首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
了解林麝生长激素(GH)基因序列结构特点,为进一步研究GH基因的结构功能遗传变异规律及其与生长性能的关系提供科学依据。根据GenBank上已公布的绵羊全基因组GH基因序列设计合成4对特异性引物,以林麝基因组DNA为模板进行PCR扩增,将所获得的序列拼接,获得林麝GH基因CDS区序列,采用ExPASy等分子生物学工具对林麝GH蛋白的理化性质、二级结构、蛋白功能等进行预测。结果表明,林麝GH基因CDS区全长657 bp(GenBank登录序列号为KU296865),编码218个氨基酸。α-螺旋结构和卷曲结构构成了林麝GH蛋白二级结构的骨架,为跨膜蛋白,同时第1~26位氨基酸为信号肽,第27~218位氨基酸残基为生长激素结构域。进化分析结果表明,林麝与羊的关系最为接近,在分子水平上符合物种进化理论。本研究成功克隆了林麝GH基因CDS区序列,其序列保守性强,为下一步林麝GH基因的表达调控、进化和多态性分析奠定了基础。  相似文献   

2.
【目的】抑制蛋白5 (ARRDC5)的功能尚不清楚,前期发现其可能与公猪繁殖力有关,本研究旨在克隆猪ARRDC5基因以及确定猪ARRDC5蛋白的亚细胞定位。【方法】通过NCBI下载猪近缘物种ARRDC5基因序列,在线BLAST比对获得猪EST序列,电子克隆猪ARRDC5基因编码区及部分侧翼序列。构建真核融合表达载体并瞬时转染猪睾丸细胞系ST,利用倒置荧光显微镜检测蛋白表达。【结果】获得版纳微型猪近交系(BMI) ARRDC5基因的c DNA序列1 045 bp,包含1 014 bp的CDS区,编码337个氨基酸,与牛及人的同源性高。成功构建了表达载体pEGFP-C1-ARRDC5,ARRDC5蛋白主要定位于细胞质中,部分细胞核中也有分布。【结论】研究结果为进一步研究该蛋白功能奠定基础。  相似文献   

3.
【目的】克隆梅花鹿LHβ基因CDS区并进行序列分析。【方法】采用PCR克隆测序的方法获得梅花鹿LHβ基因CDS区全序列,采用ProtParam tool等分子生物学工具对梅花鹿LHβ蛋白的分子量、等电点、二级结构、蛋白功能等进行预测,并采用MEGA 6.0软件构建进化树以确定其系统发育地位。【结果】梅花鹿LHβ基因CDS区全长462bp(GenBank序列号为KT199365),包含了ATG起始密码子和TAA终止密码子,共编码141个氨基酸,蛋白质分子量为15.17kDa,等电点为8.00。梅花鹿LHβ蛋白均位于膜外,无跨膜结构,平均疏水性(GRAVY)为0.391,蛋白功能预测显示,该蛋白最有可能为激素,这与本研究的目的基因相符。进化树分析结果表明,梅花鹿LHβ基因与山羊、绵羊和牛等反刍动物较近,其中与绵羊最近。【结论】梅花鹿LHβ基因CDS区序列与绵羊LHβ基因最近。  相似文献   

4.
驴生长激素基因的克隆与分析   总被引:1,自引:0,他引:1  
 【目的】克隆驴生长激素基因DNA和cDNA的全序列,分析其序列和cDNA编码的蛋白序列特征及其在不同物种中的遗传差异。【方法】根据不同物种同一基因序列的同源性比对结果设计引物,应用RT-PCR和PCR 技术克隆基因,用生物信息学方法对获得的DNA和cDNA及推定的氨基酸序列进行分析。【结果】从驴肝组织和血液中分别得到驴GH基因全序列1 928 bp和包括完整的编码区的cDNA序列706 bp,两者序列比对后证明驴GH基因DNA序列由5个外显子和4个内含子组成,编码216个氨基酸的GH前体蛋白,其中包括26个氨基酸的信号肽和190个氨基酸的成熟肽。序列比较结果表明,驴GH基因的序列与马同源性最高,启动子不是哺乳动物的典型TATA盒,而是CATA盒,该基因在进化过程中是保守的。【结论】从驴肝组织和血液中克隆了GH基因DNA和cDNA,DNA序列在1 267位的C→G可能影响到驴和马生长发育的差异,为下一步驴GH基因的表达调控、进化和多态性分析奠定了基础。  相似文献   

5.
大麦HvRBR基因克隆与序列分析   总被引:1,自引:0,他引:1  
【目的】从栽培大麦(Hordeum vulgare)中分离并克隆对植物细胞周期起负调控作用的RBR(retinoblastoma-related),鉴定大麦RBR(HvRBR)分子特征,明确其与同源基因间的亲缘关系和分类地位,为探索动、植物生长发育过程中细胞增殖和分化相关调控途径的研究提供理论依据。【方法】通过对植物RBR生物信息学分析,根据RBR保守区域序列设计通用引物,采用PCR方法从栽培大麦DNA和苗期总cDNA中分别分段克隆,获得特征序列后在DNAMAN软件下进行序列分析、多重序列比对并构建系统树。【结果】从栽培大麦籽粒皱缩突变材料GSHO1854中获得全长为5547bp的大麦HvRBR序列(GU121481),其cDNA编码区(GU121480)全长3179bp,包含一个编码975个氨基酸的开放阅读框。由其推导的氨基酸序列与已报道的RBR蛋白序列有较高的一致性。在A、B保守区之间有一个间隔区,虽然同源性较低,但是所有氨基酸序列的相似位点都包含一个半胱氨酸残基,这说明该半胱氨酸残基形成的分子内或分子间二硫键可能对整个RBR蛋白的结构和功能产生重要的影响。系统进化分析表明HvRBR与水稻同源性最高(84.3%),与苜蓿、拟南芥等双子叶植物的同源性较低(50%)。【结论】首次从大麦中得到与植物细胞周期起调控、细胞增殖和分化相关的RBR蛋白编码基因HvRBR。对栽培大麦籽粒皱缩突变材料GSHO1854的HvRBR进行了分子克隆和鉴定,并通过系统进化分析将HvRBR归为植物RBR家族C亚族。  相似文献   

6.
【目的】编码区序列是基因作用机制、遗传多样性和进化关系等研究的重要资源。【方法】以盐城红茎大麦、青田红大麦、淳安六棱胭脂大麦和北青7号为材料,采用同源克隆技术分离、克隆MLOC-14401基因CDS序列,利用ORF Finder、BLAST和Clustal X等软件分析所克隆的CDS序列。【结果】MLOC-14401基因CDS序列全长1 248 bp、包含3个外显子、GC含量为62.82%,位于大麦3H染色体的609 892 778~609895 303 bp区间,起始密码(ATG)和终止密码序列(TAA)分别位于119 bp和1 366 bp位点。所编码多肽链包含415个氨基酸、2个MYB结构域,与普通小麦等9个物种的MYB基因编码多肽链具有不同程度的氨基酸序列相似性,保守序列位于105氨基酸与237氨基酸之间。【结论】MLOC-14401基因属大麦转录调控基因R2R3-MYB,所克隆的CDS序列对于大麦MYB基因作用机制等研究具有一定指导作用。  相似文献   

7.
为进一步研究CsNR的作用机制,从黄瓜幼叶中克隆获得硝酸还原酶基因编码区序列(CDS)全长和片段(CsNR;EC1.6.6.1),并运用生物学软件对该基因进行序列分析。其中CDS全长2 748 bp,编码915个氨基酸;CDS片段360 bp。CDS全长和p ROKⅡ经Kpn I单酶切和连接,构建了CsNR正义表达载体;CDS片段和p ROKⅡ经Kpn I和Sac I双酶切,构建了CsNR反义表达载体。通过与其他高等植物NR蛋白进行同源性比对分析,结果发现,CsNR基因的氨基酸序列与甜瓜、烟草、拟南芥、油菜NR基因编码的氨基酸序列高度同源,其中与甜瓜NR蛋白之间同源性最高,为98.25%。  相似文献   

8.
牦牛CYGB基因CDS区克隆与生物信息学分析   总被引:7,自引:0,他引:7  
【目的】丰富牦牛CYGB基因研究的基础数据,对牦牛CYGB基因的CDS区进行克隆和生物信息学分析。【方法】提取牦牛大脑海马区组织的总RNA并运用RT-PCR技术反转录为cDNA,并根据GenBank中普通牛CYGB基因cDNA序列(GenBank登录号:DV874786.1),使用Primer3.0在线软件设计特异性引物,运用PCR扩增技术、TA克隆技术和核酸测序技术获得CYGB基因的完整CDS区序列及部分5′端和3′端UTR区,并使用ProtParam、PredictProtein、SWISS-MODEL等在线分析软件与Lasergene7.1软件包分析CYGB的一级结构、二级结构、三级结构与理化性质,并进行同源性分析及构建系统进化树;利用PyMol软件修饰并输出三维结构;使用在线亚细胞定位工具PSORT II Prediction预测蛋白质的亚细胞定位;使用Protfun软件对蛋白质的功能进行预测分析。【结果】克隆获得牦牛CYGB基因650 bp,包括CDS区573 bp(GenBank登录号:KF669898),碱基组成为A 20.59%、T 16.40%、G 33.33%、C 29.67%,编码190个氨基酸残基组成的蛋白质。与普通牛比对,牦牛CYGB基因在CDS区存在4个碱基突变,同源性为99.3%,这个突变未导致氨基酸序列的改变,4个突变均属同义突变。牦牛CYGB基因编码蛋白的分子式为C964H1513N263O278S7,分子量约为21.5 kD,理论等电点(pI)为6.32,消光系数为24075,不稳定系数为48.43,疏水指数为83.63,平均亲水性为-0.301,属不稳定可溶性酸性蛋白质,在哺乳动物网织红细胞内的半衰期为30 h。二级结构以α-螺旋和无规卷曲为主,其中α-螺旋占64.21%,无规卷曲占35.79%,属全α类蛋白质。三级结构是一个呈“three-over-three”三明治夹心型的α-螺旋折叠结构。亚细胞定位CYGB分布在细胞质(65.2%)、细胞核(17.4%)、线粒体(13.0%)、分泌系统的囊泡(4.3%)中,主要在细胞质,推测可能在能量代谢和辅因子的生物合成过程中发挥信号转导和转录因子调控的作用。牦牛CYGB氨基酸序列与普通牛、绵羊、家犬、小鼠、褐家鼠、原鸡、猴、黑猩猩、人的CYGB氨基酸序列的同源性分别为100%、98.9%、97.8%、95.3%、93.7%、78.8%、98.4%、95.8%和96.8%,物种之间同源性较高,系统进化情况与其亲缘关系远近一致,说明CYGB基因编码区在进化过程中比较保守。【结论】通过RT-PCR与TA克隆技术及核酸测序技术获得了牦牛CYGB基因全长573 bp的CDS区,并对其核苷酸序列和编码蛋白氨基酸序列及其蛋白结构和功能进行了分析,得知牦牛的CYGB是一个由190个氨基酸残基构成的可溶酸性蛋白质,在能量代谢和辅因子生物合成过程中发挥重要作用。CYGB基因编码区在长期生物进化过程中具有较强的保守性。该基因的成功克隆及分析为揭示牦牛CYGB基因的遗传特性提供了理论依据。  相似文献   

9.
【目的】揭示槟榔江水牛FSHR基因的结构与功能。【方法】采用RT-PCR法克隆了槟榔江水牛FSHR基因的编码区全序列,并利用生物信息学方法对其基因编码产物的理化特性、结构及功能进行了初步分析。【结果】槟榔江水牛FSHR基因编码区全长为2 088 bp,编码695个氨基酸。氨基酸序列比对显示:槟榔江水牛FSHR与其他哺乳动物的同源性在89.4%以上。槟榔江水牛FSHR蛋白N-端含信号肽和7个跨膜结构,属细胞膜疏水蛋白。该蛋白含有7tmA_FSH-R、LRRNT、LRR重复单元和GnHR_trans等4个保守结构域。槟榔江水牛FSHR二级结构主要由α螺旋和无规则卷曲所构成,分别占41.73%和38.71%。FSHR最有可能在细胞的转运和结合过程中发挥功能作用(概率0.827)。【结论】槟榔江水牛FSHR属于G蛋白偶联受体家族,在细胞质中合成后转运到达细胞膜,推测通过与FSH激素结合后激活G蛋白偶联作用,进而促进其精子和卵泡的发育与成熟。  相似文献   

10.
【目的】揭示无量山乌骨鸡FSHR基因的结构与功能。【方法】采用RT-PCR法克隆了无量山乌骨鸡FSHR基因的编码区全序列,并利用生物信息学方法对无量山乌骨鸡FSHR基因编码产物的理化特性、结构及功能进行了初步分析,最后采用实时荧光定量分析其组织表达情况。【结果】本研究获得的无量山乌骨鸡FSHR基因编码区全长为2 082 bp,编码693个氨基酸。生物信息学预测显示:无量山乌骨鸡FSHR无N-端信号肽。该蛋白含有3个保守结构域、7个跨膜区和6种功能活性位点。无量山乌骨鸡FSHR二级结构主要由无规则卷曲和α螺旋构成,分别占35.50%和31.17%。氨基酸序列比对显示:无量山乌骨鸡FSHR与其他禽类的同源性在87.4%以上。荧光定量结果显示:该基因在性腺组织中表达量最高,说明该基因与生产性能、繁殖性能等有关系。【结论】FSHR属于G蛋白偶联受体家族,可介导促卵泡作用的发生,可能在转运和结合、信号转导、修饰加工等过程中发挥重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号