首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Summary 1201 tomato cultivars, breeding lines and accessions of Lycopersicon species were screened for tomato leaf curl virus (TLCV) under field and laboratory conditions during summer seasons of 1986 to 1989. Two lines of L. hirsutum (PI 390658 and PI 390659) and 2 lines of L. peruvianum (PI 127830 and PI 127831) were resistant to TLCV infection. These accessions did not produce any leaf curl symptoms either in field or after inoculation by whitefly Bemisia tabaci with TLCV. Adult whiteflies died within 3 days after releasing on resistant accessions (PI 390658, PI 390659, PI 127830), whereas the whiteflies survived upto 25 days on susceptible tomato cultivars. Under field conditions 0–4 and 5–25 adult whiteflies were observed on resistant and susceptible cultivars respectively. Hybridization was effected using the popular tomato cultivars Arka Sourabh, and Arka Vikas, as the female parents and the resistant Lycopersicon wild species as the pollen parents, to incorporate the resistant gene(s) into the edible tomatoes.  相似文献   

2.
Tomato (Solanum lycopersicum) production in tropical and subtropical regions of the world is limited by the endemic presence of Tomato yellow leaf curl virus (TYLCV). Breeding programmes aimed at producing TYLCV‐resistant tomato cultivars have utilized resistance sources derived from wild tomato species. So far, all reported breeding programmes have introgressed TYLCV resistance from a single wild tomato source. Here, we tested the hypothesis that pyramiding resistances from different wild tomato species might improve the degree of resistance of the domesticated tomato to TYLCV. We have crossed TYLCV‐resistant lines that originated from different wild tomato progenitors, Solanum chilense, Solanum peruvianum, Solanum pimpinellifolium, and Solanum habrochaites. The various parental resistant lines and the F1 hybrids were inoculated in the greenhouse using viruliferous whiteflies. Control, non‐inoculated plants of the same lines and hybrids were exposed to non‐viruliferous whiteflies. Following inoculation, the plants were scored for disease symptom severity, and transplanted to the field. Resistance was assayed by comparing yield of inoculated plants to those of the control non‐inoculated plants of the same variety. Results showed that the F1 hybrids between the resistant lines and the susceptible line suffered major yield reduction because of infection, but all hybrids were more resistant than the susceptible parent. All F1 hybrids resulting from a cross between two resistant parents, showed a relatively high level of resistance, which in most cases was similar to that displayed by the more resistant parent. In some cases, the hybrids displayed better levels of resistance than both parents, but the differences were not statistically significant. The F1 hybrid between a line with resistance from S. habrochaites and a line with resistance from S. peruvianum (HAB and 72‐PER), exhibited the lowest yield loss and the mildest level of symptoms. Although the resistance level of this F1 hybrid was not statistically different from the level of resistance displayed by the 72‐PER parent itself, it was statistically better than the level of resistance displayed by the F1 hybrids between 72‐PER and any other resistant or susceptible line.  相似文献   

3.
Developing tomato breeding lines resistant to tomato yellow leaf curl virus   总被引:1,自引:0,他引:1  
Using controlled whitefly-mediated inoculation techniques, seven Lycopersicon chilense accessions, highly resistant to isolates of tomato yellow leaf curl virus(TYLCV) from Southern Europe, TYLCV-Sr, were selected. All exhibited similar levels of partial resistance, being symptomless and with low levels of viral DNA accumulation. However, a differential response to infection was found in interspecific hybrids with tomato and inbred lines derived from different L. chilense accessions, allowing a precise discrimination among them. This selection procedure which considers the expression of the resistance genes in the tomato genetic background led to the selection of two highly resistant F1 hybrids derived from L. chilense LA 1932 and LA 1938. A backcrossing programme was initiated, selecting for horticultural characteristics and TYLCV resistance, in field and controlled inoculation conditions. As a result of this programme, six advanced breeding lines (UPV Ty 1, 3, 6, 9, 17 and 53), exhibiting a high level of resistance to TYLCV-Sr, were obtained. Under high inoculum pressure conditions these lines suffered only 30-40% yield loss relative to non-infected control plants, and compared with 90-95% yield loss in susceptible controls. These lines also have horticultural characteristics appropriate for the fresh market tomato cultivation system in this area, and are a good base material for obtaining commercial hybrids highly resistant to different isolates of TYLCV.  相似文献   

4.
Tomato (yellow) leaf curl disease (TYLCD) is a serious threat to tomato production in the tropics and subtropics. The genetics of resistance to Tomato yellow leaf curl Thailand virus Taiwan strain (TYLCTHV-[TW]) in a highly resistant tomato line FLA456 was studied through quantitative trait loci (QTL) analysis. Four QTLs named qTy4.1, qTy6.1, qTy10.1 and qTy11.1 were detected on chromosomes 4, 6, 10, and 11, respectively, through evaluation of an F6 recombinant inbred line (RIL) population derived from a cross between FLA456 (resistant) and CLN1621L (susceptible). Gene action of all QTLs was recessive based on disease reaction of the F1. The markers SINAC1 and SLM4-34 flanked qTy4.1 on chromosome 4, and SLM11-12 and SLM11-17 defined qTy11.1, which co-located with the previously identified Ty-5 and Ty-2 loci, respectively. qTy6.1 was flanked by the markers SLM6-55 and TES-0014, and qTy10.1 by the markers SLM10-80-SLM10-46 on chromosomes 6 and 10. The LOD values of the putative QTLs ranged from 2.79 to 13.76. The phenotypic variance explained by each QTL ranged from 7.1 to 31.9 %. The four QTLs collectively contributed about 60.5 % of the phenotypic variation in resistance against TYLCTHV-[TW]. Group mean severity scores of those RILs possessing three or four qTy were generally lower than RIL groups with only one or no qTy. Given the diversity of begomoviruses that cause TYLCD across the regions, the new QTLs from FLA456 would be valuable in tomato breeding for developing varieties with durable resistance. Two QTL intervals (qTy4.1 and qTy10.1) contained virus resistance candidate genes such as CTV.22 and eukaryotic translation initiation factor 4E.  相似文献   

5.
Accessions of the wild tomato species Lycopersicon chilense LA 1969 and L. hirsutum LA 1777 which are resistant to tomato yellow leaf curl virus (TYLCV) in field- and in whitefly-mediated transmission tests were agroinoculated with a tandem repeat of the TYLCV genome. Large amounts of viral DNA started to accumulate in the agroinoculated L. chilense and L. hirsutum plants about 10 days after the agroinoculation. Yellowing and narrowing of the upper leaves were observed in the L. chilense plants but no curling as in susceptible L. esculentum cultivars. The agroinoculated L. hirsutum plants showed typical yellowing and curling of young leaves. These findings indicate that TYLCV introduced by means of agroinoculation leads to the breakdown of natural resistance mechanisms which prevent the replication, spread and expression of symptoms in resistant tomato genotypes.  相似文献   

6.
番茄黄化曲叶病(TYLCV)的研究进展   总被引:3,自引:1,他引:2  
简述了番茄黄化曲叶病毒(tomato yellow leaf curl virus, TYLCV)的发病症状、病毒的鉴定和分类、发生与防治;总结了番茄黄化曲叶病主要发生在亚热带地区和热带地区,在中国的发展趋势是由南向北不断蔓延,其主要在番茄生产上造成严重的危害;依据番茄黄化曲叶病的发病条件、传播特点及国内外该病的研究现状;提出了以农业防治为基础,兼顾化学防治与生物防治的综合防治措施,并利用基因工程等分子生物学手段加快抗病育种的进程;分析表明加大抗病育种的力度,培育出稳定的抗病品种,能很好的控制和降低该病的危害。  相似文献   

7.
The tomato leaf miner (Tuta absoluta) is a serious pest of tomato (Solanum lycopersicum) in the tropics and subtropics. Previous World Vegetable Center studies identified selected accessions of S. galapagense, S. cheesmaniae and S. pimpinellifolium that were resistant to whitefly (Bemisia tabaci Genn.) and spider mite (Tetranychus urticae Koch). Here, we evaluated these accessions for resistance to T. absoluta based on the number of eggs from choice bioassays, and larval mortality and adults emerged percentages in no‐choice feeding bioassays at WorldVeg Eastern and Southern Africa (WorldVeg) and the International Centre for Insect Physiology and Ecology (icipe). At WorldVeg, S. galapagense VI063177 exhibited high resistance in both choice and no‐choice bioassays. There was strong negative correlation between larval mortality and adults emerged percentages in the no‐choice feeding bioassays. Results from the icipe experiments were consistent with those of the WorldVeg screening, except for S. pimpinellifolium accession VI030462 , which was susceptible at icipe. Tuta absoluta is rapidly spreading and the resistance sources reported here will be valuable in breeding tomato varieties resistant to this insect and others.  相似文献   

8.
Tomato yellow leaf curl disease (TYLCD) is caused by a complex of begomovirus. Breeding for resistance to this disease has mainly been based on Ty-1 gene, derived from Solanum chilense LA1969. Commercial varieties available to date still develop symptoms and suffer yield losses with high inoculum pressure and early infections. It is of interest to incorporate in breeding programs resistance from the different available sources. Lines with resistance to TYLCD derived from S. chilense accessions LA1932, LA1960 and LA1971 were previously developed. The objectives of this work were to study the genetic control of the resistance derived from these accessions and to map the resistance loci. Response to viral infection was assayed in segregating generations derived from these sources. Results obtained were compatible with a monogenic control of resistance. A total of 94 markers were used to locate the S. chilense introgressions in each of the lines. Only the presence of a large introgression in chromosome 6 was common to all lines. Analysis of recombinants allowed localizing the resistance loci in an interval of approximately 25 cM, also common to all five families. This interval includes the region to which two previously S. chilense-derived TYLCD resistance loci have been mapped, the Ty-1/Ty-3 region. This is the first report of LA1960 and LA1971-derived TYLCV resistance loci to be located on chromosome 6. Further work will be done to fine map the loci found in the present work, in order to determine if they are indeed located in the Ty-1/Ty-3 region.  相似文献   

9.
F. Vidavsky    S. Leviatov    J. Milo    H. D. Rabinowitch    N. Kedar  H. Czosnek 《Plant Breeding》1998,117(2):165-169
Selection of tomato plants supposedly tolerant to tomato yellow leaf curl virus (TYLCV), based solely on the absence of symptoms in an infested field can be misleading. An inoculation routine was therefore established to avoid escapes and to overcome difficulties associated with the age of the plant at the time of infection. The inoculation routine was applied to a selection of resistant/tolerant individuals generated through a diallel F1 cross and to F2 segregating populations originating from three wild tomato species described as tolerant to TYLCV: Lycopersicon peruvianum EC 104395, Lycopersicon pimpinellifolium Hirsute and Lycopersicon chilense LA 1969. Clear differences were observed between susceptible symptomatic and tolerant symptomless tomato genotypes, indicating that the uncertainty resulting from escapes, from different levels of inoculum, and from the time of inoculation, can be eliminated. The genes involved in tolerance provided different levels of protection; combinations of various tolerant sources and levels in a single genotype gave a higher level of tolerance. Differences in level of protection were found between genes from the same source and between sources; none of the sources tested had complete dominance. The results obtained with the F2 segregating population showed that tolerance from L. pimpinellifolium is controlled by one major gene, that from L. chilense by two genes, and that from L. peruvianum by three genes with no dominant effect. The combination of sources for resistance can thus have positive or negative synergistic effects, or no effect. We suggest that a maximal level of tolerance can be obtained by the additive effect of the partly dominant genes from L. pimpinellifolium and L. chilense.  相似文献   

10.
M. K. Banerjee  Kalloo 《Euphytica》1987,36(2):581-584
Summary Inheritance of resistance to tomato leaf curl virus (TLCV) was studied in the progenies derived from interspecific crosses between TLCV resistant Lycopersicon hirsutum f. glabratum line B 6013 and five susceptible cultivars (HS 101, HS 102, HS 110, Pusa Ruby and Punjab Chhuhara) of L. esculentum. P1, P2, F1, F2, B1 and B2 progenies of the five crosses were artificially inoculated with local strains of TLCV by means of the vector whitefly, Bemisia tabaci (Genn.). and the disease reaction was studied in all the crosses. Reaction of parents, F1, F2 and backcrosses suggests that resistance derived from L. hirsutum f. glabratum B 6013 is based on two epistatic genes, one from the wild parent and one from the cultivated one, resulting in a 13:3 segragation in the F2.  相似文献   

11.
Resistance to tomato leaf curl virus disease (ToLCVD) in tomato (Solanum lycopersicum) is scarce but was developed recently in three open pollinated (OP) varieties (Sankranthi, Nandi and Vybhav), which are now available for cultivation in South India. Hybrids with superior yield capabilities, however, are a preferred choice of cultivation by farmers but hybrids are highly susceptible to ToLCVD. In order to develop virus resistant tomato hybrids, the three OPs were crossed with 12 tomato genotypes with superior agronomic characteristics. From the crosses, 20 hybrids were selected (named BLRH-1 to BLRH-20, Bangalore leaf curl virus-resistant hybrid) and evaluated for their resistance to ToLCVD at the University of Agricultural Sciences, Bengaluru, South India, both through whitefly-mediated inoculations in the glasshouse and natural infection in the field during summer 2005. Their growth and fruit yield parameters were compared against the popularly grown hybrids and OPs. Differences occurred between hybrids in disease incidence, spread, symptom severity and fruit yield. Of the 20 hybrids evaluated, 11 were found resistant to ToLCVD in the field, but only three (BLRH-3, BLRH-9 and BLRH-16) remained resistant when challenged with high virus inoculum pressure in the glasshouse through whitefly-mediated inoculations. None of the six commercially available hybrids tested was found resistant to ToLCVD. An examination of the extent of heterosis in resistant hybrids for both quantitative and qualitative characters over the popularly grown hybrid, US-618, indicated a major improvement in virus resistance, yield and fruit quality. All the twenty hybrids yielded significantly more than US-618, and of these, BLRH-3 and BLRH-16 were considered the best with yields over ca. 60 t/ha and resistant to virus both in the glasshouse and field.  相似文献   

12.
Summary Sources of resistance to tomato-yellow-leaf-curl-virus (TYLCV) were investigated in 16 accessions of three Lycopersicon species and 55 commercial tomato hybrids and cultivars. All commercial hybrids and cultivars were highly susceptible. Accessions of L. hirsutum, L. hirsutum f. glabaratum and L. pimpinellifolium showed a wide range of reactions. Those of L. peruvianum, LA 385 of L. peruvianum f. humifusum exhibited very high levels of resistance indicating their potential use in local breeding programs. In contrast to earlier findings, back indexing showed that all symptomless genotypes in this investigation were carriers of the TYLCV.  相似文献   

13.
Late blight (LB), caused by Phytophthora infestans, is a destructive disease of tomato (Solanum lycopersicum) worldwide. Currently, there are few commercial cultivars of tomato with resistance to LB, and the disease is mainly controlled by heavy use of fungicides. Due to the emergence of fungicide‐resistant pathogen isolates, there is a concerted effort to identify new genetic sources of resistance and breed new resistant cultivars. A recent screening identified several new tomato accessions with strong resistance to LB. Here, we report on the genetic basis of LB resistance in S. pimpinellifolium accession PI 270441, as determined by generation means analysis and analysis of response to selection, using populations derived from crosses with LB‐susceptible breeding line Fla. 8059. Heritability of LB resistance ranged from 0.76 to 0.78, and the minimum number of genes was estimated 1—few. These results suggest that transfer of LB resistance from PI 270441 to the cultivated tomato should be feasible via a traditional backcross breeding approach. Genetic mapping studies are underway to identify molecular markers associated with resistance in this accession.  相似文献   

14.
番茄黄化曲叶病毒研究进展   总被引:4,自引:0,他引:4  
番茄黄化曲叶病毒(Tomato Yellow Leaf Curl Virus, TYLCV)是世界范围内流行的一种毁灭性的病毒病,已成为世界番茄生产的限制性因素。近年来TYLCV在中国呈现逐年加重,自南向北迅速蔓延的趋势,已对中国番茄种植业造成极其严重的损失。本文对TYLCV的特点、诊断方法及其防治措施进行了综述。  相似文献   

15.
Late blight (LB), caused by Phytophthora infestans, is one of the most devastating diseases of tomato (Solanum lycopersicum) worldwide. Due to the emergence of new and aggressive P. infestans isolates, identifying new genetic resistance to LB is a priority in tomato breeding. Recently, we reported the identification of several Solanum pimpinellifolium accessions with strong LB resistance. In this study, we investigated the utility of resistant accession PI 163245 for tomato breeding by examining heritability (h2) of resistance and the response to selection for resistance. Estimates of h2 based on F2 : F3 and F3 : F4 parent : offspring correlation analyses averaged 0.79 and 0.94, respectively, suggesting the heritable nature of LB resistance in PI 163245. Analysis of response to selection for resistance from F2 to F4 generations indicated a realized h2 of 0.63, confirming the utility of this resistance in tomato breeding. Two methods of estimating the minimum number of loci involved indicated the presence of one major resistance locus. Currently, genetic mapping and breeding efforts are underway to further confirm the viability of this accession for improving tomato LB resistance.  相似文献   

16.
Late blight (LB), caused by the oomycete Phytophthora infestans, is one of the most devastating diseases of the cultivated tomato (Solanum lycopersicum) worldwide. Most commercial cultivars of tomato are susceptible to LB. Previously, three major LB resistance genes (Ph‐1, Ph‐2, Ph‐3) were identified and incorporated into a few commercial cultivars of tomato. Reduced effectiveness and potential breakdown of the resistance genes has necessitated identification, characterization and utilization of new sources of resistance. We evaluated the response of 67 accessions of the wild tomato species, S. pimpinellifolium to LB, under multiple field and greenhouse (GH) conditions and compared them with six control genotypes. Sixteen accessions were identified with strong LB resistance in both field and GH experiments. However, 12 accessions exhibited resistance similar to a control line which was homozygous for Ph‐2 + Ph‐3. Genotyping accessions with molecular markers for Ph‐2 and Ph‐3 were not conclusive, indicating that resistance in these accessions could be due to these or other resistance genes. Strong correlations were observed between field and GH disease response and between foliar and stem infection.  相似文献   

17.
本研究旨在筛选获得与番茄黄化卷叶病毒抗病基因Ty-1紧密连锁的分子标记,为番茄抗病育种提供技术支撑。根据与抗病基因Ty-1紧密连锁的RFLP标记序列设计特异引物,以抗病杂合体(Ty-1/ty-1)、抗病纯合体(Ty-1/Ty-1)和感病纯合体(ty-1/ty-1)材料提取的DNA为模板,进行PCR扩增,而后经不同的核酸内切酶酶切处理,筛选获得与Ty-1基因紧密连锁的CAPS标记。结果显示从4个标记中筛选获得了2个稳定可靠的CAPS标记,即TG97和Mi23。TG97标记在抗病杂合体产生398 bp、303 bp和95 bp 3个特异片段,抗病纯合体产生303 bp和95 bp 2个特异片段,感病纯合体产生398 bp一个特异片段。Mi23标记在抗病杂合体产生402 bp和354 bp 2个特异片段,抗病纯合体产生402 bp一个特异片段,感病纯合体产生354 bp一个特异片段。研究结果表明TG97和Mi23这2个CAPS标记均为共显性标记,可用于番茄抗病育种的辅助选择中。  相似文献   

18.
An accurate and simple evaluation method is crucial for identifying whitefly resistance in tomato breeding. We developed an in vitro method for evaluating resistance of tomato leaves and tested this on wild and cultivated tomato varieties. We found that young leaves observed for whitefly oviposition after 8 hours provided appropriate comparative conditions. This method effectively distinguished resistance among tomato cultivars and wild species and also demonstrated significant difference in oviposition rates among leaf positions on susceptible cultivars. The in vitro test was as precise as in vivo test using intact plants and had advantages over in vivo test, and can be used for evaluating resistance in large populations.  相似文献   

19.
E. U. Kozik 《Plant Breeding》2002,121(6):526-530
Plants of 17 tomato cultivars and four wild Lycopersicon accessions were evaluated for their reaction to Pseudomonas syringae pv. tomato (Pst) in a greenhouse following a leaf‐spray inoculation. The genotypes exhibited a large amount of variation in response to Pst infection, with disease severity index (DSI) ratings from 0.2 to 3.9. The cultivar ‘Ontario 7710’ and two accessions of Lycopersicon hirsutum (LA 1773 and LA 1775) were the most resistant, with DSI values of 0.2, 0.4 and 0.6, respectively. Three varieties, M 1812, Kujawski and Warszawski, also showed a high level of tolerance. The most susceptible was ‘A 100’(DSI = 3.9). The inheritance of resistance to bacterial speck was investigated by disease tests in segregated populations obtained by hybridizing the tomato cv. Ontario 7710 with the susceptible variety ‘A 100′. Plants were rated for disease severity by inspecting each plant and were then evaluated according to phenotypic similarity to ‘Ontario 7710’ or ‘A 100’ in respect of the number and size of the spots. Genetic analysis in F1, F2 and backcross segregations indicated that resistance of'Ontario 7710’ to Pst is conferred by one incompletely dominant gene, Pto.  相似文献   

20.
Late blight (LB), caused by Phytophthora infestans, is one of the most devastating diseases of tomato (Solanum lycopersicum) worldwide. Aggressive pathogen isolates resistant to fungicides have driven research in favour of finding new sources of host resistance for tomato breeding. Recently, we reported S. pimpinellifolium accession PI 270443 exhibiting LB resistance stronger than all commercial LB-resistant tomato cultivars. The purpose of this study was to examine the inheritance of LB resistance conferred by this accession. An interspecific cross was made between PI 270443 and a LB-susceptible tomato breeding line and advanced to F10 generation. A total of 166 F9 and corresponding F10 recombinant inbred lines (RILs) were evaluated for response to LB in four replicated greenhouse experiments. Estimates of heritability (h2) of LB resistance, determined by parent–offspring (F9:F10) correlation analysis, ranged from 0.66 to 0.81, with an average of 0.76. The moderately high h2 of LB resistance in PI 270443 suggests the utility of this accession for tomato breeding. Molecular mapping and RNA-sequencing efforts are underway to identify genes underlying LB resistance in PI 270443.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号