首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atlantic salmon (Salmo salar L.) parr (mean start weight 50 g) were reared in freshwater (FW) and exposed to three levels of oxygen saturation measured in effluent water; control group (93% O2, LO2), medium (111% O2, MO2) and high (123% O2, HO2). Further three groups were exposed to similar water oxygen levels in combination with elevated carbon dioxide levels (17–18 mg L– 1 CO2), named LO2–CO2, MO2–CO2 and HO2–CO2, respectively. The experiment was run in duplicate tanks for 42 days, and the fish were subsequently transferred to the same seawater (SW) regime for 45 days for an assessment of post-smolt growth. As a consequence of the CO2 addition, tank pH levels in the FW period were reduced from 6.7 to 5.9 for the hypercapnia groups compared to for the normcapnia groups. Water temperature in FW ranged between 6.4 and 9.0 °C. Citrate was added to the water to complex labile aluminium.In the CO2 groups observed ventilation frequencies were significantly increased compared to the control (p < 0.05). This difference declined towards the end of the FW period, suggesting acclimation to elevated CO2. The degree of oxygenation appeared to contribute to the acclimation as the lowest mean ventilation frequency on day 36 was found in the HO2–CO2 group and the highest in the LO2–CO2 group. Lower plasma chloride and sodium levels were observed in the CO2 groups relative to the respective oxygenation groups during the FW period, while plasma chloride and sodium levels were normalised to equal levels for all groups after 44 days in SW. No significant differences were found among treatments for blood concentrations of red blood cells, haemoglobin, potassium and glucose during the experiment.By termination of the FW period, the HO2 group had significantly higher body weight than all other groups (p < 0.05), with specific growth rate significantly higher than the CO2 groups (p < 0.05). Further, the condition factor was significantly lower in all the CO2 groups at the end of the FW period compared to the control and normcapnia groups (p < 0.05). Although variable among replicates, occurrence of nephrocalcinosis was 10 times higher in the hypercapnia groups than in the control and normcapnia groups. Mortality was negligible (< 2.0%) during the trial, and most of the mortality occurred following SW transfer.  相似文献   

2.
Preliminary technical baseline information for the inland culture of juvenile red drum, Sciaenops ocellatus, in a freshwater fish hatchery is presented. Three initial stocking densities (d1 = 83, d2 = 167, and d3 = 250 fish/m3) were tested in a semirecirculation system for 575 days using a commercially available feed (48.1% protein, 25% lipids, and 0.13% fiber). Initial and final mean fish weight were 7.11 ± 0.02 g and 287.6 ± 27 g. As carrying capacity appeared to have been reached, only data from Days 1–333 were analyzed. One‐way ANOVA analyses indicated that the survival rate of the smaller density (d1 =40 ± 3.7%) was significantly different from the other two densities (d3 = 21 ± 1.1% and d2 = 23 ± 1.0%), which did not differ between them. Absolute growth rate (0.87 ± 0.02 g/day) was not significantly different between densities (F = 0.23. p = .801). Neither was weight significantly different between treatments. There were significant differences in the feed conversion rate (FCR) between densities (F = 8.54; p = .02). FCR for d1 was significantly lower than for the two other densities, which did not differ from each other. A von Bertalanffy growth model was adjusted (R2 = 0.95), and weight–length relationship presented negative allometric values (b = 2.85, R2 = 0.98).  相似文献   

3.
In this study, we have tested the effect of seaweed stocking density in an experimental seaweed biofilter using the economically important red seaweed Hydropuntia cornea integrated with the cultivation of the pink shrimp Farfantepenaeus brasiliensis. Nutrient removal efficiency was evaluated in relation to seaweed stocking density (2.5, 4, 6 and 8 g fw L?1). Total ammonia nitrogen (TAN) was the main nitrogen source excreted by F. brasiliensis, with concentrations ranging from 41.6 to 65 μM of NH4+‐N. H. cornea specific growth rates ranged from 0.8 ± 0.2 to 1.4 ± 0.5% day?1 with lowest growth rates at higher seaweed stocking density (8 g fw L?1). Nutrient removal was positively correlated with the cultivation densities in the system. TAN removal efficiency increased from 61 to 88.5% with increasing seaweed stocking density. Changes in the chemical composition of the seaweed were analysed and correlated with nutrient enrichment from shrimp effluent. The red seaweed H. cornea can be cultured and used to remove nutrients from shrimp effluents in an integrated multi‐trophic aquaculture system applied to a closed recirculation system. Recirculation through seaweed biofilters in land‐based intensive aquaculture farms can also be a tool to increase recirculation practices and establish full recirculation aquaculture systems (RAS) with all their known associated benefits.  相似文献   

4.
In order to explore the effects of high temperature (HT) and light on the physiological and biochemical aspects of macroalga Ulva prolifera, we cultured this species under two temperatures (20°C: low temperature, LT; 30°C: HT) and two light intensities (80 μmol m?2 s?1: low light, LL; 400 μmol m?2 s?1: high light, HL) for 5 days. It was found that (a) compared to 20°C, the chlorophyll a (Chl a) content was increased at 30°C under LL conditions, the relative growth rate (RGR) was significantly decreased at 30°C; (b) compared to LL treatment, HL significantly increased RGR but significantly decreased Chl a content; (c) LL‐grown U. prolifera at 30°C showed the highest photosynthetic oxygen evolution rate; however, there were no significant effects of temperature and light on the relative electron transport rate; (d) superoxide dismutase activity was significantly decreased by HL, but no significant effects of temperature were observed; and (e) compared to LL, HL significantly increased the soluble sugar content at 20°C, but significantly reduced at 30°C. These results showed that the inhibitory effects of HT can be offset by HL intensity.  相似文献   

5.
Mariculture of the economically important seaweed will likely be affected by the combined conditions of ocean acidification that resulting from increasing CO2 rising and decreased light levels, especially under high culture intensity and high biomass accumulation. To examine this coupling effect on the photosynthetic performance of Sargassum fusiforme seedlings, we cultured seedlings of this alga under different light and CO2 levels. Under low light conditions, elevated CO2 significantly decreased the photosynthesis of S. fusiforme seedlings, including a decreased photosynthetic electron transport rate. Seedlings grown under the low light intensity exhibited higher photosynthetic rates and compensation irradiance, and displayed higher photosynthetic pigment contents and light absorption than seedlings grown under high light intensity, providing strong evidence of photosynthetic acclimation to low light. However, the captured light and energy were insufficient to support photosynthesis in acidified seawater regardless of increased dissolved inorganic carbon, resulting in declined carbohydrate and biomass accumulation. This indicated that S. fusiforme photosynthesis was more sensitive to acidified seawater in its early growth stage, and strongly affected by light intensity. Future research should evaluate the practical manipulation of biomass accumulation and mariculture densities during the early culture period at the CO2 level predicted for the end of the century.  相似文献   

6.
Juvenile sporophytes and gametophytes of Ecklonia stolonifera were incubated in combinations of three pCO2 levels (360, 720 and 980 ppmv) and two temperatures (10 and 15°C for sporophytes; 15 and 20°C for gametophytes) to examine potential effects of climate change on photosynthesis and growth. Sporophytes had significantly higher maximum quantum yields (Fv/Fm) and maximum relative electron transport rates (rETRmax) at 720 ppmv than 360 and 980 ppmv. Also, these parameters were significantly lower at higher temperature of 15°C than at 10°C. Growth of female gametophytes was maximal at 360 ppmv rather than enriched pCO2 levels. Female gametophytes had significantly lower growth at higher temperature of 20°C than at 15°C. These results indicate effects of elevated pCO2 varied between generations: stimulating sporophytic photosynthesis and inhibiting gametophytic growth. Ocean acidification and warming would constitute a grave threat to seedling cultivation of E. stolonifera caused by growth inhibition of gametophytes at high pCO2 levels and temperatures.  相似文献   

7.
In this study, we used artificial insemination to generate hybrid groups of fish [MC‐F1(MA♀×CA♂) and MC‐F2(MC‐F1♀×♂)] by intergeneric crosses of Megalobrama amblycephala (MA) and Culter alburnus (CA); sequential backcrosses [CAM‐B1 (CA♀×MC‐F1♂) and MCC‐B1 (MC‐F1♀×CA♂)] were also performed. All these hybrids showed high rates of fertilization, hatching and survival (p > 0.05). For genetic traits, compared with those of the M. amblycephala and C. alburnus parental lines (Table 1), the fertilization rate, hatching rate and 7‐day survival rate of MC‐F1(MA♀×CA♂), MC‐F2(MC‐F1♀×♂), CAM‐B1 (CA♀×MC‐F1♂) and MCC‐B1 (MC‐F1♀×CA♂) by artificial insemination exhibited similar high rates (p > 0.05). The morphology of the four hybrids MC‐F1/F2, CAM‐B1 and MCC‐B1 were intermediate between those of their parents. Compared with their parents of MA and CA, weight gain rate (WG), specific growth rate (SGR) and protein efficiency ratio (PER) of hybrids MC‐F1/F2, CAM‐B1 and MCC‐B1 were significantly (p < 0.05) increased and feed conversion ratio (FCR) was significantly (p < 0.05) decreased after 3 months feeding. Moreover, protein content of muscle for MC‐F1/F2, CAM‐B1 and MCC‐B1 was significantly (p < 0.05) higher and carbohydrate content of muscle was significantly (p < 0.05) lower than their parents. The females and males of the four hybrids had normal gonadal development. In this study, we successfully generated intergeneric and backcross hybridization lines with fertile potential among fish of the Cultrinae subfamily and these hybrids had obvious heterosis in terms of growth performance, feed utilization and muscle quality.  相似文献   

8.
An 80‐day feeding trial was conducted to evaluate the influence of different short‐term fasting and re‐feeding strategies on growth and physiological responses in yellowfin seabream, Acanthopagrus latus (2.4 ± 0.2 g) fingerlings. The fish were subjected to four different feeding regimes, and the control group fed four times daily to apparent satiation throughout the whole feeding period, while the other three groups were deprived for 2, 4 and 8 days followed by 8, 16 or 32 days of re‐feeding (F2R8, F4R16 and F8R32, respectively) in repeated cycles for 80 days. The fish in the control and F2R8 groups had the highest and the lowest total length, respectively (p < .05). Moreover, fish exposed to F4R16 had the highest hepatosomatic indices, while control fish had the lowest hepatosomatic indices (p < .05). Fish in the F2R8 group relatively had higher catalase and glutathione‐S‐transferase activities than other groups (p < .05). Furthermore, total protease, α‐amylase and alkaline phosphatase activities in the F4R16 and F8R32 were higher than the F2R4 and control groups (p < .05). Overall, this study showed that compensatory growth in weight and length and digestive enzyme activities were observed in the F4R16 and F8R32; however, the increase in the activity of antioxidant enzymes in the F8R32 group indicated that oxidative stress remained after 80 days of re‐feeding in the liver.  相似文献   

9.
Reduced seawater pH and elevated pCO2 are important considerations in tank‐based abalone aquaculture, while sea‐based farms may be at risk to ocean acidification reductions in pH. Juvenile Haliotis iris (5–13 and 30–40 mm shell length) were reared in two, 100‐day experiments at ambient pHnbs (~ 8.1, 450 μatm CO2), pH 7.8 (~1000 μatm CO2) and pH 7.6 (~1600 μatm CO2). Seawater pH was measured and adjusted automatically by bubbling CO2 into water in replicated flow through tanks. Two separate trials were run, in winter (8.8°C) and summer (16.5°C). Survival and growth were monitored every 30 days, and post experiment measurements of morphometrics and respiration rate undertaken. Growth of shell length and wet weight were negatively affected by reduced pH, with a 2 to 3‐fold reduction in growth of both size classes between ambient and pH 7.6 treatments in the summer experiment. For small juveniles, growth reductions were in conjunction with decreases to shell weight, while large juveniles showed greater resilience in shell production. No changes to respiration rate occurred, suggesting that juveniles may maintain physiological functioning while tolerating dissolution pressure or that they are unable to upregulate metabolism to compensate for pH effects. These data show that CO2 driven reductions in pH can impact growth, metabolism and biomineralization of abalone, and indicate that water quality and ocean acidification are of importance in aquaculture of the species.  相似文献   

10.
This study was carried out to assess the effects of Pediococcus acidilactici on zebrafish (Danio rerio). Different levels of P. acidilactici including 0, 1 × 106, 2 × 106, 4 × 106 and 8 × 106 colony‐forming unit per g of the diet (cfug?1) were examined in fish with 120 ± 10 mg weight for 60 days in a completely randomized design. The results showed that the best growth indices were recorded in group 4 × 106 cfug?1 (p < 0.05). The highest number of total viable count and lactic acid bacteria of intestine were found in group 4 × 106 cfug?1 (p < 0.05). The maximum activity of digestive enzymes including amylase, lipase, protease and alkaline phosphatase was observed in group 4 × 106 cfug?1. The highest activity for superoxide dismutase was recorded in group 4 × 106 cfug?1 while catalase, glutathione peroxidase and glutathione reductase showed the highest activity in group 8 × 106 cfug?1. The most growth inhibition zone of Aeromonas hydrophylla, Flavobacterium columnare, Vibrio anguillarum and Edwardsiella tarda was found in group 4 × 106 cfug‐1 (p < 0.05). Therefore, P. acidilactici as a probiotic improved growth and immunity of the zebrafish and could be used by zebrafish farmers.  相似文献   

11.
Growth parameters of whiteleg shrimp Litopenaeus vannamei and red seaweed Gracilaria corticata were measured using integrated culturing method under zero‐water exchange system in a 45‐day period. A 2 × 3 factorial design was used with two levels of shrimp stocking densities and three levels of seaweed weight densities. G. corticata was cultured on a net tied to a round polyethylene frame. Culture tanks were filled with 750‐L filtered seawater. A 40‐W compact fluorescent lamp was hung over each tank to provide adequate and sufficient light for seaweed growth. Growth parameters of shrimp and seaweed such as specific growth rate (SGR), weight gained (WG) and average daily growth (ADG) were computed based on the initial and final weight of shrimp and seaweed. The maximum and minimum SGR of L. vannamei (1.97 and 1.69%/day) were observed in treatment S1A3 (25 shrimp/m2 and 400 g seaweed/m2) and S2A1 (50 shrimp/m2 without seaweed) respectively. The best survival rate (94.67 ± 1.33%), WG (129.9 ± 2.9%) and feed conversion ratio (1.67 ± 0.04) were also observed in treatment S1A3. The SGR of G.corticata in the treatment S1A3 (1.97 ± 0.00%/day) was significantly higher, compared to others. Strong positive correlations were obtained between the density of G. corticata and the growth parameters of L. vannamei. The red seaweed G. corticata could boost the growth parameters, survival rate and total production of L. vannamei under zero‐water exchange system.  相似文献   

12.
The integrated aquaculture of the tetrasporophyte of Asparagopsis armata Harvey (Falkenbergia rufolanosa) using fish farm effluents may be viable due to the species high capacity of removing nutrients and its content of halogenated organic compounds with applications on the pharmaceutical and chemical industries. In order to optimize the integrated aquaculture of F. rufolanosa, we followed the daily variation of the potential quantum yield (Fv/Fm) of PSII on plants cultivated at different biomass densities and different total ammonia nitrogen (TAN) fluxes to check if they are photoinhibited at any time of the day. Moreover, the photoinhibition under continuous exposure to highly saturating irradiance and its potential for subsequent recovery in the shade was assessed. The potential for year round cultivation was evaluated by measuring rates of O2 evolution of plants acclimated at temperatures ranging from 15 to 29 °C, the temperature range of a fish farm effluent in southern Portugal where an integrated aquaculture system of F. rufolanosa was constructed.Photoinhibition does not seem to be a major constrain for the integrated aquaculture of F. rufolanosa. Only when cultivated at a very low density of 1.5 g fresh weight (FW) l− 1 that there was a midday decrease in maximal quantum yield (Fv/Fm). At densities higher than 4 g FW l− 1, no photoinhibition was observed. When exposed to full solar irradiance for 1 h, F. rufolanosa showed a 33% decrease in Fv/Fm, recovering to 86% of the initial value after 2 h in the shade. A midday decline of the F. rufolanosa Fv/Fm was also observed under the lowest TAN flux tested (∼6 μM h− 1), suggesting that this fast and easy measurement of fluorescence may be used as a convenient diagnostic tool to detect nutrient-starved unbalance conditions of the cultures. Maximum net photosynthesis peaked at 15 °C with 9.7 mg O2 g dry weight (DW)− 1 h− 1 and remained high until 24 °C. At 29 °C, the net oxygen production was significantly reduced due to a dramatic increase of respiration, suggesting this to be the species' lethal temperature threshold.Results indicate that F. rufolanosa has a considerable photosynthetic plasticity and confirm it as a good candidate for integrated aquaculture at temperatures up to 24° C and cultivation densities of at least 5 g FW l− 1. When cultivated at these densities, light does not penetrate below the first few centimetres of the surface zone. Plants circulate within the tanks, spending around 10% of the time in the first few centimetres where they are able to use efficiently the saturating light levels without damaging their photosynthetic apparatus.  相似文献   

13.
We evaluated the effect of varying cage stocking density (60, 90 and 120 fish m?3) and feeding duration (10, 30 and 60 min) in a cage‐cum‐pond‐integrated system on growth performance, water quality and economic benefits in Labeo victorianus culture. Interactions between stocking density and feeding duration significantly (< 0.05) affected the fish growth performance and yields in the cages‐cum‐pond system. Stocking density of 60 fish m?3 resulted in the highest growth in cages and in ponds regardless of the feeding duration, but produced lower yields than at stocking density 90 fish m?3. The lowest Apparent Food Conversion Ratio (AFCR) in cages occurred at stocking density of 60 fish m?3 and feeding duration of 30 min. Growth performance in the open ponds declined with increased feeding duration of the caged fish. Survival in cages and in the open ponds decreased with increased cage density, but was not affected by feeding duration. Low dissolved oxygen were recorded, at stocking density of 120 fish m?3, the lowest DO occurred when feeding of caged fish lasted 60 min. Growth performance, water quality and economic benefits in Labeo victorianus culture positively respond to interaction between stocking density and feeding durations.  相似文献   

14.
This study was undertaken to evaluate the role of polychaete Nereis diversicolor in bioremediation of waste water and its growth performance and fatty acid composition in an integrated culture system with great sturgeon, Huso huso. Three treatments consisting of N. diversicolor fed with H. huso waste (FNW), N. diversicolor fed with fish feed waste (NW), and fish waste without the worm (FW) were considered at water temperature of 23°C for 8 weeks. The obtained results demonstrated that N. diversicolor in the flow‐through system could grow via feeding with the fish waste water. The pure production and survival rate of harvested Nereis in NW treatment were significantly higher than those of FNW treatment (< .05). However, no significant difference was observed in specific growth rate and weight gain between these two treatments (> .05). The highest removal efficiency of waste water including total nitrogen (56%), total phosphorus (53%), NO2‐N (91%), NH3‐N (35%), PO4‐P (47%), BOD5 (60%) were seen in FNW treatment. Also, the highest additional efficiency of NO3‐N occurred in FW (37%) treatment. Certain fatty acids specifically 20:5 ω3 (eicosapentaenoic acid [EPA]) and 22:6 ω6 (docosahexaenoic acid [DHA]) were also abundant in Nereis, and analysis revealed some differences due to the diet. These results demonstrated that the promotion of growth by cultured Nereis can enhance the decomposition rate of organic matter in enriched sediment and minimize negative effects in fish farms. These results also suggest that the use of N. diversicolor is an excellent potential candidate for an integrated aquaculture and nutrient recycling including the removal of organic wastes.  相似文献   

15.
Sea bass (Dicentrarchus labrax) (135 ± 4 g) were reared under tank-based recirculating aquaculture system for a 63-day period at four densities: 10, 40, 70, 100 kg m?3. Fish performance, stress indicators (plasma cortisol, proteonemia plus other blood parameters—Na+, K+, glucose, pH, total CO2?) and water quality were monitored. At the end of the 63-day period, resistance to infection was also studied by a nodavirus challenge. A 25-day test was performed on fish from two extreme densities (10 and 100 kg m3) and one intermediate density (40 kg m3).With regards to the different density treatments, there was no significant difference between the daily feed intake (DFI) and the specific growth rate (SGR) up to a density of 70 kg m?3. No significant difference was found between treatments concerning the feed conversion ratio (FCR) and the mortality rate. No density effect was observed on the fish stress level (plasma cortisol) or on sensitivity to the nodavirus challenge. Under these experimental rearing conditions, the density above 70 kg m?3 has an impact on growth performance (DFI and SGR) indicators and also some blood parameters (CO2) at the highest density tested (100 kg m?3).This study suggests that a density up to 70 kg m?3 has no influence on sea bass performance and welfare. At 100 kg m?3, average specific growth rate was decreased by 14% without welfare deterioration according to the welfare indicators monitored.  相似文献   

16.
This study describes for the first time the cultivation of Cerastoderma edule on a commercial scale. A protocol to grow F2 generation cockles was developed, which led to fine‐tuning experiments for broodstock conditioning and spat growth. Broodstock animals were conditioned with diets of Isochrysis galbana (T‐Iso) or Tetraselmis suecica, whereas a third group was not fed. The best diet, T. suecica, induced 12 females out of 100 animals to spawn a total of 3 380 000 eggs. The non‐fed group did not spawn. Cockle spat (4.9 ± 1.0 mm) grew best when given a mixed diet of C. muelleri, T‐Iso and Sceletonema costatum, or a mixture of P. tricornutum and S. costatum at a concentration of 240 cells μl?1 day?1, resulting in a tripling of their wet weight after 14 days. The impact of density, burrowing substrate and food availability on cockle spat growth (41 days old, 5.6 ± 1.2 mm) was studied for 11 weeks. Best results were obtained by culturing spat at ad libitum food conditions at 500 ind m?2, resulting in an average growth rate of 168 μm day?1, an average final size of 19.0 ± 1.9 mm and a total final biomass of 1040 g m?2.  相似文献   

17.
Diurnal variation of carbon dioxide (CO2) and total ammonia production in Atlantic salmon post‐smolt were studied at different water flow rates. The experiment comprised four groups each with two replicates representing specific flow levels of 0.5, 0.4, 0.3 and 0.2 L kg?1 min?1. During the first diurnal cycle, the seawater samples were collected eight times during 21 hr. In the second diurnal cycle, six samplings were performed during a prolonged sampling period of 35 hr. The highest CO2 concentrations were observed in the lowest water flow group (0.2 L kg?1 min?1) between 4 and 10 p.m. for the first sampling period and at about 2 p.m. for the second sampling period. The overall real CO2 production rates were in the range 1.7–5.5 mg kg?1 min?1 including diurnal variation in all groups for both sampling periods. In general, a second‐order polynomial model describes the relationship between specific water flow and real mean CO2 production rate (p < 0.001). Maximum concentrations of total ammonia nitrogen (TAN) occurred around 7 and 8 p.m. in all groups and was highest for the 0.2 L kg?1 min?1 group for both sampling periods. Note that maximum concentration of TAN and CO2 both occurred in the afternoon. The TAN production rates were in the range 0.06–0.44 mg kg?1 min?1 including both sampling cycles.  相似文献   

18.
In this study, effects of stocking density on the growth performance and physiological responses of blunt snout bream, Megalobrama amblycephala juveniles were evaluated. The fish (average body weight, 25.76 ± 2.25 g) were randomly stocked at densities of 30F (30 fish/m3), 60F, 90F and 120F in 12 cages (1 m × 1 m × 1 m) in a concrete pond, with three cages for each density, for a period of 6 weeks. The higher stocking densities had a negative effect on individual growth performance. The results indicated that serum cortisol, triglyceride, alanine aminotransferase, aspartate transaminase, alkaline phosphatase and malondialdehyde activities; and Acinetobacter, Aeromonas, Pseudomonas and Vibrio numbers in the intestinal microflora increased significantly as the stocking density increased. In contrast, the viscerosomatic index, hepatosomatic index survival rate; serum glucose, total cholesterol, lipase, protease, glutathione peroxidase and superoxide dismutase activities; and Clostridium, Bacteroides, Lactococcus, Lactobacillus and Bacillus numbers in the intestinal microflora decreased significantly. The 90F and 120F groups showed obvious enlargement of the lamina propria and goblet cell damage, indicating that the gut showed inflammatory responses. The specific growth rate and weight gain rate increased significantly as the stocking density increased from 30 to 60 fish/m3, but decreased significantly when the stocking density was over 60 fish/m3.  相似文献   

19.
In this study, we evaluated different dietary fishmeal and protein levels on growth performance, intestinal structure and intestinal microbial community of juvenile channel catfish, Ictalurus punctatus. A total of 1800 fish distributed into 36 tanks were fed with nine different diets containing three protein levels (300, 330 and 360 g/kg) with three fishmeal (FM) levels (0, 30 and 60 g/kg) for 90 days. The results showed that significant interactions between the protein level and FM level were observed in final weight (FW), weight gain (WG), Na+, K+‐ATPase and alkaline phosphatase (AKP) activities. The significant lowest FW, WG, Na+, K+‐ATPase and AKP activities were observed in fish fed with no fishmeal and 300 g/kg protein dietary while the highest were shown in 60 g/kg fishmeal and 330 g/kg protein treatment. Additionally, the microvillar length of the mid‐intestine in catfish was significantly affected by the interaction between dietary protein level and fishmeal level. The intestinal samples were dominated by three major phyla, Firmicutes, Proteobacteria and Fusobacteria. Genera Romboutsia and Turicibacter accounted for probably 800 g/kg of the phylum Firmicutes; meanwhile, genus Cetobacterium represented more than 900 g/kg of the phylum Fusobacteria. In conclusion, this study indicated that channel catfish juveniles can be fed with a practical diet without fishmeal as long as the protein level increased to 360 g/kg; however, if the percentage of dietary protein was 300 g/kg, it seemed that fishmeal need to be supplied as a protein source.  相似文献   

20.
The objective of this study was to assess zootechnical and physiological performance of Litopenaeus vannamei postlarvae (PL) reared in three environments (CW, clear water; B, biofloc; BS, biofloc with artificial substrates) at three stocking densities (300, 600, 900 PL/m3) for 8 weeks. At the end of experimentation, shrimp were subjected to hypoxia, and physiological response was again assessed. During rearing, low levels of total ammonia nitrogen, nitrite (NO2?) and nitrate (NO3?) were observed in B and BS for 600 and 900 PL/m3. For 300 PL/m3, a slight accumulation of NO2? and NO3? was detected. For the same stocking density, shrimp reared in B and BS showed significantly higher weights than those grown in CW, except for final weight. No significant differences were observed in survival. The use of biofloc and artificial substrates permitted doubling density from 300 to 600 PL/m3 without affecting growth, survival, feed conversion rate and obtaining twice the biomass. Shrimp grown in B and BS stored a surplus of glycogen and carbohydrates in their hepatopancreas, which probably gave them a better physiological capacity to counteract high‐stocking densities and hypoxia. A tendency of a higher adenylate energetic charge was observed in shrimp maintained in B and BS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号