首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Resistively detected nuclear spin relaxation measurements in closely separated two-dimensional electron systems reveal strong low-frequency electron-spin fluctuations in the quantum Hall regime. As the temperature is decreased, the spin fluctuations, manifested by a sharp enhancement of the nuclear spin-lattice relaxation rate 1/T1, continue to grow down to the lowest temperature of 66 millikelvin. The observed divergent behavior of 1/T1 signals a gapless spin excitation mode and is a hallmark of canted antiferromagnetic order. Our data demonstrate the realization of a two-dimensional system with planar broken symmetry, in which fluctuations do not freeze out when approaching the zero temperature limit.  相似文献   

2.
Coherent spin states in semiconductor quantum dots offer promise as electrically controllable quantum bits (qubits) with scalable fabrication. For few-electron quantum dots made from gallium arsenide (GaAs), fluctuating nuclear spins in the host lattice are the dominant source of spin decoherence. We report a method of preparing the nuclear spin environment that suppresses the relevant component of nuclear spin fluctuations below its equilibrium value by a factor of approximately 70, extending the inhomogeneous dephasing time for the two-electron spin state beyond 1 microsecond. The nuclear state can be readily prepared by electrical gate manipulation and persists for more than 10 seconds.  相似文献   

3.
The origin of superconductivity in the iron pnictides has been attributed to antiferromagnetic spin ordering that occurs in close combination with a structural transition, but there are also proposals that link superconductivity to orbital ordering. We used bulk-sensitive laser angle-resolved photoemission spectroscopy on BaFe(2)(As(0.65)P(0.35))(2) and Ba(0.6)K(0.4)Fe(2)As(2) to elucidate the role of orbital degrees of freedom on the electron-pairing mechanism. In strong contrast to previous studies, an orbital-independent superconducting gap magnitude was found for the hole Fermi surfaces. Our result is not expected from the superconductivity associated with spin fluctuations and nesting, but it could be better explained invoking magnetism-induced interorbital pairing, orbital fluctuations, or a combination of orbital and spin fluctuations. Regardless of the interpretation, our results impose severe constraints on theories of iron pnictides.  相似文献   

4.
The hyperfine interaction of an electron with the nuclei is considered as the primary obstacle to coherent control of the electron spin in semiconductor quantum dots. We show, however, that the nuclei in singly charged quantum dots act constructively by focusing the electron spin precession about a magnetic field into well-defined modes synchronized with a laser pulse protocol. In a dot with a synchronized electron, the light-stimulated fluctuations of the hyperfine nuclear field acting on the electron are suppressed. The information about electron spin precession is imprinted in the nuclei and thereby can be stored for tens of minutes in darkness. The frequency focusing drives an electron spin ensemble into dephasing-free subspaces with the potential to realize single frequency precession of the entire ensemble.  相似文献   

5.
Electronic phases with symmetry properties matching those of conventional liquid crystals have recently been discovered in transport experiments on semiconductor heterostructures and metal oxides at millikelvin temperatures. We report the spontaneous onset of a one-dimensional, incommensurate modulation of the spin system in the high-transition-temperature superconductor YBa2Cu3O6.45 upon cooling below approximately 150 kelvin, whereas static magnetic order is absent above 2 kelvin. The evolution of this modulation with temperature and doping parallels that of the in-plane anisotropy of the resistivity, indicating an electronic nematic phase that is stable over a wide temperature range. The results suggest that soft spin fluctuations are a microscopic route toward electronic liquid crystals and that nematic order can coexist with high-temperature superconductivity in underdoped cuprates.  相似文献   

6.
7.
By focusing a highly brilliant synchrotron x-ray beam to a micrometer spot on a sample, we measured in real time the x-ray intensity fluctuations associated with order fluctuations in crystalline materials. We applied this method to the binary alloy Fe3Al near its continuous A2-B2 phase transformation and determined a specific four-point time correlation function for the order parameter. From a detailed theoretical analysis, dynamical scaling in the time domain with a transition from noncritical to critical dynamics is disclosed.  相似文献   

8.
超级稻育秧精密播种器内部流场的数值模拟   总被引:2,自引:0,他引:2  
为分析超级稻育秧精密播种器吸种性能的影响因素,及精密播种部件内部气室流场的变化规律,利用FLUENT对气吸式滚筒内部气室三维流场进行了研究。模拟计算采用三维、可压、黏性、湍流模型和SIMPLE数值计算方法,通过计算发现,在气吸式滚筒有涡流产生;进入吸孔的气流,以一定的倾斜度与吸孔内壁产生碰撞;随着气体逐渐远离滚筒内壁,气体的碰撞和分离沿滚筒轴截面产生多个旋涡。研究结果表明:采用内部流场数值模拟可获得试验中难以得到的吸孔和气吸式滚筒内部流动规律,不同直径的吸孔对气流有着明显的影响,直径为1.5 mm吸孔的速度流线分布最好、吸种性能最佳。  相似文献   

9.
The theory of second-order phase transitions is one of the foundations of modern statistical mechanics and condensed-matter theory. A central concept is the observable order parameter, whose nonzero average value characterizes one or more phases. At large distances and long times, fluctuations of the order parameter(s) are described by a continuum field theory, and these dominate the physics near such phase transitions. We show that near second-order quantum phase transitions, subtle quantum interference effects can invalidate this paradigm, and we present a theory of quantum critical points in a variety of experimentally relevant two-dimensional antiferromagnets. The critical points separate phases characterized by conventional "confining" order parameters. Nevertheless, the critical theory contains an emergent gauge field and "deconfined" degrees of freedom associated with fractionalization of the order parameters. We propose that this paradigm for quantum criticality may be the key to resolving a number of experimental puzzles in correlated electron systems and offer a new perspective on the properties of complex materials.  相似文献   

10.
林学贵 《农业展望》2013,9(9):30-33,37
随着中国农业市场的逐步开放,中国农产品价格波动频繁。有关农产品价格波动问题的研究一直是国内经济学术界的热点。目前的研究主要围绕农产品价格的波动特征、波动成因、农产品价格波动对社会经济的影响以及平抑价格波动的政策等内容展开。为推动研究工作的深入,今后应当加强对农产品价格异常波动的成因、价格波动在不同市场之间及不同产业链条之间传递的量化分析、价格异常波动的机理和平抑价格异常波动各种调控政策的利弊分析等方面的研究。  相似文献   

11.
本文使用风险中性评价方法分三部分计算了复合期权的价值,针对需要计算联合分布的第二部分,通过选取边缘分布为GARCH模型的二元正态Copula模型进行推理验证,结果求得的联合分布与使用风险中性评价方法的计算结果一致.进一步计算得到了时间相依的复合期权的价值,并且给出了使用Bayes时序诊断法和Z检验来诊断期权定价时其出现价格大的波动时的局部拐点的方法.  相似文献   

12.
本文运用耗散结构理论,探讨了森林生态系统的开放性、远离平衡态、非线性、突变现象、正反馈作用以及涨落的性质和特点。通过对内、外涨落的深入分类和理论分析,证明了涨落具有必然和偶然的双重性质,进而以森林季相变化为例,说明了涨落导致有序的条件。森林维护自然界生态平衡的作用是在内部自组织导致系统稳定的基础上实现的,从耗散结构看,这种稳定依赖于系统各类涨落之间的协调,无数微涨落积累而成的巨涨落可使系统发生突变而产生新的有序结构。  相似文献   

13.
Mesoscopic quantum phase coherence is important because it improves the prospects for handling quantum degrees of freedom in technology. Here we show that the development of such coherence can be monitored using magnetic neutron scattering from a one-dimensional spin chain of an oxide of nickel (Y2BaNiO5), a quantum spin fluid in which no classical static magnetic order is present. In the cleanest samples, the quantum coherence length is 20 nanometers, which is almost an order of magnitude larger than the classical antiferromagnetic correlation length of 3 nanometers. We also demonstrate that the coherence length can be modified by static and thermally activated defects in a quantitatively predictable manner.  相似文献   

14.
We have detected a spin-dependent displacement perpendicular to the refractive index gradient for photons passing through an air-glass interface. The effect is the photonic version of the spin Hall effect in electronic systems, indicating the universality of the effect for particles of different nature. Treating the effect as a weak measurement of the spin projection of the photons, we used a preselection and postselection technique on the spin state to enhance the original displacement by nearly four orders of magnitude, attaining sensitivity to displacements of approximately 1 angstrom. The spin Hall effect can be used for manipulating photonic angular momentum states, and the measurement technique holds promise for precision metrology.  相似文献   

15.
Quantum phases of matter are characterized by the underlying correlations of the many-body system. Although this is typically captured by a local order parameter, it has been shown that a broad class of many-body systems possesses a hidden nonlocal order. In the case of bosonic Mott insulators, the ground state properties are governed by quantum fluctuations in the form of correlated particle-hole pairs that lead to the emergence of a nonlocal string order in one dimension. By using high-resolution imaging of low-dimensional quantum gases in an optical lattice, we directly detect these pairs with single-site and single-particle sensitivity and observe string order in the one-dimensional case.  相似文献   

16.
本文研究了NIRDRSA的测量误差,分析了各种NIRDRSA光谱误差产生的原因、对测定结果的影响以及校正的方法。本文提出了用广义噪声来表示NIRDRSA测定全过程的不确定性,并用该参数预测NIRDRSA的检测限。在本研究所用的Nicolet—170SX通用型付里叶光谱仪上作NIRDRSA测定蛋白质、赖氨酸,由广义噪声所确定的检测限分别可达到10~(-3)与10~(-4)的含量。  相似文献   

17.
Helical spin order in magnetic materials has been investigated only in reciprocal space. We visualized the helical spin order and dynamics in a metal silicide in real space by means of Lorentz electron microscopy. The real space of the helical spin order proves to be much richer than that expected from the averaged structure; it exhibits a variety of magnetic defects similar to atomic dislocations in the crystal lattice. The application of magnetic fields allows us to directly observe the deformation processes of the helical spin order accompanied by nucleation, movement, and annihilation of the magnetic defects.  相似文献   

18.
Under stress, many crystalline materials exhibit irreversible plastic deformation caused by the motion of lattice dislocations. In plastically deformed microcrystals, internal dislocation avalanches lead to jumps in the stress-strain curves (strain bursts), whereas in macroscopic samples plasticity appears as a smooth process. By combining three-dimensional simulations of the dynamics of interacting dislocations with statistical analysis of the corresponding deformation behavior, we determined the distribution of strain changes during dislocation avalanches and established its dependence on microcrystal size. Our results suggest that for sample dimensions on the micrometer and submicrometer scale, large strain fluctuations may make it difficult to control the resulting shape in a plastic-forming process.  相似文献   

19.
The spin dynamics of an arbitrary localized impurity in an insulating two-dimensional antiferromagnet, across the host transition from a paramagnet with a spin gap to a Neel state, is described. The impurity spin susceptibility has a Curie-like divergence at the quantum-critical coupling, but with a universal effective spin that is neither an integer nor a half-odd integer. In the Neel state, the transverse impurity susceptibility is a universal number divided by the host spin stiffness (which determines the energy cost to slow twists in the orientation of the Neel order). These and numerous other results for the thermodynamics, Knight shift, and magnon damping have important applications in experiments on layered transition metal oxides.  相似文献   

20.
Neutron scattering is used to characterize the magnetism of the vortices for the optimally doped high-temperature superconductor La(2-x)Sr(x)CuO4 (x = 0.163) in an applied magnetic field. As temperature is reduced, low-frequency spin fluctuations first disappear with the loss of vortex mobility, but then reappear. We find that the vortex state can be regarded as an inhomogeneous mixture of a superconducting spin fluid and a material containing a nearly ordered antiferromagnet. These experiments show that as for many other properties of cuprate superconductors, the important underlying microscopic forces are magnetic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号