首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The prevalence of deoxynivalenol (DON) is a concern for swine producers, and although there has been extensive research into the effects of DON in pigs, focus has been in young pigs and/or in short-term studies. The objective of the study was to determine the effect of long-term exposure to DON-contaminated diets in finisher pigs. A total of 200 pigs (76.6 ± 3.9 kg initial weight) were group housed (five pigs per pen; n = 10 pens/treatment) in a 6-wk trial. Pigs were fed a wheat-barley-soybean meal-based control (CONT) diet with no DON or the basal diet in which clean wheat was replaced by DON-contaminated wheat and wheat screenings to provide DON content of 1, 3, or 5 ppm (DON1, DON3, and DON5, respectively). Individual BW and pen feed intake were recorded weekly to calculate average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F). Blood was collected on days 0, 14, and 43 and analyzed for indicators of liver and kidney health. Nitrogen (N)-balance was conducted immediately following the growth performance period to determine the effect of DON on nutrient utilization. Blood and urine samples collected during N balance were analyzed for DON content. Feeding DON reduced (P < 0.05) ADFI and ADG from days 0 to 28 compared with CONT, after which there was no effect of diet on ADFI and ADG. The G:F was lower (P < 0.05) in DON5 fed pigs compared with all treatments during days 0 to 7; however, no treatment effects on G:F was observed from days 8 to 42. Nitrogen retention was lower (P < 0.05) in DON3 and DON5 compared with DON1-fed pigs. Nitrogen retention efficiency was higher (P < 0.05) in DON1 compared with DON3 and DON5 and protein deposition for DON1 pigs was higher (P < 0.05) than all treatments. There were no treatment effects on indicators of liver and kidney health. As dietary DON intake increased, concentration of DON in blood and urine increased. Overall, although there was an initial decrease in ADG and ADFI in pigs receiving diets containing >1 ppm DON, pig performance recovered after a period of time, whereas nutrient utilization continued to be affected after recovery of performance. Moreover, the lack of DON on G:F indicates that the negative effects of DON on growth performance are largely due to reduced feed intake. Overall, although pigs maybe capable of adapting to intake of DON-contaminated diets, their final body weight will be reduced when fed diets containing >1 ppm DON.  相似文献   

2.
Factors associated with the severity with which different challenge models (CMs) compromise growth performance in pigs were investigated using hierarchical clustering on principal components (HCPC) analysis. One hundred seventy-eight studies reporting growth performance variables (average daily gain [ADG], average daily feed intake [ADFI], gain:feed [GF], and final body weight [FBW]) of a Control (Ct) vs. a Challenged (Ch) group of pigs using different CMs (enteric [ENT], environmental [ENV], lipopolysaccharide [LPS], respiratory [RES], or sanitary condition [SAN] challenges) were included. Studies were grouped by similarity in performance in three clusters (C1, C2, and C3) by HCPC. The effects of CM, cluster, and sex (males [M], females [F], mixed [Mi]) were investigated. Linear (LRP) and quadratic (QRP) response plateau models were fitted to assess the interrelationships between the change in ADG (∆ADG) and ADFI (∆ADFI) and the duration of challenge. All variables increased from C1 through C3, except for GF, which decreased (P < 0.05). LPS was more detrimental to ADG than ENV, RES, and SAN models (P < 0.05). Furthermore, LPS also lowered GF more than all the other CMs (P < 0.05). The ∆ADG independent of ∆ADFI was significant in LPS and SAN (P < 0.05), showed a trend toward the significance in ENT and RES (P < 0.10), and was not significant in ENV (P > 0.10), while the ∆ADG dependent on ∆ADFI was significant in ENT, ENV, and LPS only (P < 0.05). The critical value of ∆ADFI influencing the ∆ADG was significant in pigs belonging to C1 (P < 0.05) but not C2 or C3 (P > 0.10). The ∆ADG independent of duration post-Ch (irreparable portion of growth) was significant in C1 and C2 pigs, whereas the ∆ADFI independent of duration post-Ch (irreparable portion of feed intake) was significant in C1 pigs only (P < 0.05). Moreover, the time for recovery of ADG and ADFI after Ch was significant in pigs belonging to C1 and C2 (P < 0.05). Control F showed reduced ADG compared with Ct-M, and Ch-F showed reduced ADFI compared with Ch-M (P < 0.05). Moreover, the irreparable portion of ΔADG was 4.8 higher in F (−187.7; P < 0.05) compared with M (−39.1; P < 0.05). There are significant differences in growth performance response to CM based on cluster and sex. Furthermore, bacterial lipopolysaccharide appears to be an appropriate noninfectious model for immune stimulation and growth impairment in pigs.  相似文献   

3.
An experiment was conducted to test the hypothesis that reducing crude protein (CP) in starter diets for pigs reduces post-weaning diarrhea and improves intestinal health. In total, 180 weanling pigs were allotted to 3 diets containing 22, 19, or 16% CP. Fecal scores were visually assessed every other day. Blood samples were collected from 1 pig per pen on days 1, 6, 13, 20, and 27, and 1 pig per pen was euthanized on day 12. Results indicated that reducing dietary CP reduced (P < 0.01) overall average daily gain, gain to feed ratio, final body weight, and fecal scores of pigs. Pigs fed the 16% CP diet had reduced (P < 0.01) serum albumin compared with pigs fed other diets. Blood urea nitrogen, haptoglobin, interleukin-1β, and interleukin-6 concentrations in serum were greatest (P < 0.01) on day 13, whereas tumor necrosis factor-α and interleukin-10 concentrations were greatest (P < 0.01) on day 6. Villus height in the jejunum increased (P < 0.05) and crypt depth in the ileum was reduced (P < 0.01) if the 19% CP diet was fed to pigs compared with the 22% CP diet. A reduction (P < 0.05) in mRNA abundance of interferon-γ, chemokine ligand 10, occludin, trefoil factor-2, trefoil factor-3, and mucin 2 was observed when pigs were fed diets with 16% CP. In conclusion, reducing CP in diets for weanling pigs reduces fecal score and expression of genes associated with inflammation.  相似文献   

4.
In swine production, pig movement restrictions or packing plant closures may create the need to slow growth rates of finishing pigs to ensure they remain at a marketable body weight when packing plant access is restored. Although dietary formulations can be successful at slowing pig growth, precision is needed regarding how to best formulate diets to achieve growth rate reductions. Thus, the objective was to evaluate three dietary experimental approaches aimed at slowing growth rates in finishing pigs. These approaches consisted of either increasing neutral detergent fiber (NDF), reducing essential amino acids, or reducing the dietary electrolyte balance through the addition of acidogenic salts. A total of 94 mixed-sex pigs (72.4 ± 11.2 kg BW) across two replicates were individually penned and assigned to 1 of 8 dietary treatments (n = 11–12 pigs/treatment): 1) Control diet representative of a typical corn–soybean meal-based finisher diet (CON); 2) diet containing 15% NDF from soybean hulls (15% NDF); 3) diet containing 20% NDF from soybean hulls (20% NDF); 4) diet containing 25% NDF from soybean hulls (25% NDF); 5) diet formulated as per CON but with 50% of the soybean meal replaced with corn (89% Corn); 6) diet containing 97% corn and no soybean meal or synthetic amino acids (97% Corn); 7) diet containing 2% anhydrous calcium chloride (2% CaCl2); and 8) diet containing 4% anhydrous calcium chloride (4% CaCl2). Over 28 d, pig body weights and performance were recorded weekly. At d 28, all pigs were ultrasound scanned and switched to the CON diet to evaluate compensatory gain from d 28 to 35. Overall, increased NDF did not impact any growth performance parameter (P > 0.05). Amino acid restriction reduced average daily gain (ADG), average daily feed intake (ADFI), and gain:feed (G:F) linearly (linear P < 0.001). Similarly, ADG, ADFI, and G:F were linearly reduced with increased CaCl2 inclusion (linear P < 0.001). ADG differed during the compensatory gain period (P < 0.001), with 4% CaCl2-fed pigs having a 47% increase in ADG compared with CON-fed pigs. Conversely, 15% and 25% NDF-fed pigs had reduced ADG compared with CON-fed pigs during the compensatory gain period. Gain efficiency differed from day 28 to 35 (P < 0.001), with 4% CaCl2-fed pigs having a 36% increase in G:F compared with CON-fed pigs. Altogether, these data demonstrate that both amino acid restriction and CaCl2 inclusion are effective at slowing pig growth, albeit at greater inclusion rates.  相似文献   

5.
A study determined the effects of supplementing corn-based diets for weaned pigs with multi-enzymes on growth performance, apparent total tract digestibility (ATTD) of nutrients, fecal score, and fecal microbial composition. A total of 132 pigs (initial body weight = 7.23 kg) that had been weaned at 21 d of age and fed a drug-free nursery diet for 7 d were housed in 33 pens of 4 barrows or gilts, blocked by body weight and gender, and fed 3 experimental diets at 11 pens per diet. The diets were corn-based diet without or with multi-enzyme A or B. Multi-enzyme A supplied 4,000 U of xylanase, 150 U of β-glucanase, 3,500 U of protease, and 1,500 U of amylase per kilogram of diet. Multi-enzyme B was the same as multi-enzyme A except that it supplied amylase at 150 U/kg, and that its source of amylase was different from that of multi-enzyme A. All diets contained phytase at 1,000 U/kg. The diets were fed for 35 d in 2 phases; phase 1 for the first 14 d and phase 2 for the last 21 d of the trial. Fecal score was determined daily during the first 7 d of the trial. Fecal samples were collected from rectum of 1 pig per pen on days 2, 7, 14, and 35 of the trial for determining bacterial composition. Also, fresh fecal samples were collected from each pen on days 41 and 42 to determine ATTD of nutrients. Multi-enzyme B increased (P < 0.05) average daily gain (ADG) for phases 1 and 2. For the overall study period, multi-enzyme B increased (P < 0.05) ADG from 262 to 313 g, and average daily feed intake (ADFI) from 419 to 504 g. Multi-enzyme A increased (P < 0.05) overall ADG from 262 to 290 g, but did not affect ADFI. Multi-enzyme A or B did not affect ATTD of gross energy, but increased (P < 0.05) the ATTD of ether extract from 30% to 36% or 37%, respectively. Multi-enzyme A did not affect fecal score; however, multi-enzyme B tended to decrease (P = 0.09) fecal score, implying that it tended to decrease diarrhea. Firmicutes were the most abundant phylum of fecal bacteria (its relative abundance ranged from 58% to 72%). Bacteroidetes and Actinobacteria were the 2nd and 3rd most abundant phyla of fecal bacteria. Neither multi-enzyme affected fecal bacterial composition. In conclusion, the addition of multi-enzyme A or B to phytase-supplemented corn-based diet for weaned pigs can improve their growth performance and fat digestibility. However, multi-enzyme B was more effective than multi-enzyme A in terms of improving the growth performance of weaned pigs fed corn-based diet.  相似文献   

6.
An experiment was conducted to test the hypothesis that inclusion of Cu oxide (Cu2O) in diets for growing–finishing pigs improves body weight (BW) and bone mineralization, and reduces accumulation of Cu in the liver compared with pigs fed diets containing Cu sulfate (CuSO4). Two hundred growing pigs (initial BW: 11.5 ± 0.98 kg) were allotted to a randomized complete block design with 2 blocks of 100 pigs, 5 dietary treatments, 5 pigs per pen, and a total of 8 pens per treatment. Treatments included the negative control (NC) diet that contained 20 mg Cu/kg, and 4 diets in which 125 or 250 mg Cu/kg from CuSO4 or Cu2O were added to the NC diet. The experiment was divided into 4 phases and concluded when pigs reached market weight. Pig weights were recorded on day 1 and at the end of each phase and feed provisions were recorded throughout the experiment. On the last day of phases 1 and 4, 1 pig per pen was sacrificed to obtain samples of liver and spleen tissue, and the right metacarpal was collected. Results indicated that pigs fed diets containing 250 mg Cu/kg from CuSO4 had greater BW at the end of phases 1 and 2 than pigs fed NC diets. Pigs fed diets containing 250 mg Cu/kg from Cu2O had greater (P < 0.05) BW at the end of phases 1, 2, 3, and 4 compared with pigs fed NC diets, and these pigs also had greater BW at the end of phases 3 and 4 than pigs fed all other diets. Pigs fed the diets with 250 mg Cu/kg tended to have greater (P < 0.10) feed intake than pigs fed the NC diet at the end of phase 2, and for the overall experimental period, pigs fed diets containing 250 mg Cu/kg from Cu2O had greater (P < 0.05) feed intake than pigs on all other treatments. However, no differences in gain:feed ratio were observed among treatments. Copper accumulation in liver and spleen increased with Cu dose, but at the end of phase 1, pigs fed 250 mg Cu/kg from CuSO4 had greater (P < 0.05) Cu concentration in liver and spleen than pigs fed 250 mg Cu/kg from Cu2O. Pigs fed diets containing 250 mg Cu/kg from Cu2O had greater (P < 0.05) quantities of bone ash and greater (P < 0.05) concentrations of Ca, P, and Cu in bone ash than pigs fed NC diets or the 2 diets containing CuSO4, but Zn concentration in bone ash was less (P < 0.05) in pigs fed diets containing 250 mg Cu/kg from Cu2O. To conclude, supplementing diets for growing pigs with Cu2O improves growth performance and bone mineralization with less Cu accumulation in liver compared with pigs fed diets containing CuSO4.  相似文献   

7.
An experiment was conducted to test the hypothesis that the requirement for Ca expressed as a ratio between standardized total tract digestible (STTD) Ca and STTD P obtained in short-term experiments may be applied to pigs fed diets without or with microbial phytase from 11 to 130 kg. In a 5-phase program, 160 pigs (body weight: 11.2 ± 1.8 kg) were randomly allotted to 32 pens and 4 corn–soybean meal-based diets in a 2 × 2 factorial design with 2 diet formulation principles (total Ca or STTD Ca), and 2 phytase inclusion levels (0 or 500 units/kg of feed) assuming phytase released 0.11% STTD P and 0.16% total Ca. The STTD Ca:STTD P ratios were 1.40:1, 1.35:1, 1.25:1, 1.18:1, and 1.10:1 for phases 1 to 5, and STTD P was at the requirement. Weights of pigs and feed left in feeders were recorded at the end of each phase. At the conclusion of phase 1 (day 24), 1 pig per pen was euthanized and a blood sample and the right femur were collected. At the end of phases 2 to 5, a blood sample was collected from the same pig in each pen. At the conclusion of the experiment (day 126), the right femur of 1 pig per pen was collected and carcass characteristics from this pig were measured. No interactions were observed between diet formulation principle and phytase inclusion for growth performance in any phase and no differences among treatments were observed for overall growth performance. Plasma Ca and P and bone ash at the end of phase 1 were also not influenced by dietary treatments. However, on day 126, pigs fed nonphytase diets formulated based on total Ca had greater bone ash than pigs fed STTD Ca-based diets, but if phytase was used, no differences were observed between the 2 formulation principles (interaction P < 0.05). At the end of phases 2 and 3, pigs fed diets without phytase had greater (P < 0.05) plasma P than pigs fed diets with phytase, but no differences were observed at the end of phases 4 and 5. A negative quadratic effect (P < 0.05) of phase (2 to 5) on the concentration of plasma Ca was observed, whereas plasma P increased (quadratic; P < 0.05) from phases 2 to 5. However, there was no interaction or effect of diet formulation principle or phytase inclusion on any carcass characteristics measured. In conclusion, STTD Ca to STTD P ratios can be used in diet formulation for growing-finishing pigs without affecting growth performance or carcass characteristics and phytase inclusion ameliorates bone resorption caused by low dietary Ca and P.  相似文献   

8.
An experiment was conducted to evaluate the effects of including canola meal (CM) in diets for weaning pigs challenged with a F18 strain of Escherichia coli on growth performance and gut health. A total of 36 individually housed weaned pigs (initial body weight [BW] = 6.22 kg) were randomly allotted to one of the three diets (12 pigs/diet). The three diets were corn–soybean meal (SBM)-based basal diet (control diet) and the basal diet with 0.3% zinc oxide, 0.2% chlortetracycline, and 0.2% tiamulin (antibiotic diet) or with 20% CM diet. The diets were fed in two phases: Phase 1: days 0 to 7 and Phase 2: days 7 to 20. All pigs were given an oral dose of 2 × 109 CFU of F18 strain of E. coli on day 7. Fecal score was assessed daily throughout the trial. Dietary antibiotics increased (P < 0.05) overall average daily gain (ADG) and average daily feed intake (ADFI) compared by 48% and 47%, respectively. Dietary CM increased (P < 0.05) overall ADG and ADFI by 22% and 23%, respectively; but the ADG and ADFI values for CM-containing diet did not reach those for the antibiotics-containing diet. Dietary antibiotics reduced (P < 0.05) fecal score; however, dietary CM unaffected fecal score. Dietary antibiotics decreased (P < 0.05) liver weight per unit live BW by 16% at day 20, whereas dietary CM did not affect liver weight per unit live BW (29.2 vs. 28.6). Also, dietary antibiotics increased (P < 0.05) serum triiodothyronine and tetraiodothyronine levels for day 14, whereas dietary CM did not affect the serum level of these hormones. Dietary antibiotics reduced (P < 0.05) the number white blood cells and neutrophils by 38% and 43% at day 20, respectively, whereas dietary CM tended to reduce (P = 0.09) the number white blood cells by 19% at day 20. The number white blood cells for CM diet tended to be greater (P < 0.10) than that for antibiotics diet. The dietary antibiotics decreased (P < 0.05) the concentration of individual volatile fatty acids and hence of total volatile fatty acid in cecum by 61% at day 20, whereas dietary CM decreased (P < 0.05) cecal butyric acid concentration by 61% and tended to reduce (P < 0.10) total volatile fatty acid concentration by 30% at day 20. In conclusion, the dietary inclusion of 20% CM improved ADG and tended to reduce white blood cell counts. Thus, inclusion of CM in antibiotics-free corn-SBM-based diets for weaned pigs that are challenged with F18 strain of E. coli can result in their improved performance partly through a reduction of the inflammatory response.  相似文献   

9.
The efficacy of exogenous carbohydrases in pig diets has been suggested to depend on enzyme activity and dietary fiber composition, but recent evidence suggests other factors such as ambient temperature might be important as well. Therefore, we investigated the effect of heat stress (HS) on the efficacy of a multienzyme carbohydrase blend in growing pigs. Ninety-six (barrows: gilts; 1:1) growing pigs with initial body weight (BW) of 20.15 ± 0.18 kg were randomly assigned to six treatments, with eight replicates of two pigs per pen in a 3 × 2 factorial arrangement: three levels of carbohydrase (0, 1X, or 2X) at two environmental temperatures (20 °C or cyclical 28 °C nighttime and 35 °C day time). The 1X dose (50 g/tonne) provided 1,250 viscosimetry unit (visco-units) endo-β-1,4-xylanase, 4,600 units α-l-arabinofuranosidase and 860 visco-units endo-1,3(4)-β-glucanase per kilogram of feed. Pigs were fed ad libitum for 28 d and 1 pig per pen was sacrificed on day 28. There was no enzyme × temperature interaction on any response criteria; thus, only main effects are reported. Enzyme treatment quadratically increased (P < 0.05) BW on day 28, average daily gain (ADG) (P < 0.05), and average daily feed intake (ADFI) (P < 0.05) with the 1X level being highest. HS reduced the BW at day 14 (P < 0.01) and day 28 (P < 0.01), ADG (P < 0.01), and ADFI (P<0.001). There was a trend of increased feed efficiency (G:F) (P < 0.1) in the HS pigs. HS increased apparent jejunal digestibility of energy (P < 0.05) and apparent ileal digestibility of calcium (P < 0.01). At day 1, HS reduced serum glucose (P < 0.001) but increased nonesterified fatty acid (P < 0.01). In the jejunum, there was a trend of increased villi height by carbohydrases (P < 0.1), whereas HS reduced villi height (P < 0.05). HS increased the jejunal mRNA abundance of IL1β in the jejunum (P < 0.001). There was a trend for a reduction in ileal MUC2 (P < 0.1) and occludin (P < 0.1) by HS, and a trend for increased PEPT1 (P < 0.1). There was no effect of HS on alpha diversity and beta diversity of the fecal microbiome, but there was an increase in the abundance of pathogenic bacteria in the HS group. In conclusion, HS did not alter the efficacy of carbohydrases. This suggests that carbohydrases and HS modulate pig performance independently.  相似文献   

10.
Based on results of a recent meta-analysis, we hypothesized that increased dietary Val, Ile, or Trp could correct possible amino acid interactions because of excess Leu in diets containing high levels of corn protein, namely dried distiller’s grains with solubles (DDGS). A total of 1,200 pigs (PIC TR4 × (Fast LW × PIC L02); initially 33.6 ± 0.6 kg) were used in a 103-d study. The 6 dietary treatments were corn–soybean meal (SBM)-DDGS-based as follows: (1) high SBM and low level of l-Lys HCl (HSBM), (2) high l-Lys HCl and moderate Ile, Val, Trp (AA above NRC 2012 estimates; NC), (3) moderate l-Lys HCl and high Ile, Val, and Trp (PC), and PC with either increased (4) L-Val (PC+Val), (5) L-Ile (PC+Ile), or (6) L-Trp (PC+Trp). Pigs fed the NC diet were predicted to have the poorest average daily gain (ADG), the PC diet to be intermediate, and pigs fed the HSBM, PC+Val, PC+Ile, and PC+Trp have the same and highest predicted ADG. In the grower period (34 to 90 kg), ADG was greater (Ρ < 0.05) for the pigs fed HSBM and PC+Val diets than the NC with pigs fed other diets intermediate. Pigs fed HSBM were more (Ρ < 0.05) efficient (G:F) than the NC and PC with pigs fed other diets intermediate. In the finisher period (90 to 136 kg), ADG was greater (Ρ < 0.05) for pigs fed PC+Ile than that of the NC with pigs fed other diets intermediate. Pigs fed PC+Val had greater (Ρ < 0.05) average daily feed intake (ADFI) than the NC with pigs fed other diets intermediate. However, PC+Ile pigs were more (Ρ < 0.05) efficient than PC+Val with pigs fed other diets intermediate. Overall, ADG was greater (Ρ < 0.05) for pigs fed HSBM, PC+Val, and PC+Ile diets than the NC with pigs fed other diets intermediate. Pigs fed the PC+Val diet had greater (Ρ < 0.05) ADFI than the NC with pigs fed other diets intermediate. No differences were detected between treatments for overall G:F or other carcass characteristics. In conclusion, increasing Val or Ile in high l-Lys-HCl-DDGS-based diets improved growth performance compared with pigs fed diets containing high levels of l-Lys HCl without added Val and Ile. These results present evidence that the recently developed meta-analysis can predict the relative differences in overall ADG for pigs fed the NC, PC, PC+Val, and PC+Ile diets; however, the predicted G:F was less accurate. The data demonstrate that the negative effects of high Leu concentrations in corn-DDGS-based diets can be reversed by increasing the ratios of Val and Ile relative to Lys.  相似文献   

11.
This experiment was conducted to evaluate potential replacements for pharmacological levels of Zn (provided by Zn oxide), such as diet acidification (sodium diformate) and low dietary crude protein (CP: 21 vs 18%) on nursery pig performance and fecal dry matter (DM). A total of 360 weaned pigs (Line 200 × 400, DNA, Columbus, NE; initially 5.90 ± 0.014 kg) were used in a 42-d growth study. Pigs were weaned at approximately 21 d of age and randomly assigned to pens (five pigs per pen). Pens were then allotted to one of eight dietary treatments with nine pens per treatment. Experimental diets were fed in two phases: phase 1 from weaning to day 7 and phase 2 from days 7 to 21, with all pigs fed the same common diet from days 21 to 42. The eight treatment diets were arranged as a 2 × 2 × 2 factorial with main effects of Zn (110 mg/kg from days 0 to 21 or 3,000 mg/kg from days 0 to 7, and 2,000 mg/kg from days 7 to 21), diet acidification, (without or with 1.2% sodium diformate), and dietary CP (21% or 18%, 1.40% and 1.35% in phases 1 and 2 vs. 1.20% standardized ileal digestible Lys, respectively). Fecal samples were collected weekly from the same three pigs per pen to determine DM content. No 2- or 3-way interactions (P > 0.05) were observed throughout the 42-d study for growth performance; however, there was a Zn × acidifier × CP interaction (P < 0.05) for fecal DM on day 7 and for the overall average of the six collection periods. Reducing CP without acidification or pharmacological levels of Zn increased fecal DM, but CP had little effect when ZnO was present in the diet. From days 0 to 21, significant (P < 0.05) main effects were observed where average daily gain (ADG) and gain:feed (G:F) increased for pigs fed pharmacological levels of Zn, sodium diformate, or 21% CP (P < 0.065). In the subsequent period (days 21 to 42) after the experimental diets were fed, there was no evidence of difference in growth performance among treatments. Overall (days 0 to 42), main effect tendencies were observed (P < 0.066) for pigs fed added Zn or sodium diformate from days 0 to 21, whereas pigs fed 21% CP had greater G:F than those fed 18% CP. Pig weight on day 42 was increased by adding Zn (P < 0.05) or acidifier (P < 0.06) but not CP. In summary, none of the feed additives had a major influence on fecal DM, but dietary addition of pharmacological levels of Zn or sodium diformate independently improved nursery pig performance.  相似文献   

12.
The objective of this study was to test the hypothesis that growth performance and carcass characteristics of pigs fed diets containing cold-fermented, low oil distillers dried grains with solubles (DDGS) is not different from that of pigs fed diets containing conventional DDGS regardless of the physical form of the diets. A total of 160 barrows and gilts were used. There were 4 diets, 10 pens per diet, and 4 pigs per pen. Pigs were weaned at 21 d of age and fed a common phase 1 diet that did not contain DDGS during the initial 7 d post-weaning. Pigs were then allotted to the four diets that were arranged in a 2 × 2 factorial design with two sources of DDGS (cold-fermented and conventional DDGS) and two diet forms (meal and pellets). Pigs were fed phase 2 diets from day 7 to 21 and phase 3 diets from day 21 to 43 post-weaning. All diets were based on corn and soybean meal, but phase 2 diets also contained 15% DDGS and phase 3 diets contained 30% DDGS. From day 43, pigs were fed grower diets for 38 d, early finisher diets for 38 d, and late finisher diets for 18 d and these diets also contained 30% DDGS. Feed was provided on an ad libitum basis and daily feed allotments were recorded. Pigs were weighed at the beginning of each phase and at the conclusion of the experiment. On the last day of the experiment, the pig in each pen with a body weight that was closest to the pen average was slaughtered and carcass measurements were determined. Combined results for the two nursery phases indicated that feeding meal diets instead of pelleted diets increased (P < 0.001) average daily feed intake and decreased (P < 0.05) gain to feed ratio (G:F). However, no differences between the two sources of DDGS were observed for the overall growth performance of weanling pigs. For the entire growing-finishing period, the source of DDGS did not affect growth performance, but pigs fed meal diets had reduced (P < 0.001) G:F compared with pigs fed the pelleted diets. There were no differences between the two sources of DDGS for carcass characteristics. Back fat was greater (P < 0.05) for pigs fed pelleted diets than for pigs fed meal diets. In conclusion, no differences in growth performance or carcass characteristics between pigs fed cold-fermented DDGS and pigs fed conventional DDGS were observed. However, pigs fed pelleted diets had greater G:F and greater back fat than pigs fed meal diets.  相似文献   

13.
The objective of this experiment was to evaluate the growth performance and bone mineral content (BMC) of nursery pigs in response to increasing total calcium (Ca) to available phosphorus (aP) ratios in diets containing phytase (250 FTU/kg; Natuphos E, BASF, Florham Park, NJ). A total of 480 nursery pigs (body weight (BW) = 5.7 ± 0.6 kg) with 10 pigs per pen and 7 pens per treatment (6 pens fed 2.75:1 diet) were allotted to seven treatments consisting of increasing ratios of calcium to available phosphorus (Ca:aP): 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, and 2.75. From day −7 to 0, pigs were fed a common diet. They were then fed the treatment diets during two experimental phases from day 1 to 14 and 15 to 28, respectively. Available P was formulated to 0.33% and 0.27% (approximately 90% of requirement) in dietary phases 1 and 2, respectively. BW, average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F) were determined. BMC of the femur was measured on day 28 on one pig per pen using dual x-ray absorptiometry. Data were analyzed as a linear mixed model using PROC MIXED (SAS, 9.3). Orthogonal polynomial contrasts were used to determine the linear and quadratic effects of increasing the Ca:aP. Over the 28-d experimental period, increasing Ca:aP resulted in a linear decrease in ADG (353, 338, 328, 304, 317, 291, and 280 g/d; P < 0.01), ADFI (539, 528, 528, 500, 533, 512, and 489 g/d; P < 0.05), and G:F (0.68, 0.66, 0.64, 0.62, 0.61, 0.59, and 0.58; P < 0.01). Increasing Ca:aP also resulted in decreased BW on days 14 and 28 (P < 0.01). The BMC of the femur decreased with increasing Ca:aP (6.2, 6.3, 5.7, 5.9, 5.5, 5.6, and 5.3 g; P < 0.05). Regression analysis explained the impact of Ca:aP as follows on ADG (ADG [g/d] = 339 − 36x; r2 = 0.81), G:F (G:F = 0.61 – 0.03x; r2 = 0.72), and BMC (BMC [g] = 6.4 – 0.27x; r2 = 0.43), where x is the Ca:aP. In conclusion, all outcomes indicated that any level of calcium above the minimum used in this experiment impaired growth performance and skeletal development. Further research using even lower levels of dietary Ca is warranted.  相似文献   

14.
Although pork producers typically aim to optimize growth rates, occasionally it is necessary to slow growth, such as when harvest facility capacity is limited. In finishing pigs, numerous dietary strategies can be used to slow growth so pigs are at optimal slaughter body weights when harvest facility capacity and/or access is restored. However, the impact of these diets on pork carcass quality is largely unknown. Thus, this study aimed to evaluate the efficacy of dietary strategies to slow growth in late finishing pigs and evaluate their effects on carcass composition and pork quality. Mixed-sex pigs (n = 897; 125 ± 2 kg BW) were randomly allotted across 48 pens and assigned to 1 of 6 dietary treatments (n = 8 pens/treatment): (1) Control diet representative of a typical finisher diet (CON); (2) diet containing 3% calcium chloride (CaCl2); (3) diet containing 97% corn and no soybean meal (Corn); (4) diet deficient in isoleucine (LowIle); (5) diet containing 15% neutral detergent fiber (NDF) from soybean hulls (15% NDF); and (6) diet containing 20% NDF from soybean hulls (20% NDF). Over 42 d, pen body weights and feed disappearance were collected. Pigs were harvested in 3 groups (14, 28, and 42 d on feed) and carcass data collected. From the harvest group, 1 loin was collected from 120 randomly selected carcasses (20 loins/treatment) to evaluate pork quality traits. Overall, ADG was reduced in CaCl2, Corn, and 20% NDF pigs compared with CON pigs (P < 0.001). However, ADFI was only reduced in CaCl2 and 20% NDF pigs compared with CON (P < 0.001). Feed efficiency was reduced in CaCl2 and Corn pigs compared with CON (P < 0.001). Hot carcass weights were reduced in CaCl2 pigs at all harvest dates (P < 0.001) and were reduced in Corn and 20% NDF pigs at days 28 and 42 compared with CON pigs (P < 0.001). In general, CaCl2 and 20% NDF diets resulted in leaner carcasses, whereas the Corn diet increased backfat by 42 d on test (P < 0.05). Loin pH was reduced and star probe increased in CaCl2 pigs compared with CON pigs (P < 0.05); no treatments differed from CON pigs regarding drip loss, cook loss, color, firmness, or marbling (P ≥ 0.117). Overall, these data indicate that several dietary strategies can slow finishing pig growth without evidence of behavioral vices. However, changes to carcass composition and quality were also observed, indicating quality should be taken into consideration when choosing diets to slow growth.  相似文献   

15.
The objective of this study was to determine the influence of biochar obtained from exothermic production of lodgepole pine (Pinus contorta) and quaking aspen (Populus tremuloides) on sheep performance and diet digestibility and on preference for a ration enriched with this carbon-based material. Twenty-four lambs were housed in individual pens and assigned to one of three treatment groups (eight animals per group), where they received: 1) a 60:40 ration of alfalfa:barley (Control), 2) an isoenergetic and isonitrogenous ration with alfalfa, barley, and 2% biochar (BC), and 3) a simultaneous offer of the Control and BC rations (Choice). Lambs were exposed to two consecutive feeding periods (Period 1: 13 d and Period 2: 21 d), representing time intervals where the evolution of intake, animal performance, and rumen parameters were assessed; in vivo digestibility was determined during the last 5 d of the study. Ration intake did not differ among groups of lambs (P > 0.10), although during some days in Period 2, intake was greater for the BC and Choice groups than for the Control group (P < 0.05). Lambs in Choice had a lower preference for BC than for the Control ration (Period 1: P < 0.05; Period 2: P < 0.10), although they incorporated a substantial amount of BC (39 and 40%, for Periods 1 and 2, respectively) into their diets. No differences in body weight gains (ADG) or gain-to-feed ratios were found among groups of animals (P > 0.10), although dry matter digestibility and digestible dry matter intake was greater for lambs in the BC group than for lambs in Control group (P < 0.05). The ruminal concentration of the volatile acid acetate in Period 2 was greater for BC than for Choice (P < 0.05). During the same period, the concentration of valerate and ruminal pH values were greater in BC than in Control (P < 0.05). Thus, the addition of biochar to grain-based diets enhanced diet digestibility and influenced some ruminal parameters in lambs. Nevertheless, these positive effects were not reflected in significant improvements on ADG or feed conversion efficiencies. Lambs offered choices between Control and BC rations formed a diet with concentrations of biochar of ~1.2%, suggesting that these animals would tolerate such levels without reductions in ration palatability.  相似文献   

16.
High dietary protein may increase susceptibility of weaned pigs to enteric pathogens. Dietary supplementation with functional amino acids (FAA) may improve growth performance of pigs during disease challenge. The objective of this study was to evaluate the interactive effects of dietary protein content and FAA supplementation above requirements for growth on performance and immune response of weaned pigs challenged with Salmonella. Sixty-four mixed-sex weanling pigs (13.9 ± 0.82 kg) were randomly assigned to dietary treatments in a 2 × 2 factorial arrangement with low (LP) or high protein (HP) content and basal (AA–) or FAA profile (AA+; Thr, Met, and Trp at 120% of requirements) as factors. After a 7-d adaptation period, pigs were inoculated with either a sterile saline solution (CT) or saline solution containing Salmonella Typhimurium (ST; 3.3 × 109 CFU/mL). Growth performance, body temperature, fecal score, acute-phase proteins, oxidant/antioxidant balance, ST shedding score in feces and intestinal colonization, fecal and digesta myeloperoxidase (MPO), and plasma urea nitrogen (PUN) were measured pre- and postinoculation. There were no dietary effects on any measures pre-inoculation or post-CT inoculation (P > 0.05). Inoculation with ST increased body temperature and fecal score (P < 0.05), serum haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), PUN, and fecal MPO, and decreased serum albumin and plasma reduced glutathione (GSH):oxidized glutathione (GSSG) compared with CT pigs (P < 0.05). ST-inoculation reduced average daily gain (ADG) and feed intake (ADFI) vs. CT pigs (P < 0.05) but was increased by AA+ vs. AA– in ST pigs (P < 0.05). Serum albumin and GSH:GSSG were increased while haptoglobin and SOD were decreased in ST-inoculated pigs fed AA+ vs. AA– (P < 0.05). PUN was higher in HP vs. LP-fed pigs postinoculation (P < 0.05). Fecal ST score was increased in ST-inoculated pigs on days 1 and 2 postinoculation and declined by day 6 (P < 0.05) in all pigs while the overall score was reduced in AA+ vs. AA– pigs (P < 0.05). Cecal digesta ST score was higher in HP vs. LP-fed pigs and were lower in AA+ compared with AA– fed pigs in the colon (P < 0.05). Fecal and digesta MPO were reduced in ST pigs fed AA+ vs. AA– (P < 0.05). These results demonstrate a positive effect of FAA supplementation, with minimal effects of dietary protein, on performance and immune status in weaned pigs challenged with Salmonella.  相似文献   

17.
The objective of this study was to determine the optimal inclusion rate of dietary formic acid-ammonium formate (composition by weight was 62% formic acid and 37% ammonium formate) in nursery and grower-finisher diets or grower-finisher diets only. At weaning (d 21 +/- 2), 224 pigs (equal numbers of gilts and barrows) were blocked by BW within sex (28 pigs per BW block, 4 pigs per pen) and assigned randomly to 1 of 7 dietary treatments within each block. Dietary treatments (TRT), listed as percentage of dietary formic acid-ammonium formate in the nursery (NR) and the grower-finisher (GRF) diets, were as follows (NR and GRF): TRT 1: 0.0 and 0.0; TRT 2: 1.2 and 1.0; TRT 3: 0.0 and 1.0; TRT 4: 1.0 and 0.8; TRT 5: 0.0 and 0.8; TRT 6: 0.8 and 0.6; and TRT 7: 0.0 and 0.6. During the grower 2 (GR2) period, pigs fed treatments containing formic acid-ammonium formate in the nursery diets (TRT 2, TRT 4, and TRT 6) had greater (P < 0.05) ADG and G:F than pigs fed diets containing formic acid-ammonium formate in the grower period only (TRT 3, TRT 5, and TRT 7). Average daily feed intake tended to decrease (NR1, P = 0.07) or decreased (NR2, P < 0.05) for pigs fed formic acid-ammonium formate in the nursery (TRT 2, TRT 4, and TRT 6) compared with pigs fed control diets (TRT 1, TRT 3, TRT 5, and TRT 7). The ADFI also decreased (P < 0.05) during the GR1 and GR2 periods for pigs fed diets containing formic acid-ammonium formate compared with pigs fed control (TRT 1). In the combined nursery data, there was no effect (P > 0.10) of treatment on ADG. Pigs on diets containing formic acid-ammonium formate ate less feed (P < 0.05) and had improved G:F (P < 0.05) compared with pigs on the control treatments (TRT 1, TRT 3, TRT 5, and TRT 7). Combining the grower-finisher phases, G:F was greater (P = 0.05) for pigs fed diets containing formic acid-ammonium formate than for pigs fed the control feed. The efficiency of gain (i.e., G:F) was improved by 3.5% for pigs fed all formic acid-ammonium formate treatments and ranged from 2.3 (TRT 7) to 5.9% (TRT 4) compared with pigs fed control (TRT 1). Combining all phases from nursery to finisher, the G:F ratio tended (P = 0.08) to be greater for pigs fed formic acid-ammonium formate compared with pigs fed control. The efficiency of gain was improved by 3.0% for pigs fed all formic acid-ammonium formate treatments, ranging from 1.8 (TRT 7) to 5.2% (TRT 4), compared with pigs fed the control diet (TRT 1).  相似文献   

18.
The capacity of a novel consensus bacterial 6-phytase variant (PhyG) to entirely replace dietary inorganic phosphorus (Pi) source in grower pigs fed diets with reduction of calcium (Ca), net energy (NE), and digestible amino acids (AA) was evaluated, using growth performance and apparent total tract digestibility (ATTD) of nutrients as outcome measures. A total of 352 mixed-sex pigs (initial BW 23.4 kg) were randomized to 4 treatments, 8 pigs/pen, and 11 pens/treatment. Diets were corn-soybean meal-based and formulated by phase (grower 1, 25 to 50 and grower 2, 50 to 75 kg BW). The positive control diet (PC) provided adequate nutrients and a negative control diet (NC) was formulated without Pi (1.2 g/kg ATTD P) and reduced in Ca (-0.12 to -0.13 percentage points), NE (-32 kcal/kg), and digestible essential AA (-0.004 to -0.026 percentage points) vs. PC. Two further treatments comprised the NC plus 500 or 1,000 FTU/kg of PhyG. Data were analyzed by ANOVA, mean contrasts and orthogonal polynomial regression. Nutrient reductions in the NC reduced (P < 0.05) average daily gain (ADG) during grower 1 and overall (73 to 136 d of age), increased (P < 0.05) feed conversion ratio (FCR) during grower 1 and overall and tended to reduce (P < 0.1) average daily feed intake (ADFI) during grower 2 and overall, vs. PC. Phytase supplementation improved (P < 0.05) FCR during grower 1, ADG during grower 2 and overall, ATTD of DM and P, and tended to improve DE (P = 0.053) in a linear dose-dependent manner. PhyG at 1,000 FTU/kg resulted in growth performance (all measures, all phases) equivalent to PC. The findings demonstrate that PhyG at 1,000 FTU/kg totally replaced Pi in complex grower pig diets containing industrial co-products, compensated a full nutrient matrix reduction and maintained performance.  相似文献   

19.
This study investigated the different addition levels of iron (Fe) in growing-finishing pigs and the effect of different Fe levels on growth performance, hematological status, intestinal barrier function, and intestinal digestion. A total of 1,200 barrows and gilts ([Large White × Landrace] × Duroc) with average initial body weight (BW; 27.74 ± 0.28 kg) were housed in 40 pens of 30 pigs per pen (gilts and barrows in half), blocked by BW and gender, and fed five experimental diets (eight replicate pens per diet). The five experimental diets were control diet (basal diet with no FeSO4 supplementation), and the basal diet being supplemented with 150, 300, 450, or 600 mg/kg Fe as FeSO4 diets. The trial lasted for 100 d and was divided into the growing phase (27 to 60 kg of BW) for the first 50 d and the finishing phase (61 to 100 kg of BW) for the last 50 d. The basal diet was formulated with an Fe-free trace mineral premix and contained 203.36 mg/kg total dietary Fe in the growing phase and 216.71 mg/kg in the finishing phase based on ingredient contributions. And at the end of the experiment, eight pigs (four barrows and four gilts) were randomly selected from each treatment (selected one pig per pen) for digesta, blood, and intestinal samples collection. The results showed that the average daily feed intake (P = 0.025), average daily gain (P = 0.020), and BW (P = 0.019) increased linearly in the finishing phase of pigs fed with the diets containing Fe. On the other hand, supplementation with different Fe levels in the diet significantly increased serum iron and transferrin saturation concentrations (P < 0.05), goblet cell numbers of duodenal villous (P < 0.001), and MUC4 mRNA expression (P < 0.05). The apparent ileal digestibility (AID) of amino acids (AA) for pigs in the 450 and 600 mg/kg Fe groups was greater (P < 0.05) than for pigs in the control group. In conclusion, dietary supplementation with 450 to 600 mg/kg Fe improved the growth performance of pigs by changing hematological status and by enhancing intestinal goblet cell differentiation and AID of AA.  相似文献   

20.

Background

To compare the nutritional value and digestibility of five quality protein maize (QPM) hybrids to that of white and yellow maize, two experiments were carried out in growing pigs. In experiment 1, the energy metabolizability and the nitrogen balance of growing pigs fed one of five QPM hybrid diets were compared against those of pigs fed white or yellow maize. In experiment 2, the apparent and standardized ileal digestibility (AID and SID, respectively) of proteins and amino acids from the five QPM hybrids were compared against those obtained from pigs fed white and yellow maize. In both experiments, the comparisons were conducted using contrasts.

Results

The dry matter and nitrogen intakes were higher in the pigs fed the QPM hybrids (P < 0.05) than in the pigs fed white or yellow maize. Energy digestibility (P < 0.001) and metabolizability (P < 0.01) were higher in the pigs fed the white and yellow maize diets than in those fed the QPM diets. The AID of lysine was higher (P < 0.01) in the QPM diets than in the white and yellow maize. The AIDs of leucine, isoleucine, valine, phenylalanine, and methionine were lower in the QPM diets than those of maize (white and yellow) (all P < 0.05). Maize (white and yellow) had greater SIDs of leucine, isoleucine, valine, phenylalanine, glutamic acid, serine, alanine, tyrosine, and proline (P < 0.05).

Conclusions

Based on these results, it was concluded that QPM had a lower metabolizable energy content and a higher amount of digestible lysine than normal maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号