首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Decline in size‐at‐age of Chinook Salmon (Oncorhynchus tshawytscha) has been observed for many populations across the entire Northeast Pacific Ocean, and identifying external drivers of this decline is important for sustainable management of these ecologically, economically, and culturally valuable resources. We assessed size‐at‐age of 96,939 Chinook Salmon sampled in the Fraser River watershed (Canada) from 1969 to 2017. A broad decline in size‐at‐age was confirmed across all population aggregates of Fraser River Chinook Salmon, in particular since year 2000. By developing a novel probability‐based approach to calculate age‐ and year‐specific growth rates for Fraser River Chinook Salmon and relating growth rates to environmental conditions in specific years through a machine learning method (boosted regression trees), we were able to disentangle multi‐year effects on size‐at‐age and thus identify environmental factors that were most related to the observed size‐at‐age of Chinook Salmon. Among 10 selected environmental variables, ocean salinity at Entrance Island in spring, the Aleutian Low Pressure Index and the North Pacific Current Bifurcation Index were consistently identified as important contributors for four of the seven age and population aggregate combinations. These top environmental contributors could be incorporated into future stock assessment and forecast models to improve Chinook Salmon fisheries management under climate change.  相似文献   

2.
Recruitment variability in many fish populations is postulated to be influenced by climatic and oceanographic variability. However, a mechanistic understanding of the influence of specific variables on recruitment is generally lacking. Feeding ecology is one possible mechanism that more directly links ocean conditions and recruitment. We test this mechanism using juvenile Chinook Salmon (Oncorhynchus tshawytscha) collected off the west coast of Vancouver Island, British Columbia, Canada, in 2000–2009. Stable isotopes of carbon (δ13C), an indicator of temperature or primary productivity, and nitrogen (δ15N), an indicator of trophic position, were taken from muscle tissues of genetically stock‐identified salmon. We also collated large‐scale climate indices (e.g., Pacific Decadal Oscillation, North Pacific Gyre Oscillation), local climate variables (e.g., sea surface temperature) and copepod community composition across these years. We used a Bayesian network to determine how ocean conditions influenced feeding ecology, and subsequent survival rates. We found that smolt survival of Chinook Salmon is predicted by their δ13C value, but not their δ15N. In turn, large‐scale climate variability determined the δ13C values of salmon, thus linking climate to survival through feeding ecology, likely through qualities propagated from the base of the food chain.  相似文献   

3.
Chinook salmon from New Zealand were shown to have a generalized membranous glomerulonephritis that was most severe in large fish. Marked thickening of the glomerular basement membrane was the most consistent lesion, with the presence of an electron-dense deposit beneath the capillary endothelium.Severely affected glomeruli also had expansion of the mesangium and loss of capillaries,synechiae of the visceral and parietal epithelium and mild fibrosis of Bowmans capsule. Chinook salmon from British Columbia, Canada with bacterial kidney disease caused by Renibacterium salmoninarum had similar histological lesions. They also had thickened glomerular basement membranes that were recognized by rabbit antiserum to rainbow trout immunoglobulin. This was true only when frozen sections of kidney were used and not formalin-fixed tissue. An attempt to experimentally produce a glomerulopathy in rainbow trout by repeated immunization with killed R. salmoninarum was not successful. Case records from the Fish Pathology Laboratory at the University of Guelph over a 10-year period revealed that a range of species were diagnosed with glomerulopathies similar to those seen in Chinook salmon. The majority of these cases were determined to have chronic inflammatory disease. This report has identified the presence of immunoglobulin within thickened basement membranes of Chinook salmon with glomerulonephritis and supports the existence of type III hypersensitivity in fish.  相似文献   

4.
Herein, we describe the prevalence of bacterial infections in Chinook salmon, Oncorhynchus tshawytscha (Walbaum), returning to spawn in two tributaries within the Lake Michigan watershed. Ten bacterial genera, including Renibacterium, Aeromonas, Carnobacterium, Serratia, Proteus, Pseudomonas, Hafnia, Salmonella, Shewanella and Morganella, were detected in the kidneys of Chinook salmon (n = 480) using culture, serological and molecular analyses. Among these, Aeromonas salmonicida was detected at a prevalence of ~15%. Analyses revealed significant interactions between location/time of collection and gender for these infections, whereby overall infection prevalence increased greatly later in the spawning run and was significantly higher in females. Renibacterium salmoninarum was detected in fish kidneys at an overall prevalence of >25%. Logistic regression analyses revealed that R. salmoninarum prevalence differed significantly by location/time of collection and gender, with a higher likelihood of infection later in the spawning season and in females vs. males. Chi‐square analyses quantifying non‐independence of infection by multiple pathogens revealed a significant association between R. salmoninarum and motile aeromonad infections. Additionally, greater numbers of fish were found to be co‐infected by multiple bacterial species than would be expected by chance alone. The findings of this study suggest a potential synergism between bacteria infecting spawning Chinook salmon.  相似文献   

5.
Vertebral fusions are an established economic concern in farmed Atlantic salmon, but have not been studied in detail in farmed Chinook salmon. Two radiographic studies of vertebral fusions were performed in farmed Chinook salmon. Sixteen of 1,301 (1.2%) smolt and 201 of 2,636 (7.6%) harvest fish had fusions. There were no significant differences in the number of fused vertebrae/fusion in smolt compared with harvest fish. Secondly, tagged fish were repeatedly radiographed to determine the progression of the fusions. Nineteen (4.4%), 23 (5.3%) and 39 (9.0%) fish had fusions as smolt, after 129 days in sea water, and at harvest, respectively. There were no significant differences in the average number of vertebra/fusion between the three time points. Of the fusions that were observed in smolt, additional vertebra did not become fused in 81% of the lesions. Within the rare fusions that did progress due to the involvement of adjacent vertebra, an average of 1.6 vertebrae were added per year. Fish with fusions were significantly lighter than non‐affected fish at harvest. Fusions are common in farmed Chinook salmon; however, they are typically stable after development. As fish with fusions were lighter at harvest, reducing fusions may have an economic benefit.  相似文献   

6.
We explored how currently manufactured feeds, under real‐world conditions and across geographically distinct locations, promoted flesh n‐3 long‐chain polyunsaturated fatty acid (LC‐PUFA, i.e. 20:5n‐3 + 22:6n‐3) levels in various life stages of farmed Atlantic Salmon (Salmo salar). Potential effects on flesh LC‐PUFA included: (1) diet and fish weight at one Canadian east coast farm, (2) diet and farm location across six east coast farms, and (3) diet and farm location between east and west coast farms. For objectives 1 and 2, salmon were fed a currently manufactured feed (labelled as feeds A, B or C) and harvested at 1, 3 and 5 kg. LC‐PUFA levels in 5 kg (harvest size) fish were then compared to previously published values for west coast farmed Atlantic Salmon (Obj. 3). Combined results revealed that variability in LC‐PUFA levels was better explained by diet than by fish weight or farm location. Fish size, however, was also important for two reasons. First, feeding a high LC‐PUFA diet early in life appeared important for ensuring high LC‐PUFA levels at harvest size. Second, salmon flesh LC‐PUFA levels increased with fish size, but only when dietary LC‐PUFA was provided above an apparent threshold value (~3000 mg per 100 g or 10% of total fatty acids) that likely promoted LC‐PUFA incorporation and storage. Overall, our comparison makes new recommendations for feed manufacturers and demonstrates that farmed Atlantic Salmon reared under real‐world conditions on currently available salmon feeds were good sources of n‐3 LC‐PUFA to consumers.  相似文献   

7.
Yersinia ruckeri is the causative agent of enteric redmouth disease (ERM), a common pathogen affecting aquaculture facilities and implicated in large losses of cultured fish. Fisheries scientists continue to gain a greater understanding of the disease and the pathogen by investigating methods of identification and pre- and post-infection treatment. In this study, a real-time PCR probe set for Y. ruckeri was developed to detect daily changes in the bacterial load during pathogen challenges. Two species of fish, Chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, Oncorhynchus mykiss, were exposed to two strains of Y. ruckeri (Hag and SC) during bath challenges. A subset of fish was killed daily for 14 days, and the kidney tissue was biopsied to enumerate copies of pathogen DNA per gram of tissue. While Chinook exposed to either the Hag or SC strains exhibited similar pathogen loads, those exposed to the Hag strain displayed higher mortality (~66%) than fish exposed to the SC strain (~24% mortality). Steelhead exposed to the Hag strain exhibited a greater pathogen load and higher mortality (~42%) than those exposed to the SC strain (<1% mortality). Steelhead challenged with either strain showed lower pathogen loads than Chinook. The study illustrates the efficacy of the probe set to enumerate Y. ruckeri bacterial growth in the kidneys of fish. Also, strains of Y. ruckeri display species-specific growth patterns that result in differential mortality and pathogen load.  相似文献   

8.
Renibacterium salmoninarum is a significant pathogen of salmonids and the causative agent of bacterial kidney disease (BKD). Water temperature affects the replication rate of pathogens and the function of the fish immune system to influence the progression of disease. In addition, rapid shifts in temperature may serve as stressors that reduce host resistance. This study evaluated the effect of shifts in water temperature on established R. salmoninarum infections. We challenged Chinook salmon with R. salmoninarum at 12 °C for 2 weeks and then divided the fish into three temperature groups (8, 12 and 15 °C). Fish in the 8 °C group had significantly higher R. salmoninarum‐specific mortality, kidney R. salmoninarum loads and bacterial shedding rates relative to the fish held at 12 or 15 °C. There was a trend towards suppressed bacterial load and shedding in the 15 °C group, but the results were not significant. Bacterial load was a significant predictor of shedding for the 8 and 12 °C groups but not for the 15 °C group. Overall, our results showed little effect of temperature stress on the progress of infection, but do support the conclusion that cooler water temperatures contribute to infection progression and increased transmission potential in Chinook salmon infected with R. salmoninarum.  相似文献   

9.
Piscine reovirus (PRV) was common among wild and farmed salmonids in British Columbia, western Canada, from 1987 to 2013. Salmonid tissues tested for PRV by real‐time rRT‐PCR included sections from archived paraffin blocks from 1974 to 2008 (n = 363) and fresh‐frozen hearts from 2013 (n = 916). The earliest PRV‐positive sample was from a wild‐source steelhead trout, Oncorhynchus mykiss (Walbaum), from 1977. By histopathology (n = 404), no fish had lesions diagnostic for heart and skeletal muscle inflammation (HSMI). In some groups, lymphohistiocytic endocarditis affected a greater proportion of fish with PRV than fish without PRV, but the range of Ct values among affected fish was within the range of Ct values among unaffected fish. Also, fish with the lowest PRV Ct values (18.4–21.7) lacked endocarditis or any other consistent lesion. From 1987 to 1994, the proportion of PRV positives was not significantly different between farmed Atlantic salmon, Salmo salar L. (44% of 48), and wild‐source salmonids (31% of 45). In 2013, the proportion of PRV positives was not significantly different between wild coho salmon, Oncorhynchus kisutch (Walbaum), sampled from British Columbia (5.0% of 60) or the reference region, Alaska, USA (10% of 58).  相似文献   

10.
We examined 1454 juvenile Chinook salmon, Oncorhynchus tshawytscha (Walbaum), captured in nearshore waters off the coasts of Washington and Oregon (USA) from 1999 to 2004 for infection by Renibacterium salmoninarum, Nanophyetus salmincola Chapin and skin metacercariae. The prevalence and intensities for each of these infections were established for both yearling and subyearling Chinook salmon. Two metrics of salmon growth, weight residuals and plasma levels of insulin-like growth factor-1, were determined for salmon infected with these pathogens/parasites, both individually and in combination, with uninfected fish used for comparison. Yearling Chinook salmon infected with R. salmoninarum had significantly reduced weight residuals. Chinook salmon infected with skin metacercariae alone did not have significantly reduced growth metrics. Dual infections were not associated with significantly more severe effects on the growth metrics than single infections; the number of triple infections was very low and precluded statistical comparison. Overall, these data suggest that infections by these organisms can be associated with reduced juvenile Chinook salmon growth. Because growth in the first year at sea has been linked to survival for some stocks of Chinook salmon, the infections may therefore play a role in regulating these populations in the Northeast Pacific Ocean.  相似文献   

11.
Abstract – Understanding population regulation in juvenile salmonids requires distinguishing the effects of intrinsic (size, behaviour) and extrinsic (food, competition) factors. To examine the relative influence of these variables on juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Salmon River drainage (ID, USA), we examined diel differences in foraging microhabitats, behaviour and consumption in two areas with consistent differences in parr‐to‐smolt survival. In lower Big Creek (LBC, high‐survival area) and upper Big Creek (UBC, low‐survival area), we observed fish by snorkelling, recording length, behaviour (foraging rate and aggression) and physical (depth, velocity, cover, temperature) and biotic (density, size and species of neighbouring fish) microhabitat features. Stomach contents were extracted to estimate consumption. Depth and temperature were greater in LBC, where Chinook salmon were significantly larger and present at lower densities. Fish in LBC exhibited higher foraging activity during the day than night, but there were no size differences between day and night foragers. In UBC, a higher density area, foraging behaviour did not change between day and night, although the smallest size classes did not forage nocturnally. Regression models that integrated physical and biotic variables suggested that physical factors influenced foraging in both areas, but competition also affected foraging in UBC. Our results demonstrate that fish from low‐ and high‐survival populations in Big Creek are exposed to different physical and biological influences during their first growth season, which are reflected in different diel foraging behaviours.  相似文献   

12.
Piscine orthoreovirus (PRV) is a common and widely distributed virus of salmonids. Since its discovery in 2010, the virus has been detected in wild and farmed stocks from North America, South America, Europe and East Asia in both fresh and salt water environments. Phylogenetic analysis suggests three distinct genogroups of PRV with generally discrete host tropisms and/or regional patterns. PRV-1 is found mainly in Atlantic (Salmo salar), Chinook (Oncorhynchus tshawytscha) and Coho (Oncorhynchus kisutch) Salmon of Europe and the Americas; PRV-2 has only been detected in Coho Salmon of Japan; and PRV-3 has been reported primarily in Rainbow Trout (Oncorhynchus mykiss) in Europe. All three genotypes can establish high-load systemic infections by targeting red blood cells for principal replication. Each genotype has also demonstrated potential to cause circulatory disease. At the same time, high-load PRV infections occur in non-diseased salmon and trout, indicating a complexity for defining PRV's role in disease aetiology. Here, we summarize the current body of knowledge regarding PRV following 10 years of study.  相似文献   

13.
In the last 9 years, epizootics of an icterus condition has affected coho salmon, Oncorhynchus kisutch (Walbaum), reared in seawater cages in southern regions of Chile. At necropsy, fish from field cases exhibited signs of jaundice accompanied by pale light-brown livers and dark spleens. Histopathological and haematological results indicated that these fish presented haemolytic anaemia. After microbiological examination no bacterial or viral agents could be identified as aetiological agents of this disease. In an infectivity trial, coho salmon, Atlantic salmon, Salmo salar L., and rainbow trout, Oncorhynchus mykiss (Walbaum), were inoculated intraperitoneally with a filtrate of an organ homogenate (0.45 microm) from a diseased coho salmon and held for 60 days in tanks supplied with fresh water. The disease was only reproduced in coho salmon in which mortalities, beginning at day 23 post-inoculation (p.i.), reached a cumulative value of 24% at day 27 p.i. This condition was transmitted to non-inoculated cohabiting coho salmon suggesting that it is a waterborne disease. Thus, this icteric condition is caused by an infectious form of haemolytic anaemia, probably of viral aetiology, and coho salmon are more susceptible than either Atlantic salmon or rainbow trout.  相似文献   

14.
Piscine orthoreovirus genotype 1 (PRV‐1) is widespread in farmed Atlantic salmon (Salmo salar L.) populations in northern Europe, Canada and Chile. PRV‐1 occurs in wild fish in Norway and Canada; however, little information of its geographical distribution in wild populations is currently available, and the effect of PRV‐1 infection in wild populations is currently unknown. In this study, we present the findings of a survey conducted on 1,130 wild salmonids sampled in Denmark, Sweden, Ireland, Faroe Islands, France, Belgium and Greenland between 2008 and 2017. PRV‐1 is reported for the first time in wild salmonids in Denmark, Sweden, Faroe Island and Ireland. The annual PRV‐1 prevalence ranged from 0% in France, Belgium and Greenland to 43% in Faroe Islands. In total, 66 samples tested positive for PRV‐1, including Atlantic salmon broodfish returning to spawn and Atlantic salmon collected at the feeding ground north of Faroe Islands. The phylogenetic analysis of S1 sequences of the PRV‐1 isolates obtained in this survey did not show systematic geographical distribution. This study sheds light on the spread and genetic diversity of the virus identified in populations of free‐living fish and provides rationale for screening wild broodfish used in restocking programmes.  相似文献   

15.
This research was initiated in conjunction with a systematic, multiagency surveillance effort in the United States (U.S.) in response to reported findings of infectious salmon anaemia virus (ISAV) RNA in British Columbia, Canada. In the systematic surveillance study reported in a companion paper, tissues from various salmonids taken from Washington and Alaska were surveyed for ISAV RNA using the U.S.‐approved diagnostic method, and samples were released for use in this present study only after testing negative. Here, we tested a subset of these samples for ISAV RNA with three additional published molecular assays, as well as for RNA from salmonid alphavirus (SAV), piscine myocarditis virus (PMCV) and piscine orthoreovirus (PRV). All samples (n = 2,252; 121 stock cohorts) tested negative for RNA from ISAV, PMCV, and SAV. In contrast, there were 25 stock cohorts from Washington and Alaska that had one or more individuals test positive for PRV RNA; prevalence within stocks varied and ranged from 2% to 73%. The overall prevalence of PRV RNA‐positive individuals across the study was 3.4% (77 of 2,252 fish tested). Findings of PRV RNA were most common in coho (Oncorhynchus kisutch Walbaum) and Chinook (O. tshawytscha Walbaum) salmon.  相似文献   

16.
The present paper describes, for the first time, clinical signs and pathological findings of pancreas disease (PD) in farmed Atlantic salmon, Salmo salar L., and rainbow trout, Oncorhynchus mykiss (Walbaum), in sea water in Norway. Similarities and differences with reports of PD from Ireland and Scotland are discussed. Samples of 68 rainbow trout from disease outbreaks on 14 farms and from 155 Atlantic salmon from outbreaks on 20 farms collected from 1996 to 2004 were included in the present study. The histopathological findings of PD in Atlantic salmon and rainbow trout in sea water were similar. Acute PD, characterized by acute necrosis of exocrine pancreatic tissues, was detected in nine Atlantic salmon and three rainbow trout. Salmonid alphavirus (SAV) was identified in acute pancreatic necroses by immunohistochemistry. Most fish showed severe loss of exocrine pancreatic tissue combined with chronic myositis. Myocarditis was often but not consistently found. Kidneys from 40% and 64% of the rainbow trout and Atlantic salmon, respectively, had cells along the sinusoids that were packed with cytoplasmic eosinophilic granules. These cells resembled hypertrophied endothelial cells or elongated mast cell analogues. Histochemical staining properties and electron microscopy of these cells are presented. SAV was identified by RT-PCR and neutralizing antibodies against SAV were detected in blood samples.  相似文献   

17.
Salmon from different locations in a watershed can have different life histories. It is often unclear to what extent this variation is a response to the current environmental conditions an individual experiences as opposed to local‐scale genetic adaptation or the environment experienced early in development. We used a mark–recapture transplant experiment in the Shasta River, CA, to test whether life‐history traits of juvenile Chinook salmon Oncorhynchus tshawytscha varied among locations, and whether individuals could adopt a new life history upon encountering new habitat type. The Shasta River, a Klamath River tributary, has two Chinook salmon spawning and juvenile rearing areas, a lower basin canyon (river km 0–12) and upper basin spring complex (river km 40–56), characterised by dramatically different in‐stream habitats. In 2012 and 2013, we created three experimental groups: (i) fish caught, tagged and released in the upper basin; (ii) fish caught at the river mouth (confluence with the Klamath River, river km 0), tagged and released in the upper basin; and (iii) fish caught at the river mouth, tagged and released in the lower basin. Fish released in the upper basin outmigrated later and at a larger size than those released in the lower basin. The traits of fish transplanted to the upper basin were similar to fish originating in the upper basin. Chinook salmon juvenile life‐history traits reflected habitat conditions fish experienced rather than those where they originated, indicating that habitat modification or transportation to new habitats can rapidly alter the life‐history composition of populations.  相似文献   

18.
Abstract. Chinook salmon, Oncorhynchus tshawytscha (Walbaum), from a northern streamtype (Bear River) and a southern ocean-type (Robertson Creek) population in British Columbia were mated within populations in a nested breeding design and the resulting juveniles were challenged with high water temperatures. Juveniles in the southern population died significantly later than those in the northern population, but none of the variation among families in mortality rate or time to death in the southern population was attributable to additive genetic variation. Non-additive genetic or maternal effects or both were observed for mortality rates in the Robertson Creek population, whereas additive genetic effects were observed for mortality at temperatures less than 22°C in the Bear River population. Larger fish survived better during the challenges than did smaller fish, and there was a negative genetic correlation (based on dam variance components) between body weight and mortality.  相似文献   

19.
Spinal abnormalities can be detected at harvest in around 40% of farmed Chinook salmon in New Zealand. However, whether these abnormalities are present in smolt is unknown. Radiographs of 3,736 smolt were taken immediately prior to transfer to sea water and evaluated for fusions, compressions, vertical shifts, and lordosis, kyphosis and/or scoliosis (LKS). The survey included smolt from two different chilling strategies that had been graded into slow‐ or fast‐growing fish. Overall, 4.34% of Chinook salmon smolt had at least one spinal abnormality, similar to the rates of reported in Atlantic salmon smolt. The rate of abnormality was significantly higher in faster‐growing fish. Fusions were most common with 2.68% of smolt affected. Smolt subjected to longer chilling times had lower rates of fusions. Compressions and vertical shifts were both observed in 1.31% of smolt. Although LKS is the most common abnormality of harvested fish, LKS was detected in just five smolt. The results suggest that some fusions in harvest fish have developed at the time of seawater transfer while LKS develops late in the production cycle. Overall, spinal abnormalities are uncommon in Chinook salmon smolt and may be influenced by chilling times and growth rates.  相似文献   

20.
In response to concerns that novel infectious agents were introduced through the movement of eggs as Atlantic salmon aquaculture developed in British Columbia (BC), Canada, we estimated the prevalence of infectious agents in archived return‐migrating Sockeye salmon, from before and during aquaculture expansion in BC (1985–94). Of 45 infectious agents assessed through molecular assays in 652 samples, 23 (7 bacterial, 2 viral and 14 parasitic) were detected in liver tissue from six regions in BC. Prevalence ranged from 0.005 to 0.83 and varied significantly by region and year. Agent diversity ranged from 0 to 12 per fish (median 4), with the lowest diversity observed in fish from the Trans‐Boundary and Central Coast regions. Agents known to be endemic in Sockeye salmon in BC, including Flavobacterium psychrophilum, Infectious haematopoietic necrosis virus, Ceratonova shasta and Parvicapsula minibicornis, were commonly observed. Others, such as Kudoa thyrsites and Piscirikettsia salmonis, were also detected. Surprisingly, infectious agents described only recently in BC salmon, Ca. Branchiomonas cysticola, Parvicapsula pseudobranchicola and Paranucleospora theridion, were also detected, indicating their potential presence prior to the expansion of the aquaculture industry. In general, our data suggest that agent distributions may not have substantially changed because of the salmon aquaculture industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号