首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D. Singh    R. F. Park  R. A. Mcintosh   《Plant Breeding》2001,120(6):503-507
Genetic studies were conducted to gain an understanding of the inheritance of adult plant resistance (APR) to leaf rust in six common wheat varieties. The Australian varieties ‘Cranbrook’ and ‘Harrier’ each carry two genes for APR to leaf rust. These genes are genetically independent of the seedling resistance genes Lr23 and Lrl7b, carried by the respective varieties. Adult plant resistance in ‘Suneca’ was conferred by at least two genes, in addition to the seedling genes Lr1 and Lrli. It is likely that the APRs in ‘Cranbrook’, ‘Harrier’ and ‘Suneca’ are conferred by uncharacterized gene(s). Tests of allelism confirmed that seedling resistances in the varieties ‘Avocet R’, ‘Hereward’, ‘Moulin’ and ‘Pastiche’ are conferred by Lrli. Adult plant resistance in the variety ‘Hereward’ was inherited monogenically, whereas varieties ‘Moulin’ and ‘Pastiche’ each carried two dominant genes. On the basis of rust specificity and pedigree analysis, it would seem likely that the APR genes in ‘Hereward’, ‘Moulin’ and ‘Pastiche’ are also currently uncharacterized.  相似文献   

2.
Monosomic analysis indicated that a seedling leaf rust resistance gene present in the Australian wheat cultivar ‘Harrier’(tentatively designated LrH) is located on chromosome 2A. LrH segregated independently of the stripe rust resistance gene Yr1 located in the long arm of that chromosome, but failed to recombine with Lr17 located in the short arm. LrH was therefore designated Lr17b and the allele formerly known as Lr17 was redesignated as Lr17a. The genes Lr17b and Lr37 showed close repulsion linkage. Tests of allelism indicated that Lr1 7b is also present in the English wheats ‘Dwarf A’(‘Hobbit Sib’), ‘Maris Fundin’ and ‘Norman’. Virulence for Lr17b occurs in Australia, and pathogenicity studies have also demonstrated virulence in many western European isolates of the leaf rust pathogen. Despite this, it is possible that the gene may be of value in some regions if used in combination with other leaf rust resistance genes.  相似文献   

3.
J. P. Wilson 《Plant Breeding》1997,116(3):239-243
Quantitative disease resistance should be exploited to complement the use of genes for qualitative or hypersensitive resistance. The expression and inheritance of partial rust resistance of pearl millet inbreds 700481-21-8 and ‘ICMP 501’ crossed to moderately susceptible Tift 383’ were evaluated in seedling assays in the greenhouse and in generation mean and single-seed descent populations in the field. Uredinium sizes on seedling leaves of hybrids were generally intermediate to those of the parental inbreds and consistent differences could be discerned in uredinium lengths. Area under the disease progress curves (AUDPCs) of individual plants of the parents, F1, F2, and backcross F1S to each parent were determined from field trials. Broad-sense heritability estimates for both crosses were 43%. In generation mean analyses, additive genetic effects were significant in the cross of 700481–21–8 × Tift 383′, whereas additive, dominance, and dominance × dominance epistatic effects were significant for ‘ICMP 501’בTift 383’. The number of genes conferring partial resistance was estimated to be two for 700481–21–8 and 2.5 for ‘ICMP 501’. A hierarchical single-seed descent analysis revealed significant differences in AUDPC among F3-derived F4 progenies in the F6 generation. Selection for progenies with greater resistance should be possible among F4 families. Higher levels of resistance were observed in progeny derived from ‘ICMP 501’. Because segregation of resistance differed among progeny derived from 700481–21–8 and ‘ICMP 501’, the genetic basis for resistance probably differs between the two inbreds.  相似文献   

4.
M. Imtiaz    M. Ahmad    M. G. Cromey    W. B. Griffin  J. G. Hampton 《Plant Breeding》2004,123(5):401-404
Stripe rust of wheat caused by Puccinia striiformis West. f. sp. tritici presents a serious problem for wheat production worldwide, and identification and deployment of resistance sources to it are key objectives for many wheat breeders. Here we report the detection of simple sequence repeat (SSR) markers linked to the durable adult plant resistance of cv. ‘Otane’, which has conferred this resistance since its release in New Zealand in 1984. A double haploid population from a cross between ‘Otane’ and the susceptible cv. Tiritea’ was visually assessed for adult plant infection types (IT) in the glasshouse and field, and for final disease severity in the field against stripe rust pathotype 106E139A+. At least three resistance loci controlled adult plant resistance to stripe rust in this population. Quantitative trait loci (QTL) mapping results revealed that two of these, one on chromosome 7DS corresponds to the durable adult plant resistance gene Yr18 and other on chromosome 5DL were contributed from ‘Otane’; while the remaining one on chromosome 7BL, was contributed from the susceptible ‘Tiritea’. Interval mapping placed the ‘Otane’‐resistant segment near the centromere of chromosome 7DS at a distance of 7 cM from the SSR marker gwm44. The stability of QTL in the two environments is discussed. SSR gwm44 is potentially a candidate marker for identifying the durable resistance gene Yr18 in breeding programmes.  相似文献   

5.
The slow‐rusting and mildewing gene Yr18/Lr34/Pm38/Sr57 confers partial, durable resistance to multiple fungal pathogens and has its origins in China. A number of diagnostic markers were developed for this gene based on the gene sequence, but these markers do not always predict the presence of the resistant phenotype as some wheat varieties with the gene are susceptible to stripe rust in China. We hypothesized that these varieties have a suppressor of Yr18. This study was undertaken to determine the presence of Yr18, the suppressor and/or another resistance gene in 144 Chinese wheat landraces using molecular markers and stripe rust field data. Forty‐three landraces were predicted to have Yr18 based on the presence of the markers, but had final disease severities higher than 70%, indicating that this gene may be under the influence of a suppressor. Four of these landraces, ‘Sichuanyonggang 2’, ‘Baikemai’, ‘Youmai’ and ‘Zhangsihuang’, were chosen for genetic studies. Crosses were made between the lines and ‘Avocet S’, with further crosses of Sichuanyonggang 2 ×  ‘Huixianhong’ and Sichuanyonggang 2 ×  ‘Chinese Spring’. The F1 plants of Sichuanyonggang 2/Chinese Spring was susceptible indicating the presence of a dominant suppressor gene. The results of genetic analyses of F2:3 and BC1F2 families derived from these crosses indicated the presence of Yr18, a Yr18 suppressor and another additive resistance gene. The Yr18 region in Sichuanyonggang 2 was sequenced to ensure that it contained the functional allele. This is the first report of a suppressor of Yr18/Lr34/Pm38/Sr57 gene with respect to stripe rust response.  相似文献   

6.
Eight spring barley accessions from the gene bank in Gatersleben, Germany, and 10 cultivars were tested for stripe rust resistance. Tests were performed at the seedling stage in the growth chamber and as adult plants in the field. All accessions and six cultivars were scored as resistant against race 24 under all test conditions, with very few plants as exceptions, while the susceptible control cultivars ‘Karat’ and ‘Certina’, and four other cultivars were attacked in all cases. Differences between accessions and between cultivars were detected after infection with isolates from ‘Trumpf’ and ‘Bigo’ (seedling tests only). Infection structures within seedling leaves without pustules and for the first time within leaves of adult plants from the field were analysed by fluorescence microscopy. With this method additional genetic Differences in the resistance reaction could be detected which could not to be seen in the resistance test. Crosses between the accessions and the susceptible cultivar ‘Karat’ led to segregating F2 progenies. The percentage of resistant plants varied between the accessions. This also indicates a different genetic basis of resistance in the accessions. The infection structures observed by fluorescence microscopy stopped earlier in leaves of the two accessions HOR 8979 and HOR 8991 than in leaves of other accessions in all the tests. These accessions were the only ones with more than 50% resistant plants in all F2 tests. In general, the accessions from the gene bank can be used as new resistance sources against stripe rust.  相似文献   

7.
Genetic basis of seedling-resistance to leaf rust in bread wheat 'Thatcher'   总被引:1,自引:0,他引:1  
A. N. Mishra    K. Kaushal    G. S. Shirsekar    S. R. Yadav    R. N. Brahma    H. N. Pandey 《Plant Breeding》2005,124(5):514-516
The bread wheat cultivar ‘Thatcher’ is documented to carry the gene Lr22b for adult‐plant resistance to leaf rust. Seedling‐resistance to leaf rust caused by Puccinia triticina in the bread wheat cultivar ‘Thatcher’, the background parent of the near‐isogenic lines for leaf rust resistance genes in wheat, is rare and no published information could be found on its genetic basis. The F2 and F3 analysis of the cross ‘Agra Local’ (susceptible) × ‘Thatcher’ showed that an apparently incompletely dominant gene conditioned seedling‐resistance in ‘Thatcher’ to the three ‘Thatcher’‐avirulent Indian leaf rust pathotypes – 0R8, 0R8‐1 and 0R9. Test of allelism revealed that this gene (temporarily designated LrKr1) was derived from ‘Kanred’, one of the parents of ‘Thatcher’. Absence of any susceptible F2 segregants in a ‘Thatcher’ × ‘Marquis’ cross confirmed that an additional gene (temporarily designated LrMq1) derived from ‘Marquis’, another parent of ‘Thatcher’, was effective against pathotype 0R9 alone. These two genes as well as a second gene in ‘Kanred’ (temporarily designated LrKr2), which was effective against all the three pathotypes, but has not been inherited by ‘Thatcher’, seem to be novel, undocumented leaf rust resistance genes.  相似文献   

8.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a devastating fungal disease in common wheat (Triticum aestivum L.) worldwide. Chinese wheat cultivars ‘Lumai 21’ and ‘Jingshuang 16’ show moderate levels of adult‐plant resistance (APR) to stripe rust in the field, and they showed a mean maximum disease severity (MDS) ranging from 24 to 56.7% and 26 to 59%, respectively, across different environments. The aim of this study was to identify quantitative trait loci (QTL) for resistance to stripe rust in an F3 population of 199 lines derived from ‘Lumai 21’ × ‘Jingshuang 16’. The F3 lines were evaluated for MDS in Qingshui, Gansu province, and Chengdu, Sichuan province, in the 2009–2010 and 2010–2011 cropping seasons. Five QTL for APR were detected on chromosomes 2B (2 QTL), 2DS, 4DL and 5DS based on mean MDS in each environment and averaged values from all three environments. These QTL were designated QYr.caas‐2BS.2, QYr.caas‐2BL.2, QYr.caas‐2DS.2, QYr.caas‐4DL.2 and QYr.caas‐5DS, respectively. QYr.caas‐2DS.2 and QYr.caas‐5DS were detected in all three environments, explaining 2.3–18.2% and 5.1–18.0% of the phenotypic variance, respectively. In addition, QYr.caas‐2BS.2 and QYr.caas‐2BL.2 colocated with QTL for powdery mildew resistance reported in a previous study. These APR genes and their linked molecular markers are potentially useful for improving stripe rust and powdery mildew resistances in wheat breeding.  相似文献   

9.
Doubled haploid lines derived from anther culture of two Iranian spring wheat genotypes‘Ghods’susceptible and‘9106’resistant to yellow rust in Iranian field conditions, and their F1 hybrids were used in this study. Seedlings of 36 doubled haploid lines, selected out of 96 according to their agronomic traits and the two parental genotypes were inoculated with eight races of yellow rust. The parental genotypes (‘Ghods’and‘9106’) were segregating for some of the races but their doubled haploid lines were either resistant or susceptible to them.‘Ghods’was susceptible to three of the races studied but three doubled haploid lines derived from it were resistant to them. Five selected doubled haploids from the‘9106’genotype and six from F1 hybrid plants were resistant to all eight races tested. After further investigations in Iranian field conditions it was found that some of these lines can be used as donor genotypes for resistance to yellow rust in wheat breeding programmes. Use of these genotypes should be possible if the French yellow rust races used for selection also represent the dominant races in Iran. It can be concluded that anther culture provides an efficient method for fixing genes of resistance to yellow rust and desirable doubled haploids from F1 plants can be derived.  相似文献   

10.
J. A. Kolmer    L. M. Oelke    J. Q. Liu 《Plant Breeding》2007,126(2):152-157
A genetic analysis of the landrace‐derived wheat accessions Americano 25e, Americano 26n, and Americano 44d, from Uruguay was conducted to identify the leaf rust resistance genes present in these early wheat cultivars. The three cultivars were crossed with the leaf rust susceptible cultivar ‘Thatcher’ and approximately 80 backcross (BC1) F2 families were derived for each cross. The BC1F2 families and selected BC1F4 lines were tested for seedling and adult plant leaf rust resistance with selected isolates of leaf rust, Puccinia triticina. The segregation and infection type data indicated that Americano 25e had seedling resistance genes Lr3, Lr16, an additional unidentified seedling gene, and one adult plant resistance gene that was neither Lr12 nor Lr13, and did not phenotypically resemble Lr34. Americano 26n was postulated to have genes Lr11, Lr12, Lr13, and Lr14a. Americano 44d appeared to have two possibly unique adult plant leaf rust resistance genes.  相似文献   

11.
小麦慢白粉病QTL对条锈病和叶锈病的兼抗性   总被引:1,自引:0,他引:1  
聚合兼抗白粉病、条锈病和叶锈病的慢病性基因,是培育持久多抗小麦品种的重要措施。百农64和鲁麦21均为慢白粉病品种,分别含有4个和3个慢白粉病抗性QTL。将百农64与鲁麦21杂交,获得21个聚合2~5个慢白粉病抗性QTL的F6株系,于2012-2013年度分别在四川郫县和甘肃天水进行条锈病田间抗性鉴定,在河北保定和河南周口进行叶锈病田间抗性鉴定。分析21个株系条锈和叶锈病的最大严重度和病程曲线下面积,检测单个QTL和QTL聚合体对条锈病和叶锈病的抗性效应。结果表明,QPm.caas-4DL、QPm.caas-6BS和QPm.caas-2BL对条锈病均有显著的抗性,分别解释表型变异的16.9%、14.1%和17.3%;QPm.caas-4DL对叶锈病也有显著抗性,可解释表型变异的35.3%;QPm.caas-1A/QPm.caas-4DL/ QPm.caas-2DL/QPm.caas-2BS/QPm.caas-2BL和QPm.caas-1A/QPm.caas-4DL/QPm.caas-2BS/QPm.caas-2BL聚合体对条锈病和叶锈病的抗性显著高于两亲本,它们均含有来自百农64的QPm.caas-4DL以及来自鲁麦21的QPm.caas-2BL和QPm.caas-2BS,表明这些QTL具有明显的兼抗性效应。在小麦抗病育种中,聚合慢病性QTL越多,慢病性越强,聚合4~5个慢病性QTL时,株系可达到高抗甚至接近免疫的水平,是选育持久抗性小麦品种的重要手段。  相似文献   

12.
An interspecific cross was made to transfer leaf rust and stripe rust resistance from an accession of Aegilops ovata (UUMM) to susceptible Triticum aestivum (AABBDD) cv. WL711. The F1was backcrossed to the recurrent wheat parent, and after two to three backcrosses and selfing, rust resistant progenies were selected. The C-banding study in a uniformly leaf rust and stripe rust resistant derivative showed a substitution of the 5M chromosome of Ae. ovata for 5D of wheat. Analysis of rust resistant derivatives with mapped wheat microsatellite makers confirmed the substitution of 5M for 5D. Some of these derivatives also possessed one or more of the three alien translocations involving 1BL, 2AL and 5BS wheat chromosomes which could not be detected through C-banding. A translocation involving 5DSof wheat and the substituted chromosome 5M of Ae. ovata was also observed in one of the derivatives. Susceptibility of this derivative to leaf rust showed that the leaf rust resistance gene(s) is/are located on short arm of 5M chromosome of Ae. ovata. Though the Ae. ovatasegment translocated to 1BL and 2AL did not seem to possess any rust resistance gene, the alien segment translocated to 5BS may also possess gene(s) for rust resistance. The study demonstrated the usefulness of microsatellite markers in characterisation of interspecific derivatives. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
郑麦103是一个高抗条锈病的小麦新品种,为明确其携带的抗病基因,用郑麦103与感条锈病品种农大399杂交构建分离群体,用条锈菌CYR32、CYR33和CRY34(V26)混合菌系进行田间接种和成株期抗性鉴定,对214个F2:3家系的条锈病抗性进行遗传分析,初步确定郑麦103的抗条锈性由单个主效基因控制,定名为Yr ZM103。通过BSR-Seq技术开发了6个与Yr ZM103紧密连锁的分子标记,将Yr ZM103定位于染色体臂7BL分子标记ZM215和ZM221之间,遗传距离分别为11.8 c M和6.9 c M。利用7BL染色体上与其他已知抗条锈病基因紧密连锁的分子标记进行比较作图,发现Yr ZM103是不同于7BL末端其他抗条锈病基因的新基因。  相似文献   

14.
A. N. Mishra    K. Kaushal    S. R. Yadav    G. S. Shirsekar    H. N. Pandey 《Plant Breeding》2005,124(5):517-519
The gene Lr34 has contributed to durable resistance to leaf rust caused by Puccinia triticina in wheat worldwide. The closely associated leaf tip necrosis is generally used as the gene's marker. Lr34 has been postulated in many Indian bread wheat cultivars including ‘C 306’, based on the associated leaf tip necrosis and a few other field and glasshouse observations. The present study showed monogenic control of adult‐plant resistance in ‘C 306’ to leaf rust pathotype 77‐5 (121R63‐1). The F2 segregation in the crosses between ‘C 306’ and the two known carriers of Lr34, ‘Line 897’ and ‘Jupateco 73’‘R’ fitted a digenic ratio. The F3 families derived from the susceptible F2 segregants were true breeding for susceptibility, proving the absence of Lr34 in ‘C 306’. The cross between ‘Line 897’ and ‘Jupateco 73’‘R’ did not segregate for susceptibility. Resistance in the cross ‘Agra Local’ (susceptible) × ‘C 306’ was associated with leaf tip necrosis, showing that the leaf rust resistance gene in ‘C 306’ was associated with leaf tip necrosis, but was different from Lr34. This gene is being temporarily designated as Lr‘C 306’. Hence, leaf tip necrosis cannot be considered as an exclusive marker for selecting Lr34 in wheat improvement.  相似文献   

15.
Stripe rust (or yellow rust), caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Growing resistant cultivars is the best approach to control the disease. To identify and map genes for stripe rust resistance in wheat cultivar ‘Wuhan 2', an F2 population was developed from a cross between the cultivar and susceptible cultivar Mingxian 169. The parents, 179 F2 plants and their derived F2:3 lines were evaluated for responses to Chinese races CYR30 and CYR31 of the pathogen in a greenhouse. A recessive gene for resistance was identified. DNA bulked segregant analysis was applied and resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to the resistance gene. A genetic map consisting of five RGAP and six SSR markers was constructed. The recessive gene, designated Yrwh2, was located on the short arm of chromosome 3B and flanked by SSR markers Xwmc540 and Xgwm566 at 5.9 and 10.0 cM, respectively. The chromosomal location of the resistance gene and its close marker suggest that the locus is different from previously reported stripe rust resistance genes Yr30, QYr.ucw-3BS, Yrns-B1, YrRub and QYrex.wgp-3BL previously mapped to chromosome 3B. Yrwh2 and its closely linked markers are potentially useful for developing stripe rust resistance wheat cultivars if used in combination with other genes.  相似文献   

16.
According to our previous investigations, resistance to Phytophthora capsid in Capsicum annuum genotypes, ‘Line 29’, ‘PI201232’, ‘PI201234’ and Serrano Criollo de Morelos 334 (‘SCM334’), seems to be controlled by three genes. In order to determine the genie relationships between these four sources of resistance, three experiments were conducted which included the four genotypes, their F1s, F2s, F3s and BC1 generations together with the susceptible pepper genotype ‘Morron INI A 224’. Inoculations were made, when plants had 4—6 leaves, by irrigating the culture substrate with a zoospore suspension of P. capsici isolate ‘Bl’. Though the four genotypes showed percentages of resistance close to a 100%, none of them actually reached this level in the three experiments. ‘SCM334’ was the most resistant genotype, transmitting a high level of resistance to its F1, F2 and BQ generations. ‘Line 29’ was more resistant than ‘PI201232’ and ‘PI201234’. However, the F1 F2 and BQ generations of these three lines showed similar degrees of resistance. The four genotypes seem to have one of the three genes postulated for their resistance in common. All genes displayed a similar level of resistance, except the specific genes of ‘SCM334’, the effect of which was slightly higher. Several working procedures are suggested for breeding programmes.  相似文献   

17.
This work reports a gene pyramiding approach assisted by DNA markers used to develop “carioca” seeded common bean (Phaseolus vulgaris L.) elite lines harboring three different rust resistance genes. Rust is among the most destructive diseases that attack P. vulgaris and cause serious damage worldwide. The rust resistance genes Ur-5 (from ‘Mexico 309’), Ur-11 (from ‘BelMiDak RR-3’), and Ur-14 (from ‘BRS Pioneiro’, a “carioca” seeded cultivar derived from the resistance source ‘Ouro Negro’) were combined in the “carioca” seeded bean cultivar ‘Rudá’. Firstly, two different backcross programs were conducted separately to produce progenies harboring individually the Ur-5 and Ur-11 genes. Molecular fingerprinting analysis was used to select plants genetically similar to ‘Rudá’ in the backcross cycles to accelerate the recurrent-background recovery. The obtained progenies were initially intercrossed and then crossed with ‘BRSMG Pioneiro’ (Ur-14). The final F1 plants derived from these crosses were screened with DNA markers linked to the three rust resistance genes: SI19 (Ur-5), SAE19 (Ur-11) and OPX11 (Ur-14). The plants selected as harboring all the alleles of interest were used to obtain the next generations. The selection based on DNA markers was conducted up to the F4:5 generation. We were able to select F4:7 progenies showing all the DNA markers associated to the genes of interest and resistant to all specific races of U. appendiculatus used for phenotypically detecting each one of the rust resistance genes. Yield evaluations show that these selected lines are as productive as the recurrent parent ‘Rudá’ and high-performing control cultivars grown in Brazil.  相似文献   

18.
Genetic studies were conducted on nine triticale cultivars and lines lo determine the presence and identity of stem rust resistance genes. The lines were intercrossed and their F2 and F3 generations were tested with selected pathotypes of Puccinia graminis tritici. Segregation in seedling tesis showed the presence of two new genes SrLal and SrLa2 in ‘Lasko’, SrBj anil SrJ in ‘Bejon’. SrVen in ‘Currency’, SrBj in ‘Abacus’ and ‘RM4’ and SrNin in ‘Tahara’, ‘Maidan’ and ‘Madonna’ SrBj, SrNin, SrLal and SrLa2 were genetically independent and each conferred resistance to the currently important Australian P. graminis tritici pt 34-2.12.13, whereas SrJ and SrVen conferred moderately susceptible reactions to the same pathotype. SrVen segregated independently of SrBj, but the relationship of SrVen with the other genes was noi determined. The typical low infection types conferred by SrBj and SrJ were best expressed at temperatures above 21 C, Prolamine separations nsinj; sodium dodecyl sulphate-polyacrylamide gel elcclrophoresis confirmed that SiNin and SrBj were located in chromosome 2R. The gene SrLal behaved as a third allele at or near the Sr27, SrSatu locus in chromosome 3R, The present work demonstrated that chromosomes 2R and 3R are important bearers of genes Tor stem rust resistance in hexaploid iriticale.  相似文献   

19.
Phytophthora drechsleri causes stem blight, which is one of the most serious diseases of pigeonpea. Eight races of this fungus have been identified, but the inheritance of resistance to all these races is not clear except for race P2. This study examined the inheritance of resistance to race ‘Kanpur’ (KPR) of P. drechsleri in eight crosses involving four resistant parents, viz.‘KPBR 80‐2‐1′, ‘KPBR 80‐2‐2′, ‘Hy 3C and ‘BDN 1′, and two susceptible parents, viz.‘Bahar’ and ‘PDA 10′. The reactions of the parental lines, and their F1, F2 and backcross generations were studied in an infected plot. In the F1 generation of all crosses, a susceptible reaction was observed that indicated dominance of susceptibility over resistance. The segregation pattern in F2 indicated that two homozygous recessive genes (pdr1pdr1pdr2pdr2) were responsible for imparting resistance in the parents, ‘KPBR 80‐2‐1’ and ‘KPBR 80‐2‐2′, and that a single homozygous recessive gene (pdrpdr) was responsible for resistance in the parents ‘Hy 3C and ‘BDN 1′. Therefore, ‘KPBR 80‐2‐1’ and ‘KPBR 80‐2‐2’ with two genes for resistance are better donors because the resistance transferred from them will be more durable compared with ‘Hy3C and ‘BDN1’ with only one gene for resistance.  相似文献   

20.
Hexaploid triticale contains valuable genes from both tetraploid wheat and rye and plays an important role in wheat breeding programmes. In order to explore the potential of hexaploid triticale ‘Certa’ in wheat improvement, two crosses were made using ‘Certa’ as female parent, and common wheat cultivars ‘Jinmai47’ (JM47) and ‘Xinong389’ (XN389) as male parents. The karyotyping of BCF4:5 lines from Certa/JM47//JM47 and F5:6 lines from Certa/XN389 was investigated using sequential fluorescence in situ hybridization (FISH). One 1B(1R) substitution line and five 1BL.1RS whole‐arm translocation lines were identified, one of which was found lacking ω‐secalin locus. Many structural alterations on wheat chromosomes were detected in the progeny. Great morphologic differences resulting from genetic variations were observed, among which the photosynthetic capability was increased while grain quality was slightly improved. Compared with both parents, the stripe rust resistance at adult stage was increased in lines derived from Certa/JM47//JM47, while it was decreased in lines derived from Certa/XN389. These newly developed lines might have the potential to be utilized in wheat improvement programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号