of the modified oils. Enzymatically modified Laurical 35 with EPA, DPA, or DHA had higher conjugated diene (CD) and thiobarbituric acid reactive substance (TBARS) values than their unmodified counterpart. Thus, enzymatically modified oils were more susceptible to oxidation than their unmodified counterparts, when both CD and TBARS values were considered.  相似文献   

8.
Structured lipids (SLs) containing palmitic, oleic, stearic, and linoleic acids, resembling human milk fat (HMF), were synthesized by enzymatic acidolysis reactions between tripalmitin, hazelnut oil fatty acids, and stearic acid. Commercially immobilized sn-1,3-specific lipase, Lipozyme RM IM, obtained from Rhizomucor miehei was used as the biocatalyst for the enzymatic acidolysis reactions. The effects of substrate molar ratio, reaction temperature, and reaction time on the incorporation of stearic and oleic acids were investigated. The acidolysis reactions were performed by incubating 1:1.5:0.5, 1:3:0.75, 1:6:1, 1:9:1.25, and 1:12:1.5 substrate molar ratios of tripalmitin/hazelnut oil fatty acids/stearic acid in 3 mL of n-hexane at 55, 60, and 65 degrees C using 10% (total weight of substrates) of Lipozyme RM IM for 3, 6, 12, and 24 h. The fatty acid composition of reaction products was analyzed by gas-liquid chromatography (GLC). The fatty acids at the sn-2 position were identified after pancreatic lipase hydrolysis and GLC analysis. The results showed that the highest C18:1 incorporation (47.1%) and highest C18:1/C16:0 ratio were obtained at 65 degrees C and 24 h of incubation with the highest substrate molar ratio of 1:12:1.5. The highest incorporation of stearic acid was achieved at a 1:3:0.75 substrate molar ratio at 60 degrees C and 24 h. For both oleic and stearic acids, the incorporation level increased with reaction time. The SLs produced in this study have potential use in infant formulas.  相似文献   

9.
d‐Limonene, a safe agricultural by‐product, was used to extract rice bran oil and compared against hexane, a petroleum product widely used as a solvent for extracting edible oil. The yield of crude rice bran oils extracted with both solvents in percentage by weight was obtained. The quality of crude rice bran oil was analyzed. The yield and quality of crude rice bran oil from the limonene‐based solvent extraction were almost equivalent to those from the hexane‐based operation. The optimum solvent‐to‐rice bran ratio and extraction time required for d‐limonene extraction of oil, based primarily on crude rice bran oil yield, have been determined to be 5:1 and 0.5 hr, respectively. Despite the absence of antioxidants during the limonene recovery step with vacuum evaporation, the quantity of the oxidation products in the recovered limonene was <1% (wt) of the original limonene solvent. The application of d‐limonene solvent as an alternative to hexane in edible oil extraction could potentially eliminate the safety, environmental, and health issues associated with the use of hexane.  相似文献   

10.
The ability of immobilized lipase B from Candida antarctica (Novozym 435) to catalyze the direct esterification of glyceryl ferulate (FG) and oleic acid for feruloylated monoacylglycerols (FMAG) preparation in a solvent-free system was investigated. Enzyme screening and the effect of glycerol on the initial reaction rate of esterification were also investigated. Response surface methodology (RSM) was used to optimize the effects of the reaction temperature (55-65 degrees C), the enzyme load (8-14%; relative to the weight of total substrates), oleic acid/(FG + glycerol) (6:1-9:1; w/w), and the reaction time (1-2 h) on the conversion of FG and yield of FMAG. Validation of the RSM model was verified by the good agreement between the experimental and the predicted values of FG conversion and FMAG yield. The optimum preparation conditions were as follows: temperature, 60 degrees C; enzyme load, 8.2%; substrate ratio, 8.65:1 (oleic acid/(FG + glycerol), w/w); and reaction time, 1.8 h. Under these conditions, the conversion of FG and yield of FMAG are 96.7 +/- 1.0% and 87.6 +/- 1.2%, respectively.  相似文献   

11.
为探究米根霉发酵米糠的最佳条件,本研究采用过热蒸汽对米糠作稳定化处理,以米根霉为菌种发酵稳定化米糠,以米糠可溶性膳食纤维(SDF)得率为指标,并对此条件下发酵米糠的体外益生活性进行评价。结果表明,过热蒸汽稳定米糠最佳条件为160℃、2 min,此条件下脂肪酶失活率为88.01%;甜香型米根霉发酵米糠的最佳条件为:以甜香型米根霉为发酵菌种,料液比1:2.25、接种量0.7%、发酵温度35℃、发酵时间24 h,此条件下SDF得率为5.83%,比未发酵米糠提高了近一半;与未发酵米糠相比,经甜香型米根霉发酵后的米糠,可有效促进双歧杆菌(对数值6.85)和乳酸杆菌(对数值5.23)的增殖;总短链脂肪酸含量提高37.30%,肠道益生活性显著增强(P<0.05)。本研究结果为改善米糠功能特性提供了依据,对今后米糠在发酵方面的应用具有一定的指导意义。  相似文献   

12.
Tyrosinase inhibitor from black rice bran   总被引:6,自引:0,他引:6  
The inhibitor of tyrosinase activity in black rice bran was investigated. The methanol extract from black rice bran was re-extracted with hexane, chloroform, ethyl acetate, or water. The ethyl acetate extract had the most potent inhibition against tyrosinase activity by 80.5% at a concentration of 0.4 mg/mL. Inhibitory compound in the ethyl acetate fraction was isolated by silica gel column chromatography, and identified as protocatechuic acid methyl ester (compound 1) by GC, GC-MS, IR, and 1H and 13C NMR spectroscopy. Compound 1 inhibited 75.4% of tyrosinase activity at a concentration of 0.50 micromol/mL. ID(50) (50% inhibition dose) value of compound 1 was 0.28 micromol/mL. To study the structure-activity relationship, protocatechuic acid (2), vanillic acid (3), vanillic acid methyl ester (4), isovanillic acid (5), isovanillic acid methyl ester (6), veratric acid (7), and veratric acid methyl ester (8) were also assayed.  相似文献   

13.
The interface between decaying plant residues and soil is a hotspot for microbial immobilization of soil inorganic N. Recent studies on forest and grassland soils have demonstrated that rapid abiotic immobilization of inorganic N is also induced by the presence of plant residues. We, therefore, examined (1) how N immobilization varies with distance from the soil-residue interface and (2) whether abiotic immobilization occurs in agricultural soils. Spatiotemporal changes of N immobilization in the soil-residue interface were evaluated using a box that enabled soil to be sampled in 2 mm increments from a 4 mm-thick residue compartment (RC). The RC was filled with paddy soil containing ground plant residue (rice bran, rice straw or beech leaves) uniformly at a rate of 50 g dry matter kg−1. Soil in the surrounding compartments contained no residue. After aerobic incubation for 5, 15 and 30 days at 25 °C, soils in each compartment were analyzed. After 5 days, significant depletion of inorganic N occurred throughout a volume of soil extending at least 10 mm from the RC in all residue treatments, suggesting extensive diffusion of inorganic N towards the RC. The depletion within 10 mm of the RC amounted to 5.0, 4.3 and 3.4 mg for rice bran, rice straw and beech leaf treatment, respectively. On the other hand, microbial N had increased significantly in the RC of the rice bran and rice straw treatments (11 mg and 5.5 mg, respectively) and insignificantly in the RC of the beech leaf treatment (0.06 mg). This increase amounted to 221% (rice bran), 129% (rice straw) and 1.7% (beech leaves) of the decrease in inorganic N within 10 mm of each RC. Thereafter the rate of N mineralization exceeded that of immobilization, and inorganic N levels had recovered almost to their original level by 15 days (rice bran) and 30 days (rice straw and beech leaves). These results suggested the predominance of biotic immobilization in soil near rice bran and rice straw and of abiotic immobilization in soil near beech leaves. No significant increase in both microbial and soluble organic N in the vicinity of beech leaves after incubation for 5 days further suggested that the abiotic process was responsible for the transformation of inorganic N into the insoluble organic N.  相似文献   

14.
Total phenolic and tocopherol contents and free radical scavenging capability of wheat bran extracted using conventional and microwave-assisted solvent extraction methods were studied. Three different solvents (methanol, acetone, and hexane) were used in the conventional solvent extraction. Methanol was the most effective solvent, producing higher extraction yield (4.86%), total phenolic compound content (241.3 μg of catechin equivalent/g of wheat bran), and free radical scavenging capability (0.042 μmol of trolox equivalent/g of wheat bran) than either acetone or hexane. However, there was no significant difference in the total tocopherol contents (13.6–14.8 μg/g of wheat bran) among the three different solvent extraction methods. Microwave-assisted solvent extraction using methanol significantly increased the total phenolic compound content to 467.5 and 489.5 μg of catechin equivalent; total tocopherol content to 18.7 and 19.5 μg; and free radical scavenging capability to 0.064 and 0.072 μmol of trolox equivalent/g of wheat bran at extraction temperatures of 100 and 120°C, respectively. However, extraction yields of conventional methanol solvent and microwave-assisted methanol extractions at different temperatures were not significantly different.  相似文献   

15.
Lipase-catalyzed acidolysis in hexane to produce structured lipids (SLs) from sesame oil and caprylic acid was optimized by considering both total incorporation (Y1) and acyl migration (Y2). Response surface methodology was applied to model Y1 and Y2, respectively, with three reaction parameters: temperature (X1), reaction time (X2), and substrate molar ratio (X3). Well-fitting models for Y1 and Y2 were established after regression analysis with backward elimination and verified by a chi2 test. All factors investigated positively affected Y1. For Y2, X1 showed the greatest positive effect. However, there was no effect of X3. We predicted the levels of Y2 and acyl incorporation into sn-1,3 positions (Y3) based on Y1. The results showed that over the range of ca. 55 mol % of Y1, Y3 started to decrease, and Y2 increased rapidly, suggesting that Y1 should be kept below ca. 55 mol % to prevent decrease in quality and yield of targeted SLs.  相似文献   

16.
《Cereal Chemistry》2017,94(5):903-908
Infrared‐stabilized rice bran was substituted into Turkish noodles (erişte) at the levels of 10, 20, and 30%, and the effects of the incorporation on proximate composition, color, cooking properties, thiamin and riboflavin contents, mineral composition, and sensory and textural properties were investigated. Crude fat, protein, dietary fiber, B vitamins, Mg, K, P, Mn, Ca, and Se contents of the noodles increased significantly with increasing substitution level (P < 0.05). Optimum cooking time increased with increasing levels of incorporation. Swelling volume and water absorption of the noodles substituted with 20 and 30% rice bran increased significantly (P < 0.05). However, cooking loss was not significantly affected by the substitution. The effect of rice bran inclusion was insignificant on hardness (P > 0.05), whereas adhesiveness, cohesiveness, and springiness of rice bran substituted noodles were significantly lower when compared with the control (P < 0.05). Structure/texture, taste/flavor, and overall acceptability scores of the control noodles and the noodles substituted with rice bran at the level of 10% were not significantly different (P > 0.05). However, substitution levels higher than 10% negatively affected the sensory scores.  相似文献   

17.
Five lipases, namely, Candida antarctica (Novozyme-435), Mucor miehei (Lipozyme-IM), Pseudomonas sp. (PS-30), Aspergillus niger (AP-12), and Candida rugosa (AY-30), were screened for their effect on catalyzing the acidolysis of tristearin with selected long-chain fatty acids. Among the lipases tested C. antarctica lipase catalyzed the highest incorporation of oleic acid (OA, 58.2%), gamma-linolenic acid (GLA, 55.9%), eicosapentaenoic acid (EPA, 81.6%), and docosahexaenoic acid (DHA, 47.7%) into tristearin. In comparison with other lipases examined, C. rugosa lipase catalyzed the highest incorporation of linoleic acid (LA, 75.8%), alpha-linolenic acid (ALA, 74.8%), and conjugated linoleic acid (CLA, 53.5%) into tristearin. Thus, these two lipases might be considered promising biocatalysts for acidolysis of tristearin with selected long-chain fatty acids. EPA was better incorporated into tristearin than DHA using the fifth enzymes. LA incorporation was better than CLA. ALA was more reactive than GLA during acidolysis, except for the reaction catalyzed by Pseudomonas sp., possibly due to structural differences (location and geometry of double bonds) between the two fatty acids. In another set of experiments, a combination of equimolar quantities of unsaturated C18 fatty acids (OA + LA + CLA + GLA + ALA) was used for acidolysis of tristearin to C18 fatty acids at ratios of 1:1, 1:2, and 1:3. All lipases tested catalyzed incorporation of OA and LA into tristearin except for M. miehei, which incorportaed only OA. C. rugosa lipase better catalyzed incorporation of OA and LA into tristearin than other lipases tested, whereas the lowest incorporation was obtained using Pseudomonas sp. As the mole ratio of substrates increased from 1 to 3, incorporation of OA and LA increased except for the reaction catalyzed by A. niger and C. rugosa. All lipases tested failed to allow GLA or CLA to participate in the acidolysis reaction, and ALA was only slightly incoporated into tristearin when M. miehei was used.  相似文献   

18.
亚临界丙烷萃取米糠油及其微量活性组分动力学模型   总被引:1,自引:1,他引:0  
为了揭示亚临界流体萃取米糠油及其微量活性组分的动力学规律,该文以亚临界丙烷为萃取介质,研究了米糠油、γ-谷维素及α-生育酚等活性组分在不同萃取温度和时间的萃取率,并基于 Baümler 模型对目标物的萃取率进行模型拟合,建立相应的动力学模型并验证。结果表明,亚临界萃取过程中目标物的相对萃取率随时间增长递增,且在初始阶段(洗涤过程)的增长速率快于第二阶段(扩散过程)的增长速率;同时,升高萃取温度可同时提高目标产物的扩散系数和相对萃取率;基于Baümler模型可较好拟合亚临界丙烷萃取米糠油、γ-谷维素和α-生育酚的动力学过程(R2>0.95),所得动力学模型具有较好的预测准确性。由Arrhenius方程可计算出米糠油、α-生育酚和γ-谷维素的亚临界萃取反应活化能,其中米糠油的活化能最低(5.23 kJ/mol),α-生育酚次之(7.05 kJ/mol),γ-谷维素最高(9.11 kJ/mol),表明γ-谷维素最难萃取且对温度依赖程度最高;根据拟合所得动力学模型,对米糠油提取率进行预测,结果表明,该模型对米糠油萃取率的预测准确率达95.8%,而对γ-谷维素和α-生育酚萃取率的预测准确度稍低,分别达94.7%和94.4%,对三者均具有很好的预测准确性。总之,基于 Baümler 模型可以较好地建立米糠油及其有益伴随物的亚临界萃取动力学模型,从而较为准确的预测米糠油及其微量活性组分的萃取率,对米糠油的亚临界萃取工艺具有一定的理论指导意义。  相似文献   

19.
Structured lipids (SLs) containing palmitic and oleic acids were synthesized by transesterification of tripalmitin with either oleic acid or methyl oleate as acyl donor. This SL with palmitic acid at the sn-2 position and oleic acid at sn-1,3 positions is similar in structure to human milk fat triacylglycerol. LIP1, an isoform of Candida rugosa lipase (CRL), was used as biocatalyst. The effects of reaction temperature, substrate molar ratio, and time on incorporation of oleic acid were investigated. Reaction time and temperature were set at 6, 12, and 24 h, and 35, 45, and 55 degrees C, respectively. Substrate molar ratio was varied from 1:1 to 1:4. The highest incorporation of oleic acid (37.7%) was at 45 degrees C with methyl oleate as acyl donor. Oleic acid resulted in slightly lesser (26.3%) incorporation. Generally, higher percentage incorporation of oleic acid was observed with methyl oleate (transesterification) than with oleic acid (acidolysis). In both cases percentage incorporation increased with reaction time. Incorporation decreased with increase in temperature above 45 degrees C. Initially, oleic acid incorporation increased with increase in substrate molar ratio up to 1:3. LIP1 was also compared with Lipozyme RM IM as biocatalysts. The tested reaction parameters were selected on the basis of maximum incorporation of C18:1 obtained during optimization of LIP1 reaction conditions. Reaction temperature was maintained at 45, 55, and 65 degrees C. Lipozyme RM IM gave highest oleic acid incorporation (49.4%) at 65 degrees C with methyl oleate as acyl donor. Statistically significant (P < 0.05) differences were observed for both enzymes. SL prepared using Lipozyme RM IM may be more suitable for possible use in human milk fat substitutes.  相似文献   

20.
The sorption efficiency of indigenous rice (Oryza sativa) bran for the removal of organics, that is, benzene, toluene, ethylbenzene, and cumene (BTEC), from aqueous solutions has been studied. The sorption of BTEC by rice bran is observed over a wide pH range of 1-10, indicating its high applicability to remove these organics from various industrial effluents. Rice bran effectively adsorbs BTEC of 10 microg mL(-1) sorbate concentration from water at temperatures of 283-323 +/- 2 K. The effect of pH, agitation time between solid and liquid phases, sorbent dose, its particle size, and temperature on the sorption of BTEC onto rice bran has been studied. The pore area and average pore diameter of rice bran by BET method are found to be 19 +/- 0.7 m(2) g(-1) and 52.8 +/- 1.3 nm. The rice bran exhibits appreciable sorption of the order of 85 +/- 3.5, 91 +/- 1.8, 94 +/- 1.4, and 96 +/- 1.2% for 10 microg mL(-1) concentration of benzene, toluene, ethylbenzene, and cumene, respectively, in 60 min of agitation time using 0.1 g of rice bran at pH 6 and 303 K. The sorption data follow Freundlich, Langmuir, and Dubinin-Radushkevich (D-R) models. Sorption capacities have been computed for BTEC by Freundlich (32 +/- 3, 61 +/- 14, 123 +/- 28, and 142 +/- 37 m mol g(-1)), Langmuir (6.6 +/- 0.1, 7.5 +/- 0.13, 9.5 +/- 0.22, and 9.4 +/- 0.18 m mol g(-1)), and D-R isotherms (11 +/- 0.5, 16 +/- 1.3, 30 +/- 2.2, and 33 +/- 2.5 m mol g(-1)), respectively. The Lagergren equation is employed for the kinetics of the sorption of BTEC onto rice bran and first-order rate constants (0.03 +/- 0.002, 0.04 +/- 0.003, 0.04 +/- 0.003, and 0.05 +/- 0.004 min(-1)) have been computed for BTEC at their concentration of 100 mug mL(-1) at 303 K. Studies on the variation of sorption with temperatures (283-323 K) at 100 mug mL(-1) sorbate concentration gave thermodynamic constants DeltaH (kJ mol(-1)), DeltaG (kJ mol(-1)), and DeltaS (J mol(-1) K(-1)). The results indicate that the sorption of organics onto rice bran is exothermic and spontaneous in nature under the optimized experimental conditions selected. This sorbent has been used successfully to accumulate and then to determine benzene, toluene, and ethylbenzene in wastewater sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号