首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pyramiding Asian soybean rust (ASR) resistance (Rpp) genes in a single genotype has been shown to increase ASR resistance in soybean. However, it remains unclear which combinations of Rpp genes are superior. Therefore, here, we developed six new Rpp‐pyramided lines carrying different combinations of Rpp genes and evaluated their resistance against 13 Bangladeshi rust (Phakopsora pachyrhizi) isolates (BdRPs) alongside seven previously developed Rpp‐pyramided lines. We found that lines carrying one, two and three Rpp genes had high ASR resistance without sporulation in 13.8%, 35.2% and 73.1% of the assays, respectively. Among the new lines that were developed, those with Rpp3 + Rpp4 and Rpp3 + Rpp4 Rpp5 had high levels of ASR resistance, while the line containing Rpp2 + Rpp4 Rpp5 showed immunity phenotype at two weeks after inoculation by the BdRP‐22 infection. Thus, pyramiding larger numbers of Rpp genes confers soybean with a higher level of resistance to ASR pathogens and can produce an immunity phenotype at two weeks after inoculation.  相似文献   

2.
Asian soybean rust (ASR) caused by Phakopsora pachyrhizi severely reduces seed yield in soybean. Molecular tagging of ASR resistance can help in the process of resistance breeding. In this study, an F2 population of cross (susceptible cultivar ‘NRC 7’ × resistant exotic genotype EC 241780) was used for bulked segregant analysis (BSA) with 25 SSR (simple sequence repeat) primers linked with six Rpp genes. Among them, five polymorphic SSR markers, viz., Sct 187, SSR 1859, Satt 191 (Rpp1b like loci) and Satt 215, Sat_361 (Rpp2 loci) distinguished the ASR resistant and susceptible bulks and individuals. In combined marker analysis, the markers Satt 191 (Rpp1b like loci) and Satt 215 (Rpp2 loci) were linked with ASR severity score and were also confirmed in individual 110 F2 segregants. Hence, these markers could be utilized in the marker assisted rust resistance breeding of Rpp1b like and Rpp2 genes. In silico candidate gene analysis for hypersensitive response revealed that Satt 191 linked region was rich in genes encoding apoptotic ATPase having leucine‐rich repeat (LRR) domain.  相似文献   

3.
Asian rust, caused by the fungus Phakopsora pachyrhizi, is the most severe disease currently threatening soybean crops in Brazil. The development of resistant cultivars is a top priority. Genetic characterization of resistance genes is important for estimating the improvement when these genes are introduced into soybean plants and for planning breeding strategies against this disease. Here, we infected an F2 population of 140 plants derived from a cross between ‘An-76’, a line carrying two resistance genes (Rpp2 and Rpp4), and ‘Kinoshita’, a cultivar carrying Rpp5, with a Brazilian rust population. We scored six characters of rust resistance (lesion color [LC], frequency of lesions having uredinia [%LU], number of uredinia per lesion [NoU], frequency of open uredinia [%OU], sporulation level [SL], and incubation period [IP]) to identify the genetic contributions of the three genes to these characters. Furthermore, we selected genotypes carrying these three loci in homozygosis by marker-assisted selection and evaluated their genetic effect in comparison with their ancestors, An-76, PI230970, PI459025, Kinoshita and BRS184. All three genes contributed to the phenotypes of these characters in F2 population and when pyramided, they significantly contributed to increase the resistance in comparison to their ancestors. Rpp2, previously reported as being defeated by the same rust population, showed a large contribution to resistance, and its resistance allele seemed to be recessive. Rpp5 had the largest contribution among the three genes, especially to SL and NoU. Only Rpp5 showed a significant contribution to LC. No QTLs for IP were detected in the regions of the three genes. We consider that these genes could contribute differently to resistance to soybean rust, and that genetic background plays an important role in Rpp2 activity. All three loci together worked additively to increase resistance when they were pyramided in a single genotype indicating that the pyramiding strategy is one good breeding strategy to increase soybean rust resistance.  相似文献   

4.
Fusarium wilt is one of the most widespread diseases of pea. Resistance to Fusarium wilt race 1 was reported as a single gene, Fw, located on linkage group III. The previously reported AFLP and RAPD markers linked to Fw have limited usage in marker‐assisted selection due to their map distance and linkage phase. Using 80 F8 recombinant inbred lines (RILs) derived from the cross of Green Arrow × PI 179449, we amplified 72 polymorphic markers between resistant and susceptible lines with the target region amplified polymorphism (TRAP) technique. Marker–trait association analysis revealed a significant association. Five candidate markers were identified and three were converted into user‐friendly dominant SCAR markers. Forty‐eight pea cultivars with known resistant or susceptible phenotypes to Fusarium wilt race 1 verified the marker–trait association. These three markers, Fw_Trap_480, Fw_Trap_340 and Fw_Trap_220, are tightly linked to and only 1.2 cM away from the Fw locus and are therefore ideal for marker‐assisted selection. These newly identified markers are useful to assist in the isolation of the Fusarium wilt race 1 resistance gene in pea.  相似文献   

5.
6.
In this study, we characterized and mapped a new and rare resistance gene (RphFT) in the Chinese barley variety ‘Fong Tien’. RphFT, a dominant gene, was mapped to chromosome 5HL at a genetic position of 142.1 cM using DArT‐seq markers. The gene was also confirmed to be present in Australian cultivar ‘Yagan’ based on allelic tests, and likely ‘Lockyer’ based on multipathotype tests. The genetic studies also confirmed the presence of Rph12 in Australian cultivar ‘Baudin’. Rph12 is also located on chromosome 5HL close to RphFT, and the two loci were confirmed to be independent. Gene RphFT is of limited breeding value because it is effective to only one pathotype of P. hordei, 220P+ +Rph13 in Australia; nevertheless, it may play a role in controlling leaf rust if used in combination with other Rph genes. The locus symbol Rph25 is recommended for RphFT in accordance with the rules and numbering system of barley gene nomenclature.  相似文献   

7.
Development of durable resistance to soybean rust (SBR) is challenging due to the pathogenic diversity of Phakopsora pachyrhizi populations. The objective of this research was to investigate and confirm the genomic locations of Rpp genes in the Ugandan line UG-5 that confer resistance to different SBR pathotypes. Bulked segregant analysis revealed two genomic regions associated with resistance in a cross with rust-susceptible 'Williams 82'. Composite interval mapping in the F2 and F2:3 populations had a LOD score of 48.7 in a region 0.38 cM away from the estimated location of the Rpp1 locus on chromosome (Chr.) 18. An approximately 23-Kbp interval spanning the Rpp1 locus was flanked by SNP markers ss715632313 and ss715632318. Another interval was identified at the Rpp3 locus on Chr. 6 between markers Satt100 and ss715594488 (2.4 cM) in the F2 population and between Satt100 and ss715594874 (4.3 cM) in the F2:3 population, with a maximum LOD score of 25.6. UG-5 was thus confirmed to have SBR resistance genes at the Rpp1 and Rpp3 loci that can be pyramided into other elite cultivars.  相似文献   

8.
The utility of combining simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) marker genotyping was determined for genetically mapping a novel aphid (Aphis craccivora) resistance locus in cowpea breeding line SARC 1‐57‐2 and for introgressing the resistance into elite cultivars by marker‐assisted backcrossing (MABC). The locus was tagged with codominant SSR marker CP 171F/172R with a recombination fraction of 5.91% in an F2 population from ‘Apagbaala’ x SARC 1‐57‐2. A SNP‐genotyped biparental recombinant inbred line population was genotyped for CP 171F/172R, which was mapped to position 11.5 cM on linkage group (LG) 10 (physical position 30.514 Mb on chromosome Vu10). Using CP 171F/172R for foreground selection and a KASP‐SNP‐based marker panel for background selection in MABC, the resistance from SARC 1‐57‐2 was introduced into elite susceptible cultivar ‘Zaayura’. Five BC4F3 lines of improved ‘Zaayura’ that were isogenic except for the resistance locus region had phenotypes similar to SARC 1‐57‐2. This study identified a novel aphid resistance locus and demonstrated the effectiveness of integrating SSR and SNP markers for trait mapping and marker‐assisted breeding.  相似文献   

9.
The parasitic plant, Striga gesnerioides (Willd.) Vatke, is one of the most important constraints of cowpea production and food security in West Africa. Currently, few Striga resistant cowpea varieties have been developed that are well‐adapted to the dry savannah regions of Ghana. While genes conferring resistance to Striga races SG1, SG3 and SG5 have been mapped, the genetic locus of resistance to the race of Striga found in Ghana (SG‐GH) has not been characterized. Here, we report identification of genetic markers linked to SG‐GH resistance and define the relationship of this locus to SG3 resistance in recombinant inbred line populations generated from crosses between Striga resistant IT97K‐499‐35 and the Striga susceptible varieties Apagbaala and SARC‐LO2. The populations were genotyped with five genetic markers associated with SG3 and SG5 Striga resistance genes and a genetic map was developed. Genes conferring resistance to SG‐GH and SG3 mapped 4.2 cM from each other on chromosome Vu11. The identification of genetic markers linked to SG‐GH resistance will facilitate the marker‐assisted development of high‐quality Striga resistant cowpea varieties in Ghana.  相似文献   

10.
Group A acetylsaponins are the main causative components for bitter and astringent tastes of soybean (Glycine max). In this study, we examined the genetic nature of the absence of group A acetylsaponins in 12 Korean wild soybean (Glycine soja) accessions. In all 12 accessions, the coding region (1431‐bp) of Sg‐1 locus was identical with Sg‐1a, which adds the xylose sugar moiety at the terminal position of the C‐22 sugar chain of SS‐A, except one nucleotide (G→A change) at +948th position. This point mutation results in change of one amino acid from tryptophan (TGG) to stop codon (TGA). We observed that the mutated Sg‐1 was controlled by a single recessive gene (sg‐10‐a1). This gene was mapped between BARCSOYSSR_07_1561 and BARCSOYSSR_07_1598 on soybean chromosome 7. Our study demonstrated that the mutated Sg‐1 gene in Korean wild soybeans is genetically different from those identified in Japanese soybean cultivar ‘Kinusayaka’ and wild soybean JP‐36121. We believe that the new Sg‐1 mutants can also be utilized to produce a new soybean variety without bitter and astringent properties.  相似文献   

11.
Heterosis, or hybrid vigour, has been used to improve seed yield in several important crops for decades and it has potential applications in soybean. The discovery of over‐dominant quantitative trait loci (QTL) underlying yield‐related traits, such as seed weight, will facilitate hybrid soybean breeding via marker‐assisted selection. In this study, F2 and F2 : 3 populations derived from the crosses of ‘Jidou 12’ (Glycine max) × ‘ZYD2738’ (Glycine soja) and ‘Jidou 9’ (G. max) × ‘ZYD2738’ were used to identify over‐dominant QTL associated with seed weight. A total of seven QTL were identified. Among them, qSWT_13_1, mapped on chromosome 13 and linked with Satt114, showed an over‐dominant effect in two populations for two successive generations. This over‐dominant effect was further examined by six subpopulations derived from ‘Jidou12’ × ‘ZYD2738’. The seed weight for heterozygous individuals was 1.1‐ to 1.6‐fold higher than that of homozygous individuals among the six validation populations examined in different locations and years. Therefore, qSWT_13_1 may be a useful locus to improve the yield of hybrid soybean and to understand the molecular mechanism of heterosis in soybean.  相似文献   

12.
We report on a new adult plant resistance (APR) gene Rph23 conferring resistance to leaf rust in barley. The gene was identified and characterized from a doubled haploid population derived from an intercross between the Australian barley varieties Yerong (Y) and Franklin (F). Genetic analysis of adult plant field leaf rust scores of the Y/F population collected over three successive years indicated involvement of two highly additive genes controlling APR, one of which was named Rph23. The gene was mapped to chromosome 7HS positioned at a genetic distance 36.6 cM. Rph23 is closely linked to marker Ebmac0603, which is flanked by markers bPb‐8660 and bPb‐9601 with linkage distances of 0.8 and 5.1 cM, respectively. A PCR‐based marker was optimized for marker‐assisted selection of Rph23, and on the basis of this marker, the gene was postulated as being common in Australian and global barley germplasm. Pedigree and molecular marker analyses indicated that the six‐rowed black Russian landrace ‘LV‐Taganrog’ is the likely origin of Rph23.  相似文献   

13.
Tomato mosaic virus (ToMV) is an important Tobamovirus that causes significant crop losses. Resistance to the ToMV is conferred by the genes Tm1, Tm2 and Tm2a. Among these three genes, Tm2a confers resistance to most strains of the ToMV. Screening of genetic lines under field conditions based on phenotype is time‐consuming and challenging due to concerns associated with stability of the virus and its potential transmission to other plants. Tightly linked molecular markers associated with resistance genes can improve selection efficiency and avoid these problems. This study developed a PCR‐based marker based on restriction site differences from Tm2a locus‐specific sequences, which was found to be useful in identifying the resistant and susceptible genotypes and was consistent with phenotypic data. The marker is a codominant cleaved amplified polymorphic sequence (CAPS) marker producing 270‐ and 600‐bp DNA fragments from resistant genotypes and an 870‐bp fragment from susceptible genotypes when digested with HaeIII restriction enzyme. This novel marker can be useful for tomato breeders to screen progeny from segregating populations for ToMV resistance.  相似文献   

14.
The objective of the present study was to analyse the genetic basis of falling number in three winter wheat populations. Samples for falling number determination for each population originated from at least three test environments that were free from the occurrence of preharvest sprouting at harvest time. Quantitative trait locus (QTL) analysis employing falling number values from single environments identified eight, five and three QTL in the populations Dream/Lynx, Bussard/W332‐84 and BAUB469511/Format, respectively. A major QTL common to all three populations and consistently detected in each environment mapped to the long arm of chromosome 7B. The QTL was located to a similar genomic region as the previously described major QTL for high‐isoelectric point α‐amylase content. The T1BL.1RS wheat‐rye translocation and the dwarfing gene Rht‐D1 segregating in Dream/Lynx and BAUB469511/Format were found to be important factors of falling number variation. In both populations, the presence of Rht‐D1b or the absence of T1BL.1RS increased falling number. The results indicate that late maturity α‐amylase, responsible for low falling numbers, has now been documented in German wheat germplasm.  相似文献   

15.
Wheat, among all cereal grains, possesses unique characteristics conferred by gluten; in particular, high molecular weight glutenin subunits (HMW‐GS) are of considerable interest as they strictly relate to bread‐making quality and contribute to strengthening and stabilizing dough. Thus, the identification of allelic composition, in particular at the Glu‐B1 locus, is very important to wheat quality improvement. Several PCR‐based molecular markers to tag‐specific HMW glutenin genes encoding Bx and By subunits have been developed in recent years. This study provides a survey of the molecular markers developed for the HMW‐GS at the Glu‐B1 locus. In addition, a selection of molecular markers was tested on 31 durum and bread wheat cultivars containing the By8, By16, By9, Bx17, Bx6, Bx14 and Bx17 Glu‐B1 alleles, and a new assignation was defined for the ZSBy9_aF1/R3 molecular marker that was specific for the By20 allele. We believe the results constitute a practical guide for results that might be achieved by these molecular markers on populations and cultivars with high variability at the Glu‐B1 locus.  相似文献   

16.
Semi‐dwarf wheat is an important prerequisite for releasing a successful commercial cultivar in high‐yielding environments. In Northern Europe, this aim is achieved by using one of the dwarfing genes Rht‐B1 (formerly known as Rht‐1) or Rht‐D1 (Rht‐2). Both genes, however, result in a higher susceptibility to Fusarium head blight (FHB). We analysed the possibility to use the two non‐adapted FHB resistance quantitative trait loci Fhb1 and Fhb5 (syn. QFhs.ifa‐5A) to counterbalance the negative effect of the dwarfing allele Rht‐D1b in a winter wheat population of 585 doubled‐haploid (DH) lines segregating for the three loci. All lines were inoculated with Fusarium culmorum at four locations and analysed for FHB severity, plant height, and heading date. The DH population showed a significant (< 0.001) genotypic variation for FHB severity ranging from 3.6% to 65.9% with a very high entry‐mean heritability of 0.95. The dwarfing allele Rht‐D1b reduced plant height by 24 cm, but nearly doubled the FHB susceptibility (24.74% vs. 12.74%). The resistance alleles of Fhb1 and Fhb5 reduced FHB susceptibility by 6.5 and 11.3 percentage points, respectively. Taken all three loci together, Fhb5 alone was already able to reduce FHB susceptibility to the same extent as Rht‐D1b increased it. This opens new avenues for selecting semi‐dwarf wheat by marker‐assisted introgression of Fhb5 without the enhancement of FHB susceptibility.  相似文献   

17.
Wheat streak mosaic virus (WSMV) is a destructive pathogen in wheat (Triticum aestivum L.). Host resistance is the most effective way to control this virus. To date, Wsm2 is the only wheat resistance gene that is genetically mapped. The objective of this study was to identify germplasm lines that might carry resistance genes different from Wsm2. Eight newly reported resistant germplasm lines were examined by allelic tests. To validate the allelic test results, five of them were further analysed for the inheritance of WSMV resistance. A Wsm2‐linked marker was also genotyped on populations developed for the inheritance study. Our results suggested that the WSMV resistance in lines CItr9358, PI225288, PI243652, PI245439, PI245526 and PI478095 was controlled by either Wsm2 or a gene very closely linked to Wsm2. The resistance in PI243753 and PI321730, however, is likely controlled by a gene different from, but linked to Wsm2. The resistance in PI321730 might also involve some minor genes. This study provided useful information for breeders to select appropriate resistant lines to improve WSMV resistance in wheat.  相似文献   

18.
The Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), is an important pest of small‐grain cereals, particularly wheat, worldwide. The most efficient strategy against the RWA is to identify sources of resistance and to introduce them into susceptible wheat genotypes. This study was conducted to determine the mode of inheritance of the RWA resistance found in ICARDA accession IG 100695, to identify wheat microsatellite markers closely linked to the gene and to map the chromosomal location of the gene. Simple sequence repeat (SSR) marker scores were identified in a mapping population of 190 F2 individuals and compared, while phenotypic screening for resistance was performed in F2 : 3 families derived from a cross between ‘Basribey’ (susceptible) and IG 100695 (resistant). Phenotypic segregation of leaf chlorosis and rolling displayed the effect of a single dominant gene, temporarily denoted Dn100695, in IG 100695. Dn100695 was mapped on the short arm of chromosome 7D with four linked SSR markers, Xgwm44, Xcfd14, Xcfd46 and Xbarc126. Dn100695 and linked SSR markers may be useful for improving resistance for RWA in wheat breeding.  相似文献   

19.
Wheat leaf rust (LR), caused by the obligate biotrophic fungus Puccinia triticina (Pt), is a destructive foliar disease of common wheat (Triticum aestivum L.) worldwide. The most effective, economic means to control the disease is resistant cultivars. The Romanian wheat line Fundulea 900 showed high resistance to LR in the field. To identify the basis of resistance to LR in Fundulea 900, a population of 188 F2:3 lines from the cross Fundulea 900/‘Thatcher’ was phenotyped for LR severity during the 2010–2011, 2011–2012 and 2012–2013 cropping seasons in the field at Baoding, Hebei Province. Bulked segregant analysis and simple sequence repeat markers were used to identify the quantitative trait loci (QTLs) for LR adult‐plant resistance in the population. Three QTLs were detected and designated as QLr.hebau‐1BL, QLr.hebau‐2DS and QLr.hebau‐7DS. Based on the chromosome positions and molecular marker tests, QLr.hebau‐1BL is Lr46, and QLr.hebau‐7DS is Lr34. QLr.hebau‐2DS was derived from ‘Thatcher’ and was close to Lr22. This result suggests that Lr22b may confer residual resistance on field nurseries when challenged with isolates virulent on Lr22b, or another gene linked to Lr22b confers this resistance from ‘Thatcher’. This study confirms the value of Lr34 and Lr46 in breeding for LR resistance in China; the contribution of the QTL to chromosome 2D needs further validation.  相似文献   

20.
In pepper (Capsicum annuum), the major genes (R‐genes) Me1 and Me3 confer resistance against root‐knot nematodes (Meloidogyne spp.). The combination of R‐genes and quantitative resistance factors in the same genotype is considered a good breeding strategy for increasing the durability of R‐genes. To ascertain this hypothesis, five pepper inbred lines, differing in their quantitative resistance level, were combined with Me1 or Me3 genes in F1 hybrids. The resistance of inbred lines and F1 hybrids was evaluated in a greenhouse with soil naturally infected by M. incognita in two successive growing years. In both years, lines carrying Me3 were less infected by the nematode when combined with quantitative resistance. An increase in nematode infection was observed in the second growing year in lines carrying Me1 or Me3, independently of quantitative resistance. The infection level recorded in inbred lines without R‐genes was similar in both years. The effectiveness of quantitative resistance controlling M. incognita is confirmed in greenhouse conditions, although the durability of Me1 and Me3 when combined with quantitative resistance factors was not seen to increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号