首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High ambient temperature has adverse effects on plant vegetative and reproductive development and reduces crop yield. To better understand the importance of male and female fertility for tomato fruit set ability under high temperature conditions and to test whether heat tolerance levels among and between reproductive and vegetative traits of genotypes correlate with each other, 13 tomato cultivars were subjected to long-term moderate heat (LTMH) or short-term heat shock (STHS), depending on the trait that was evaluated. LTMH caused significant decrease in performance of nearly all reproductive traits, i.e. pollen viability, pollen number, female fertility, seeded-fruit set and flower number per inflorescence, but not in inflorescence number. Considerable variation was found among cultivars, both under control and LTMH conditions. The cultivars Nagcarlang, Saladette and Malintka 101 produced a higher percentage of viable pollen under LTMH. For fruit set under LTMH condition, only cultivars that had been previously reported as being heat-tolerant produced fruits with seeds. STHS negatively affected vegetative traits concerning seedling survival and membrane stability. Correlation analysis revealed relationships between various traits within the control and heat treatments, but not between the two. Under heat stress fruit set was positively correlated with pollen viability, as well as with flower number per inflorescence. However, no significant correlations were found between vegetative and reproductive traits. Our data highlight the prominent role of pollen viability for tomato fertility under LTMH growth conditions. The observed variation in thermotolerance among different cultivars offers the possibility to decipher underlying physiological and genetic mechanisms.  相似文献   

2.
Climate change has become a serious threat for crop productivity worldwide. The increased frequency of heat waves strongly affects reproductive success and thus yield for many crop species, implying that breeding for thermotolerant cultivars is critical for food security. Insight into the genetic architecture of reproductive heat tolerance contributes to our fundamental understanding of the stress sensitivity of this process and at the same time may have applied value. In the case of tomato (Solanum lycopersicum), germplasm screenings for thermotolerance have often used yield as the main measured trait. However, due to the complex nature of yield and the relatively narrow genetic variation present in the cultivated germplasm screened, there has been limited progress in understanding the genetic basis of reproductive heat tolerance. Extending the screening to wild accessions of related species that cover a range of climatic conditions might be an effective approach to find novel, more tolerant genetic resources. The purpose of this study was to provide insight into the sensitivity of individual reproductive key traits (i.e. the number of pollen per flower, pollen viability and style protrusion) to heat-wave like long-term mild heat (LTMH), and determine the extent to which genetic variation exists for these traits among wild tomato species. We found that these traits were highly variable among the screened accessions. Although no overall thermotolerant species were identified, several S. pimpinellifolium individuals outperformed the best performing cultivar in terms of pollen viability under LTMH. Furthermore, we reveal that there has been local adaptation of reproductive heat tolerance, as accessions from lower elevations and higher annual temperature are more likely to show high pollen viability under LTMH.  相似文献   

3.
The reproductive stage of flowering plants is sensitive to high-temperature stresses. High temperature is a major factor influencing pollen grain viability in upland cotton (Gossypium hirsutum). The objective of this study was to identify the relationship between cotton pollen germination percentage and temperature by assaying the pollen germination of four upland cotton cultivars in vitro at different temperatures during the blooming period. The results showed that in vitro pollen germination percentage was related to the culture temperature of pollen germination and the temperature of the square development process. High temperature affected pollen development and germination, and high-temperature tolerance differed among the cotton cultivars. The pollen germination percentage decreased rapidly with changes in the culture temperature from 30 to 39 °C. A culture temperature of 35 °C might be a critical temperature for the pollen viability transition and could be used to screen cotton cultivars that have pollen grains with high-temperature resistance. Before the high-temperature stage, cultivars with rates of decrease in the percentage of pollen germination of less than 41 % at 35 °C relative to the rates at 30 °C might be considered as high-temperature tolerance cultivars, and cultivars with rates of decrease in the percentage of pollen germination greater than 41 % might be considered as susceptible cultivars. The high-temperature stress for pollen grain germination in vitro was greater than 30 °C, and the high-temperature stress for square development might be greater than 33 °C. Boll retention was significant; it was positively correlated with the pollen germination percentage and negatively correlated with temperature during the high-temperature stage. This study provided a method for rapidly screening cultivars (lines) with high-temperature tolerance pollen in upland cotton breeding.  相似文献   

4.
The possibility of selecting spring rape for cold tolerance at the mature pollen grain stage was studied by investigating the effects of pollen storage at low temperatures on the quality of pollen grains and on the cold tolerance of the plants generated from them. Pollen treatments of F1 hybrids affected fertilization ability much more than viability and even after 10 days storage at 3 or 10°C the pollen germination percentage was reasonably high. Pollen storage for 7 or 10 days at 3 or 10°C significantly increased the cold tolerance of F2 seed germination, with 3°C being more effective. Pollen storage for a shorter time had no effect upon the number of resulting genotypes tolerant to low temperature. This approach may be successfully applied in plant breeding to enrich segregating plant populations with cold-tolerant genotypes.  相似文献   

5.
A tomato cultivar with high quality fruit and a long shelf life is a main goal in tomato breeding and it would be achieved using wild germplasm. The objective of this work was to explore the inheritance for fruit quality traits, especially fruit shelf life, in three tomato crosses using a standard Argentinean cultivar (Ca, cv ‘Caimanta’), a ripening mutant (nor, homozygous for the nor gene) of Solanum lycopersicum, and a wild cherry type (Ce, LA1385 of S. lycopersicum var. cerasiforme). The wild parent had a shorter fruit shelf life than the mutant genotype but higher than Ca. When the Ce genotype was analyzed in hybrid combination, the F1 (Ca×Ce) was similar to the wild genotype for shelf life whereas the F1 (nor × Ce) had a longer shelf life. Both F1 crosses and backcrosses to the cherry type genotype had significantly lower fruit weight than the cultivated genotypes but higher than the cherry type parent. In the F2 analysis, it was found that the inheritance underlying quality traits is complex since non allelic interactions were detected. A significant additive genetic variance was found for fruit shelf life as well as for other fruit quality traits in each cross. The genetic parameters analyzed by mean values and variances in parental, F1 and F2 and backcross generations indicated that the cross between the normal ripening cultivar and LA1385 of S. lycopersicum var. cerasiforme offers the best possibility to obtain long shelf life tomato genotypes with good fruit quality.  相似文献   

6.
The study was carried out to assess genetic diversity among 119 lentil genotypes grown in different habitats for heat tolerance using morpho‐physiological and reproductive traits and SSR markers. High‐temperature stress was applied at seedling (35/33°C) and anthesis stages (35/20°C) to study the effects on morpho‐physiological and reproductive traits under hydroponic condition, which was compared with non‐stressed and stressed field conditions. A set of 209 alleles were identified by 35 SSR markers among the genotypes. Genetic diversity and polymorphism information content values varied between 0.0494–0.859 and 0.0488–0.844, with mean values of 0.606 and 0.563, respectively. Genotypes were clustered into nine groups based on SSR markers. Morpho‐physiological and reproductive traits under heat stress were found to be significantly different among SSR clusters. These findings suggest that heat adaptation is variable among the genotypes and the tolerant materials can be evolved through hybridization using parents from different clusters with diverse mechanisms of heat tolerance.  相似文献   

7.
Growth and photosynthetic performance were analyzed in alloplasmic tomato at a high- (25/17 °C; HTR) and low-temperature regime (12/6 °C; LTR) in order to establish the role of cytoplasmic variation on low-temperature tolerance of tomato (Lycopersicon esculentum Mill.). Four alloplasmic tomato lines, containing the nuclear genome of tomato and the plastome of L. hirsutum LA 1777 Humb. & Bonpl., an accession collected at high-altitude in Peru, were reciprocally crossed with 11 tomato entries with a high inbreeding level and a wide genetic variation, resulting in a set of 44 reciprocal crosses. Irrespective of growth temperature, alloplasmic families with alien chloroplasts of L. hirsutum (h) were on average characterized by a high shoot biomass, a large leaf area, and a low specific leaf area in comparison with their euplasmic counterparts. These results do not directly point to an advantageous effect of h-chloroplasts on biomass accumulation at low temperature but rather towards a small general beneficial effect on growth and/or distribution of assimilates. Significant chloroplast-related differences in photosynthetic performance, however, were not detected at both temperature regimes, indicating that h-chloroplasts can properly function in a variable nuclear background of L. esculentum. It is concluded that chloroplast substitution is not an effective method for breeding tomato plants with improved low-temperature tolerance. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Cultivation of the same varieties of mungbean and blackgram across different seasons and locations is constrained by their photo‐ and thermo‐sensitive behaviour. Developing insensitive genotypes, which can fit well across all seasons, requires robust donors which would provide genes imparting this trait. This study was undertaken to identify such donors in the Vigna species. Forty‐eight accessions belonging to 13 Vigna species and eight released cultivars were evaluated under natural field conditions. Among these, two accessions, viz. V. umbellata (IC251442) and V. glabrescens (IC251372) were found photo‐ and thermo‐insensitive as these were able to flower and set pods at temperatures as high as 43.9°C and as low as 2.7°C. Pollen viability studies indicated viable pollen (>75% at 2.7°C and >85% at 41.9°C) and normal pollen tube growth at both the extremes of temperature. The identified V. glabrescens accession has long, constricted pods and dark green, mottled seeds while V. umbellata has smooth, curved pods and shining, oval, large seeds. Both these accessions can be utilized in developing photo–thermo insensitive genotypes in cultivated Vigna species.  相似文献   

9.
Knowledge about the degree of spontaneous outcrossing of diverse genotypes is essential for breeding programmes, maintenance breeding, and seed production. For tomato (Lycopersicon esculentum Mill.), very limited scientific evidence for genotypic differences is available and evidence from Europe is scarce. To close this knowledge gap, six cultivars were investigated in three Central European locations as part of the Organic Outdoor Tomato Project. To determine outcrossing rates, the monogenetic “cut‐leaf” trait, which is dominant over the “potato‐leaf” trait, was used as morphological marker. The observed range of outcrossing was 0.0%–5.2%. Outcrossing was significantly influenced by cultivar and environment. The outcrossing rate of individual flowers varied within cultivars ranging from 0% to 37%. The potential of newly opened flowers to accept foreign pollen varied largely with the cultivar. Genotypic differences could partly be linked to flower morphology traits. The potential for recombination between tomato genotypes is generally very low but can be a source for new variation in on‐farm management.  相似文献   

10.
Temperature stress including low and high temperature adversely affect the growth, development and productivity of crops. Faba bean (Vicia faba L.) is an important crop as both human food source and animal feed, which contains a range of varieties that are sensitive to cold and heat stresses. In this study, 127 faba bean genotypes were collected from gene banks based on differences in geographical origin. The 127 genotypes were treated by single cold stress (2/2 °C day/night temperature (DT/NT)) and 42 genotypes were treated by either single episode of cold or heat (38/30 °C DT/NT) stress, or a combination of both at photosynthetic photon flux density of 250 µmol m?2 s?1. Chlorophyll fluorescence was used to detect the tolerance of faba beans to low and high temperatures. The maximum quantum efficiency of photosystem II (PSII), Fv/Fm, revealed pronounced differences in cold tolerance among the faba bean genotypes. The 42 genotypes were clustered into four groups according to cold and heat stresses, respectively, and the susceptibilities of faba beans under temperature stress could be distinguished. The combination of cold and heat stresses could aggravate the damage on reproductive organs, but not on the leaves, as indicated by the Fv/Fm. These results confirm that the use of Fv/Fm is a useful approach for detecting low and high temperature damage to photosystem II and to identify tolerant faba bean genotypes, however the results also indicate that the geographical origin of the genotypes could not directly be used to predict climate resilience. These sources of cold- and heat-tolerance could improve the temperature tolerance of faba bean in breeding programs.  相似文献   

11.
Flowering plants are highly sensitive to heat stress during reproductive phase, which covers development from floral initiation to seed maturity. The objectives of this study were to diagnose high temperature effects on pollen production and morphology, production of reactive oxygen species (ROS) in pollen grains and ovules in pea cultivar “CDC Golden.” This study also investigated timing and duration of heat exposure at specific developmental stages of floral buds, open flowers and early set pods on flower and pod abortion, seed development and seed yield in “CDC Golden” and a second cultivar “CDC Sage.” The experiments were conducted in growth chambers with two temperature regimes (24/18°C and 35/18°C day/night temperature for 4–14 days) during reproductive development. Heat stress reduced the number of pollen grains per anther, induced smaller pollen grains and increased ROS production in pollen grains, but it did not affect ROS accumulation in ovules and ovule number per ovary. Heat exposure when young floral buds were visible at the first reproductive node was more detrimental to flower retention, seed set, pod development and seed yield compared to heat exposure started later when flowers at the second reproductive node were fully open.  相似文献   

12.
Cytoplasmic genic male sterility system based hybrids were synthesized by line × tester design and evaluated with check GTH 1 in RBD at Sardarkrushinagar, Jagudan and Khedbrahma during kharif 2007. Analysis of variance in individual and across environments revealed significant differences among genotypes and existence of overall heterosis for seed yield per plant and other thirteen traits. The top ranking on the basis of standard heterosis were CMSGT087A × GTR0525 (116.40 %) followed by CMSGT087A × AGTR0534 (108.93 %), CMSGT0307A × AGTR0538 (99.21 %) and CMSGT 0301A × AGTR 0534 (95.51 %) for seed yield per plant and for one or two of its contributing traits. Combining ability analysis revealed presence of both additive and non-additive gene effects. The specific combining ability variance was found more compaired to general combining ability variance for all the characters under studied. This favored a hybrid breeding programme. In stability analysis, linear portion was considerably high for all the traits except for days to flower and pod length. The best stable hybrids for seed yield per plant over environments were CMSGT 308A × AGTR 0534, CMSGT 307A × AGTR 0543, CMSGT 0308A × AGTR 0536 and CMSGT 0311A × GTR 0525 and also recorded stability in any one or more of its contributing traits viz. pods per plant, branches per plant, seed per pod, pod length and test weight. Top ranking hybrids had high mean performance, high heterosis and desirable sca effects and stability for seed yield per plant. Therefore, these hybrids could be valuable for commercial exploitation.  相似文献   

13.
Lyndon Porter 《Euphytica》2012,186(3):671-678
Partial resistance to Sclerotinia sclerotiorum based on stem lesion advancement was assessed for nine wild pea genotypes from five geographic origins and two cultivated genotypes, when peas were inoculated and incubated at all combinations of five temperatures (15.6, 18.3, 21.1, 23.9, 29.4°C) and four period(s) of high relative humidity (PHRH; 12, 24, 48, 72 h). PHRH of 12 and 24 h should not be used when screening plants for resistance to S. sclerotiorum regardless of the incubation temperature, since stem lesions are rarely (2.7%) visible at 12 h and there were no significant differences (P ≤ 0.05) in lesion lengths among and within genotypes at all temperatures assessed after 24 h. However, PHRH of 48 and 72 h are recommended for use to assess partial resistance since significant differences in stem lesion length among the genotypes were observed and characterized for these periods. Genotypes with cool (15.6 and 18.3°C) versus warm (23.9 and 29.4°C) temperature partial resistance to S. sclerotiorum were identified, and genotypes PI 240515 and PI 169603 appear to have the best cool and warm temperature partial resistance, respectively, among the genotypes assessed. A temperature of 21.1°C was the optimal temperature favouring lesion advancement for the majority of the genotypes evaluated. PI 169603 demonstrated the best partial resistance to S. sclerotiorum across the widest temperature and PHRH ranges and is recommended to plant breeders as the best single genotype to develop future cultivars with improved partial resistance to S. sclerotiorum based on stem lesion advancement.  相似文献   

14.
Tomato cultivars differ in their sensitivity to heat stress, and the sensitivity depends on the developmental stage of the plants. It is less known how heat stress affects tomato at the anthesis stage in terms of leaf physiology and fruit set and whether the ability of tomato to tolerate heat at different developmental stages is linked. To investigate photosynthetic gas exchange characteristics, carbohydrate content and fruit set during heat stress, a thermo‐tolerant cultivar (‘LA1994’) and a thermo‐sensitive cultivar (‘Aromata’) were studied at the seedling and anthesis stage. The photosynthetic parameters, maximum quantum efficiency of photosystem II (Fv/Fm), chlorophyll content, carbohydrate content and fruit set were determined in plants grown at 26/18 °C (control) and 36/28 °C (heat stress). The physiological responses including net photosynthetic rate (PN), chlorophyll content and Fv/Fm decreased in ‘Aromata’ at both developmental stages during heat stress, whereas they were unaltered in ‘LA1994’ during heat stress as compared to the respective control. This was accompanied by lower contents of glucose and fructose in mature leaves of ‘Aromata’ at the seedling stage under heat stress. In contrast, the glucose content increased while the fructose content was unaltered in mature leaves of ‘LA1994’ at the seedling stage under heat stress. High temperature induced a similar change in carbohydrate content in the young leaves of both cultivars at anthesis. The fructose and sucrose content were unaffected in the mature leaves of ‘Aromata’ but significantly increased in ‘LA1994’ under heat stress at anthesis. The heat stress treatment decreased pollen viability and inhibited fruit set due to flower wilting and abnormal abscission in ‘Aromata’, whereas fruit set was not inhibited in ‘LA1994’. A decrease in chlorophyll content, photosynthesis and carbohydrate content in the mature leaves of tomato could be related to fruit set failure at high temperature. The results show that physiological responses to heat stress at the seedling stage correspond with the responses at the anthesis stage, demonstrating that screening for heat stress sensitivity can be carried out in young plants.  相似文献   

15.
High temperature‐induced grain sterility in rice is becoming a serious problem in tropical rice‐growing ecosystems. We studied the mechanism of high temperature‐induced grain sterility of different rice (Oryza sativa L) cultivars at two relative humidity (RH) levels. Four varieties of Indica and Japonica rice were exposed to over 85 % RH and 60 % RH at 36/30 °C, 34/30 °C, 32/24 °C and 30/24 °C day/night air temperatures from late booting to maturity inside sunlit phytotrons. Increasing both air temperature and RH significantly increased spikelet sterility while high temperature‐induced sterility decreased significantly with decreasing RH. Neither Indica nor Japonica rice types were superior to the other in the response of their spikelets to increased air temperature and RH. Increased spikelet sterility was due to increased pollen grain sterility which reduced deposition of viable pollen grains on stigma. Reduction in sterility with decreased RH was more due to decreased spikelet temperature than to air temperature. Thus the impact of RH should be considered when interpreting the effect of high temperature on grain sterility. Spikelet fertility was curvilinearly related to spikelet temperature. Grain sterility increased when spikelet temperature increased over 30 °C while it became completely sterile at 36 °C. The ability of a variety to decrease its spikelet temperature with decreasing RH could be considered as avoidance while the variability in spikelet sterility among varieties at a given spikelet temperature could be considered as true tolerance.  相似文献   

16.
E. U. Kozik 《Plant Breeding》2002,121(6):526-530
Plants of 17 tomato cultivars and four wild Lycopersicon accessions were evaluated for their reaction to Pseudomonas syringae pv. tomato (Pst) in a greenhouse following a leaf‐spray inoculation. The genotypes exhibited a large amount of variation in response to Pst infection, with disease severity index (DSI) ratings from 0.2 to 3.9. The cultivar ‘Ontario 7710’ and two accessions of Lycopersicon hirsutum (LA 1773 and LA 1775) were the most resistant, with DSI values of 0.2, 0.4 and 0.6, respectively. Three varieties, M 1812, Kujawski and Warszawski, also showed a high level of tolerance. The most susceptible was ‘A 100’(DSI = 3.9). The inheritance of resistance to bacterial speck was investigated by disease tests in segregated populations obtained by hybridizing the tomato cv. Ontario 7710 with the susceptible variety ‘A 100′. Plants were rated for disease severity by inspecting each plant and were then evaluated according to phenotypic similarity to ‘Ontario 7710’ or ‘A 100’ in respect of the number and size of the spots. Genetic analysis in F1, F2 and backcross segregations indicated that resistance of'Ontario 7710’ to Pst is conferred by one incompletely dominant gene, Pto.  相似文献   

17.
Previous studies revealed that defoliation can bring about differential responses in maize (Zea mays L.) genotypes for cold tolerance. This research was conducted to study the inheritance of the responses to defoliation for germination at low temperature and for seedling traits in early-sown field trials. Six inbred lines were crossed according to the complete diallel scheme, thus producing 36 genotypes. At milk ripening stage, half of the plants of each genotype were completely defoliated (D) whereas the other half were not (ND). Two experiments were conducted for two years, one in the germinator and one in the field. The response to defoliation was evaluated as (D–ND). Across the two years, the D treatment caused an average kernel weight decrease of ?56 mg (?23.1 % as referred to ND), an increase of 2.3 % for germination at 9 °C (G9) and a reduction of ?0.3 d for the average time of germination (ATG); in contrast, the defoliation effect was negligible for germination at 25 °C. In the field, the defoliation effects were more notable in the first (colder) year and led to an increase of 2.0 % for field emergence (FE) and to a decrease of ?2.7 g for seedling fresh weight (SFW). The genotypic variation for the (D–ND) response was significant for additive, dominance and reciprocal effects for G9, ATG, FE and SFW. There was consistency among lines across traits for additive effects, with Lo1016 and Os420 showing the best and the worst effect, respectively.  相似文献   

18.
Floral traits of three Japanese and one European buckwheat varieties were studied in a phytotron under three photoperiods (short-day 10/14 h, long-day 14/10 h, extreme long-day 18/6 h) and two thermoperiods (25/20, and 15 °C constant temperature). The Japanese varieties showed a strong delay in flowering under prolonged day length, whereas one European variety reacted almost day-neutral. Also affected by the photoperiod were the number of flower clusters as well as their sizes. A constant low temperature of 15 °C led to a strong delay in flowering under short- and long-day in all the varieties tested. In particular, the Japanese varieties were sensitive to temperature, developing more flower clusters under high temperature. Furthermore the experiments revealed complex genotype/pliotopenod/thermoperiod interactions. The study, conducted to investigate the causes of low seed-set observed in buckwheat, offered some suggestions for new breeding strategies. Insensitive genotypes, showing less sensitivity to photoperiod as well as to thermoperiod, should be included in further buckwheat improvement.  相似文献   

19.
Heat stress (HS) is a major threat to current and future crop production. Crop improvement for HS tolerance is a major tool for dealing with HS and crop wild relatives (CWR) offer the greatest variability for such improvement. Here, we evaluated the HS tolerance on four reproductive traits in cultivated and wild sunflower and tested for local adaptation to HS within the wild germplasm. Three cultivars and 23 wild populations (from native and invasive ranges) were grown in field experiments for 2 years. Flowering heads were covered with white (control) and black (HS) paper bags during seven consecutive days. Additionally, biogeographic tools were used to test for local adaptation. HS increased air temperature on black bags compared to the white ones by 9.4 °C on average and strongly decreased seed number and yield with smaller effects on head diameter and seed weight. We found large variability for HS tolerance, mainly in seed number and yield. The invasive group outperformed the cultivated and native groups in both years. Biogeographic analysis reveals a clinal variation in HS tolerance, populations from wetter (but not from warmer) environments were more tolerant to HS. In addition, the positive correlation observed between reproductive traits under control conditions and HS tolerance helps to explain the better performance of the invasive populations. We proposed the use of invasive populations for future sunflower improvements in HS tolerance and the adoption of biogeographic tools in another CWR species to identify HS tolerant populations.  相似文献   

20.
Cotton is a crop of tropical and subtropical regions but the seed cotton yield is highly influenced by abiotic stresses like drought and heat. Response of cotton genome to abiotic stresses is highly complex and involve many genes. A comprehensive study, involving cotton genotypes developed through conventional and synthetic tetraploid method, was designed to (i) study the introgression of heat and water stress tolerance by using wild relatives (ii) evaluate genetic markers for marker assisted selection against water and heat stress. Two separate experiments for water and heat stress tolerance with a common control were established. Treatments in each experiment include a control and a stress treatment. Heat stress was applied by sowing crop two month earlier than the control treatment, whereas water stress was imposed by withholding alternate irrigation. Analyses of variance depicted highly significant (P ≤ 0.01) effect of genotypes and both stresses on boll retention, boll weight and seed cotton yield. Interaction of genotypes with stress in both experiments was also highly significant (P ≤ 0.01). Genotypes derived from interspecific crosses performed consistently in stress conditions compared to control which prove it a reliable method to introgress stress related genes from wild parents. Four genes reported for water stress tolerance and five genes reported for heat stress tolerance were evaluated by field results for efficient marker assisted selection (MAS). Results verified drought stress genes but heat stress genes could not explain genetic variability caused by heat stress. It is concluded from the results that separate genes may be responsible for heat stress tolerance for vegetative and reproductive stages, therefore, selection criteria should include both the traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号