首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
基于物联网和GIS的水产养殖测控系统平台设计   总被引:1,自引:0,他引:1  
针对水产养殖水质多参数监测的需求和现有水质环境监测系统存在的问题,设计了一种基于物联网和地理信息系统(GIS)的水产养殖测控系统。通过整体性能的研究分析,设计了测控系统平台的3层体系架构(传感控制层、传输层和应用层),提出了自顶向下、逐步求精以及模块化、结构化的设计方法;根据采集数据传输的可靠性、稳定性等要求,提出WiFi网状组网的配置方法,设计了系统硬件的供电模块;研究了本地服务器、中心服务器和控制模块软件系统;通过网络丢包率测试和水质溶氧量分析,验证了系统数据传输的可靠性,并在溶氧超出范围后自动控制增氧机,有效地调节池塘溶氧量。相比于传统的水产养殖远程监控系统,该系统通过物联网和GIS技术的融合,实现了水质环境的远程无线测控和区域化水产养殖管理,因此能够大大推进水产养殖智能化、自动化系统建设的发展,适应水产养殖的需要。  相似文献   

2.
鱼塘溶解氧无线监测与控制系统研究   总被引:1,自引:0,他引:1  
溶解氧检测在水产养殖中起着至关重要的作用。研制了一套通过无线以太网(WIFI)连接,LabVIEW程序控制,并通过GSM网络使用户远程监控池塘溶解氧的溶解氧无线监测与控制系统。该系统能够在线检测溶解氧、温度等主要环境参数,并根据环境情况实施对增氧机的控制,业主可远程电脑监控或者通过手机远程监测鱼塘水质状况,并发送增氧命令,进行远程手动启停增氧机。在溶解氧超标时,系统可以自动启停增氧机,并向用户发送报告。试验结果表明,该方案提高了水质监控系统的控制性能,且具有应用前景。  相似文献   

3.
针对水产养殖中增氧机远程控制困难、水质送检烦琐等问题,基于无线传感器网络(WSN)及物联网技术,开发了一种带有水质监测功能的增氧机远程控制系统。该系统由监测设备和远程控制小程序组成,布设在现场的溶氧、pH传感器、环境监测变送器等设备由4G-DTU内置的微处理器负责数据采集,采用无线网络通信方式,摆脱传统监测系统通信距离短的困扰;小程序具备实时监测水质、查询历史数据、远程启停增氧机等功能。为验证系统实用性,在实际水域布置节点测试。结果显示:各项指标均达到要求,设备远程启停响应延迟低于100 ms, pH测量精度达到±0.02,溶氧控制精度在±0.4 mg/L以内,温度测量精度达到0.5℃,气压测量精度达到0.1 kPa,能够满足水产养殖需求。证明了所研究的系统具有实际应用意义。  相似文献   

4.
为解决传统网箱养殖水质检测周期长、实时性差、数据误差大、维修成本高等问题,设计了一种基于无线网桥与ZigBee进行数据传输的深海网箱养殖水质与环境监测系统。该系统主要通过水质传感器获取网箱内海水的温度、盐度、浊度、pH以及溶氧等水质参数,同时利用水下摄像机采集水中鱼群状况、水面环境信息等图像信息,并通过无线网桥将监测的水质参数与图像信息实时传输至岸基数据监控中心,由监控系统实时监测养殖环境参数变化,并且可以通过无线接入点向设备发送控制指令来进行相关操作,如通过控制图像采集设备的云台来实现对网箱水面或水下环境的监控。结果显示:采用该检测系统后,能实时传输图像信息和水质参数,并能实现实时远程控制;操控中心具有数据显示、历史数据查看、水质异常时声光报警等功能。该系统具有操作简便、响应快速、成本较低、可靠性高等优点,具有较好的推广应用价值。  相似文献   

5.
正池塘精准养殖系统,就是通过物联网—"物物相连的互联网"实现养殖管理自动化、精准化和信息化。目前物联网技术已广泛应用于安全、环保、交通、医疗、物流、生活等领域,随着水产养殖业结构的不断调整和经营方式的不断转变,物联网技术开始应用于水产养殖业。2016年任丘市依托中国水产科学研究院淡水渔业研究中心,在瑞娇水产养殖专业合作社安装了一套池塘精准养殖系统,利用该系统进行自动增氧、自动投饲和  相似文献   

6.
为实现大规模海水养殖过程中养殖环境的动态移动采集、数据无线传输及结果的远程监控,设计了一种基于第4代移动通信(4G)、长距离无线通信(Lora)、遗传算法的小型无人船海洋养殖环境监测系统。该系统以小型无人船为载体,以STM32为控制核心,以4G、Lora为数据无线传输手段,岸基电脑(PC机)或云平台为上位机,通过搭载遗传算法,依据上位机给出的巡检坐标,自动完成区域内海水养殖环境巡检及数据上传,用户可通过浏览器、手机等手段进行数据查看。结果显示:p H、溶氧传感器采集的数据与标定仪器测量数据具有较高的一致性,温度最高偏差为0.5℃,行驶距离较未优化前有大幅度下降。研究表明:该系统准确性、稳定性良好,方便易用,具有一定理论及应用价值。  相似文献   

7.
为使水产养殖环境监测控制得更加精确,创造良好的水产养殖环境,本文采用以LabVIEw为代表的虚拟仪器技术,对水产养殖环境监测进行了有益的探讨.设计了水产养殖监测的硬件系统,开发了水产养殖环境监测软件,对水产养殖环境进行实时具体地监测,及时监测环境参数的变化,以便及时地采取相关措施使水产养殖环境处于最佳状态.  相似文献   

8.
龚希章  魏华  陈明  戴习林  付熙徐 《水产学报》2010,34(11):1704-1711
阐述了基于Web的凡纳滨对虾标准化生态养殖全程管理系统的研发过程。该系统立足数字农业发展与新农村建设的基本国情,采用B/S系统结构、Windows 2000/2003 Server平台、SQL Server 2000数据库、ASP技术和Dreamwaver MX 2004开发环境;依据凡纳滨对虾标准化生态养殖生产工艺过程,采用面向对象的分析和设计方法,最终实现水产养殖环境、苗种放养、渔药使用、饲料投放和产品销售等环节全过程标准化管理。系统包括日常管理、基础信息、系统管理、个人工具、信息查询和报表打印等6大功能模块。广大养殖用户可借助覆盖全球的无线广域通信网络,使用架设在Internet上的管理系统,进行所辖池塘的日常生产信息维护。  相似文献   

9.
正物联网是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络概念。2012年江苏省常州市金坛区在金坛河蟹产业园区内首创了蟹池物联网智能监控生态高效养殖模式,在标准化池塘中配套物联网智能监控系统,采取"移殖螺蛳、栽种水草、科学投饵、调节水质、生态防病"等生物技术,确立了"每667 m2放自育蟹种1 200只,  相似文献   

10.
水产养殖水质参数检测作为现代化水产养殖的重要特征正受到越来越多的关注。为满足水产养殖业对水质环境参数检测的迫切需求,研究设计了一种升降式水产养殖水质自动检测系统。该系统由无线传感模块和传感器保护模块构成,无线传感模块采用GPRS无线传感技术实现水质参数的采集和传送;传感器保护模块利用PIC16F877A型单片机作为控制器,通过ZigBee实现与服务器的远程通信,从而控制检测装置的升降和水质传感器的冲洗与保湿。通过PC或手机客户端,养殖户可以对检测系统进行实时监测和控制。结果显示,系统运行稳定,装配简易,操作方便,实现了对鱼塘水温、溶氧和p H的自动检测;远程控制反应时间在1 s以内,数据传输错误率基本为0;溶氧、p H和温度传感器的最大相对误差分别为0.55%、1.89%和1.32%。研究表明,升降式机械结构工作稳定,实现了传感器的冲洗、保湿功能,远程控制动作反应速度和测量精度达到水产养殖水质信息采集的要求,能够满足水产养殖水质检测的应用要求。  相似文献   

11.
为探究稻田和池塘养殖对鲤(Cyprinus carpio)肌肉风味的影响,2021年8-10月随机采集两种养殖环境下的鲤进行感官分析并测定其游离氨基酸、核苷酸和挥发性物质成分,同时对氨基酸、核苷酸和挥发性物质成分的组成及含量进行了比较分析。感官评价分析结果显示两种养殖环境下的鲤肌肉在10月时,气味上有明显差异。稻田和池塘养殖鲤肌肉中氨基酸及核苷酸种类相同,稻田养殖的鲤肌肉中呈鲜味氨基酸如谷氨酸含量显著高于池塘养殖;稻田养殖的鲤肌肉味精当量值(equivalent umami concentration, EUC)最高含量达到了5.68 g MSG/100 g,显著高于池塘养殖的EUC值4.61 MSG g/100 g;同时,稻田养殖鲤肌肉中土腥味、青草味的物质,如己醛、壬醛的含量显著低于池塘养殖。综上表明,稻田养殖的鲤滋味更为鲜美,土腥味的物质含量更少。  相似文献   

12.
正本研究通过对比92亩安装物联网的智能养殖池塘和另外90亩未安装物联网系统的传统池塘2017年全年的运作情况,总结探索基于物联网智能化管理的河蟹养殖模式的优势所在。以期能够对物联网技术在水产养殖中的应用提供进一步详实的基础数据,从而达到更好地降低生产成本、提高养殖效益和实现集约化养殖的目的。一、试验条件  相似文献   

13.
正作为国家水产健康养殖示范场,2016年起,巴彦县呈祥水产良种繁育基地率先在北方高寒地区标准化池塘中配套物联网智能调控系统。通过池塘水质调控,建立基于物联网技术的池塘高产养殖模型和实现方法,对于控制池塘高密度养殖风险、提高生产效益、推进池塘养殖从机械化向信息化的发展有重要现实意义。2017年,5个池塘总面积550亩,共生产商品鱼295100千克,平均产量536.55千克/亩,实现产值282.4万元。  相似文献   

14.
池塘养殖对水质的实时状况较为敏感,因此对水质监控系统提出了严格要求。针对池塘养殖所面对的野外复杂环境,设计了一种基于LoRa协议与ZigBee协议的异构传感网络水质监控系统。该系统利用水质监测传感器与异构无线传感网络对溶氧、pH及水温等参数进行采集与传输,并通过云端服务器平台实现了远端数据的存储、监控。在通信距离达5 km的野外环境中搭建测试系统进行试验。经过30 d模拟工作测试,本研究设计的水质监控系统具有监测范围广、搭建成本低、工作稳定等优点。同时测量误差最大方差为3.88%,时延误差小于1%,能够充分满足池塘养殖对水质监控的需求。  相似文献   

15.
为验证淡水池塘嵌入式集装槽循环水养殖系统设计的应用效果,使用该系统进行了革胡子鲶、罗非鱼、彭泽鲫和赣昌鲤鲫四种鱼类的养殖试验。经过99d的养殖,四种鱼类养殖过程中均未出现大面积死亡现象和病害发生的情况,革胡子鲶、罗非鱼、彭泽鲫和赣昌鲤鲫养殖产量分别达到了43.81kg/m3,17.40kg/m3,17.96kg/m3和11.65kg/m3。养殖过程中,养殖水质保持稳定,未向外排放养殖尾水,未使用渔药。养殖试验表明:淡水池塘嵌入式集装槽循环水养殖系统可以用来养殖以上四种鱼类,而且能够达到环保高效的养殖目的。  相似文献   

16.
<正> 鲤是我国池塘养殖的传统饲养对象,目前又是网箱养殖的主要鱼类.为提高鲤的生长速度,改良其经济性状,我国的一些科技工作者采用种内杂交的方法,先后培育出多种杂交鲤,如兴国红鲤×散鳞镜鲤;荷包红鲤×元江鲤;荷包红鲤×湘江野鲤;荷包红鲤×黄河鲤。并且利用荷元鲤的子一代与散鳞镜鲤杂交育成三杂交鲤,实践证明这些杂交组合都有比亲本快的生长速度。随着杂交鲤养殖的发展,产品的扩大,当前杂交鲤生产中的问题也逐渐增多。一是  相似文献   

17.
为了减少水产养殖污染,保证养殖生态系统的安全,提高生态环境质量,利用物联网技术设计并实现一种水产养殖智能监控系统。该系统通过智能传感器终端实现对养殖区域水质的溶氧、pH、水温、光照度、环境温度、环境湿度等参数的实时采集、远程显示和自动控制,实现远程智能养殖。同时,系统利用树莓派作为边缘算力设备,从感知层、传输层、边缘计算层、应用层四个主要方面对系统进行说明,通过智能算法实现实时精细化管理资源的目标,使数据可视、可信,进一步探究水产养殖方面进行智能化协同化的可行性。研究表明,该系统在实物模型上运行稳定、感知准确、控制及时和扩展性强等优点,可在水产养殖中进行推广和应用。  相似文献   

18.
在池塘中将岩原鲤大规格鱼种养殖成尾均重为300g/尾的商品鱼,养殖周期为一年,通过试验得到了岩原鲤池塘成鱼养殖合适的放养规格、放养密度、产量、成活率及饵料系数等技术数据。  相似文献   

19.
池塘和稻田养殖模式对金边鲤和建鲤肌肉品质的影响   总被引:3,自引:0,他引:3  
分析了稻田和池塘养殖模式下金边鲤和建鲤肌肉营养成分、理化特性和质构特性,并进行营养价值评价,评估金边鲤的肌肉品质,为开发和推广金边鲤稻田养殖提供数据依据。结果显示,稻田金边鲤的粗脂肪、粗灰分和系水力均显著高于池塘金边鲤;稻田建鲤和池塘建鲤的基本营养成分除水分外差异均不显著;稻田金边鲤肌肉的硬度、弹性、咀嚼性显著高于池塘建鲤和稻田建鲤,硬度和恢复性显著高于池塘金边鲤,而内聚性显著低于池塘金边鲤、池塘建鲤和稻田建鲤;测定的17种氨基酸中,4组鱼肉的Lys含量均高于WHO/FAO标准和鸡蛋蛋白标准,稻田金边鲤的∑TAA、∑EAA、∑DAA和∑NEAA均高于池塘建鲤和稻田建鲤,且EAA/TAA比值更接近FAO/WHO要求的40%的标准;稻田和池塘金边鲤的EAAI均超过100分,高于稻田和池塘建鲤(82.31~83.36分);测定出的24种脂肪酸中,稻田金边鲤的∑SFA、∑MUFA和DHA+LA+油酸总量均高于其他3组。研究表明,金边鲤和建鲤鱼肉可作为人体优质的赖氨酸源,稻田金边鲤肌肉比建鲤和池塘金边鲤肌肉更富有嚼劲,其肌肉必需氨基酸、不饱和脂肪酸及高度不饱和脂肪酸含量更高,且组成比例更符合人体需求。稻田养殖金边鲤的肌肉品质优势明显,具有较高的产业开发潜力。  相似文献   

20.
物联网在水产养殖的环境监测调控、水产品流通、水产品安全溯源、病害防治中应用前景广阔,但目前仍存在物联网行业标准尚未建立、建设成本过高、长效运行机制尚未健全、技术难度大、专业人才缺乏等问题。应尽快降低核心设备成本,建立合作共赢的农业生产模式,创建有效的人才培养方式,以提高物联网在水产养殖业中的应用水平,促进智能渔业的发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号