首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An 8‐week feeding trial was conducted to estimate the optimum dietary manganese (Mn) requirement for juvenile hybrid grouper, Epinephelus lanceolatus × E. fuscoguttatus. The basal diet was formulated to contain 520 g/kg crude protein from casein and fishmeal. Manganese methionine was added to the basal diet at 0 (control group), 2.5, 5, 10, 20 and 40 mg Mn/kg diet providing 7.48, 10.34, 13.76, 19.72, 31.00 and 53.91 mg Mn/kg diet, respectively. Each diet was randomly fed to triplicate groups of juveniles, and each tank was stocked with 20 fish (initial weight, 60.06 ± 0.68 g). The manganese content in rearing water was monitored and kept below 0.01 mg/L. Results showed that the weight gain ratio (WGR), protein efficiency ratio (PER), specific growth rate (SGR), Mn contents in whole body, liver and vertebra, and activities of hepatic Mn superoxide dismutase (Mn‐SOD), total SOD (T‐SOD) and glutathione peroxidase (GSH‐PX) were significantly improved by dietary Mn supplementation (< .05). However, dietary Mn did not affect arginase (DArg) activity. The highest feed conversion ratio (FCR) was observed in fish fed the basal diet (< .05). No significant differences were found on the Cu and Zn contents in whole body by supplementing dietary Mn. Supplemented Mn in diets had significantly effect on liver and vertebral trace element deposition (< .05). Fish fed the basal diet had the highest Fe and Zn contents in vertebra (< .05). There were no significant differences on hepatic pyruvate decarboxylase (PDC) activity with supplemented Mn levels below 13.76 mg/kg. As biomarker of oxidative stress, malondialdehyde (MDA) content in liver was significantly higher in fish fed the basal diet (< .05). Using the broken‐line models based on SGR, dietary Mn requirement of the juvenile hybrid grouper was estimated to be 12.70 mg/kg diet.  相似文献   

2.
An 8‐week feeding trial was conducted to determine the requirement of protein for large‐size grouper Epinephelus coioides (initial body weight: 275.07 ± 1.56 g). Six iso‐lipidic (124 g/kg) diets were formulated containing graded levels of protein (350, 400, 450, 500, 550 and 600 g/kg). Grouper was hand‐fed twice daily to apparent satiation with triplicate. The results showed that significantly high weight gain, specific growth rate and significantly low feed conversion ratio were observed in fish fed 450 g/kg protein group. High‐protein level diets significantly increased protein content and significantly decreased lipid content of fish body and muscle. Total protein and cholesterol content in serum of 600 g/kg group were significantly higher than those of 350 g/kg group. However, serum glucose and triglyceride contents of fish fed low‐protein diets were significantly higher than those of fish fed high‐protein diets. Meanwhile, liver glutamic‐pyruvic transaminase and glutamic‐oxaloacetic transaminase in high‐protein diet groups were significantly higher than those of low‐protein diet groups. The intestinal protease activity in high‐protein diet groups was significantly higher that of low‐protein diet groups, but lipase and amylase showed opposite trend. With the increasing of dietary protein level, the activities of alkaline phosphatase, superoxide dismutase and lysozyme in liver of grouper increased significantly compared with 350 g/kg group, while the activities of acid phosphatase decreased significantly. With specific growth rate as the evaluation index, the optimum dietary protein level of large‐size grouper Epinephelus coioides was 438.39 g/kg by fitting the broken‐line regression analysis.  相似文献   

3.
An 8‐week growth trial was conducted to evaluate effects of dietary oil sources on growth, enzymes activity and genes expression levels related to lipid metabolism of hybrid grouper (♀Epinephelus fuscoguttatus × ♂E. lanceolatu) juveniles. Seven iso‐lipid (97 g/kg of dry matter) and iso‐protein (503.5 g/kg of dry matter) experimental diets were formulated containing 50 g/kg fish oil (FO; acting as controls) or various vegetable oils (VOs): corn oil (CO), sunflower oil (SO), tea oil (TO), olive oil (OO), rice oil (RO) and mixed oil (MO; comprising equal amounts of these oils). Each diet was fed to triplicate groups of 40 fish for per repetition (15.09 ± 0.01 g) for 56 days. The results show that (a) alternative dietary oils had no significant effects on final weight compared with control group (p > .05); (b) compared with FO group, VOs significantly changed the contents of serum lipoproteins, cholesterol, triglycerides and the activity of liver lipid‐metabolizing enzymes (p < .05); (c) CO group had the least effect on the serum lipoproteins, triglycerides and cholesterol of grouper compared with control; the activity of liver lipid‐metabolizing enzymes in RO and control group was the closest; (d) the mRNA levels of Δ6 Fatty acid desaturase (Δ6Fad), hormone‐sensitive lipase (HSL) and lipoprotein lipase (LPL) were not significantly effected by lipid sources, but CO, TO, OO and MO significantly down‐regulated the expression of fatty acid synthetase (FAS) mRNA level in liver, while RO opposite (p < .05); (e) vegetable oil significantly up‐regulated peroxisome proliferator‐activated receptor α (PPARα) and peroxisome proliferator‐activated receptor β (PPARβ) mRNA levels, while TO and RO down‐regulated peroxisome proliferator‐activated receptor γ (PPARγ) mRNA levels (p < .05); and 6) MO significantly increased the mRNA levels of heart‐type fatty acid‐binding protein (H‐FABP) and adipocyte‐type fatty acid‐binding protein (A‐FABP) (p < .05), while other VOs had no effect on them (p > .05). In conclusion, dietary substitution of FO by VO in diet affected lipid metabolism of grouper, which may be regulated by PPARs.  相似文献   

4.
A 12‐week feeding trial was conducted to evaluate the effects of replacing fishmeal (FM) with soybean meal (SBM), rapeseed meal (RM) and cottonseed meal (CSM) on growth, feed utilization and body composition of juvenile hybrid sturgeon Acipenser baerii ♀ × Acipenser schrenckii ♂ (initial body weight, 8.63 ± 0.24 g). Five isonitrogenous and isoenergetic diets were formulated as follows: a control diet (FM60) containing 600 g/kg FM and four other diets (FM45, FM30, FM15 and FM0 containing 450, 300, 150 and 0 g/kg FM, respectively) where protein from FM was substituted by a mixture of SBM, RM and CSM. Fish fed FM0 and FM15 had poorer growth performance, feed utilization, apparent digestibility coefficients of dry matter, protein, lipid and gross energy, and fed FM0 had poorer hepatosomatic index and survival compared with the fish fed FM60. The whole body lipid in fish fed FM0 was significantly higher than that in fish fed FM60 and FM15. This study indicates that 300 g/kg of FM can be replaced with a mixture of SBM, RM and CSM in the diet of juvenile hybrid sturgeon without compromising growth performance, feed utilization and body composition.  相似文献   

5.
Hybrid grouper juveniles (body weight, 6.1 ± 0.7 g) (brown‐marbled grouper, Epinephelus fuscoguttatus × giant grouper, E. lanceolatus) were fed with six isoproteic (50% crude protein) and isolipidic (12% crude lipid) feeds containing different levels of soy protein concentrate (SPC) in replacement of fish meal (SPC at 20%, 30%, 40%, 50% and 60% protein) and control feed (SPC0) for 6 weeks. Hybrid grouper juveniles were cultured in 100‐L fibreglass tank equipped with flow‐through water system and fed twice a day to apparent satiation level. The highest and lowest growth was recorded in fish fed SPC20 and SPC60 respectively. However, growth of SPC20 was not significantly higher than those fed SPC0, SPC30, SPC40 and SPC50 (p > .05). A decreasing growth trend was observed with the increasing level of SPC from feed SPC40 to SPC60. A noticeable better feed utilization was also observed in fish fed SPC0, SPC20, SPC30, SPC40 and SPC50 compared to fish fed SPC60 (p < .05). The fish condition factor, hepatosomatic index, viscerosomatic index and whole body proximate content of the fish were not affected by the graded levels of SPC. However, the body lipid content was significantly lower in fish fed SPC40 to SPC60 (p < .05). The apparent digestibility coefficient (ADC) of protein and lipid was significantly higher in fish fed SPC0 and SPC20 compared to other dietary treatments (p < .05). Based on the regression analysis on specific growth rate, the study suggests that the hybrid grouper grow best at 21.4% and can utilize up to 50% inclusion level of SPC in protein without significantly affect their growth and its body condition.  相似文献   

6.
Effects of Bacillus cereus BC‐01, Lactobacillus acidophilus LAG01, Clostridium butyricum CBG01 and their combinations as supplementation on the growth performance, digestive enzyme activities and serum non‐specific immunity of hybrid grouper (Epinephelus lanceolatus ♂×E. fuscoguttatus ♀) were assessed. Seven different diets, that is one control diet (basal feed without any probiotics, CT) and six treatment diets containing single B. cereus (Bs), L. acidophilus (Ls) and C. butyricum (Cs) at 1.0 × 10cfu/kg feed, and also their combinations in equal proportion at 1.0, 2.0 and 3.0 × 109 cfu/kg feed (BLC1, BLC2 and BLC3) were prepared respectively. After 60‐day feeding trial, the final weight, specific growth rate,food consumption, food conversion efficiency and apparent digestibility coefficient of fish in Ls and BLC3 were significantly higher compared with the control (< .05). The activities of pepsin and trypsin in the intestine of fish for Ls and BLC3 were significantly higher relative to the control (< .05). Relative to controls, significantly enhanced amylase and lipase activities in proximal intestine except for Cs and BLC1 and lipase activities in distal intestine except for Cs were observed (< .05). Meanwhile, activities of superoxide dismutase in the serum of fish for all treatments, lysozyme and catalase in Ls and BLC3, and glutathione peroxidase except for Cs were significantly enhanced (< .05). Based on the above, dietary supplementation of single L. acidophilus at 1.0 × 109 cfu/kg or combination of three strains at 3.0 × 109 cfu/kg for hybrid grouper is recommended.  相似文献   

7.
An 8‐week feeding trial was conducted to investigate the effects of dietary carbohydrate‐to‐lipid (CHO:L) ratios on growth, liver and muscle glycogen content, haematological indices, and liver and intestinal enzyme activity of juvenile grouper (Epinephelus coioides). Five isonitrogenous (496.0 g/kg protein) and isoenergetic (21.6 KJ/g gross energy) diets with varying CHO:L ratios of 0.65 (D1), 1.31 (D2), 2.33 (D3), 4.24 (D4) and 8.51 (D5), respectively, were fed to triplicate groups of 20 fish (average 10.02 ± 0.1 g) for 8 weeks. Results showed that the weight gain rate, specific growth rate and protein efficiency ratio (PER) of juvenile grouper increased first and then decreased with the increase in CHO:L ratio, reaching a maximum value in the D4 (CHO:L = 4.24) diet. The trend for the feed conversion ratio was opposite to the PER. Along with the diet CHO:L ratios, the apparent digestibility coefficients (ADC) of crude lipid and energy for the juvenile groupers decreased gradually, while the ADC of dry matter, liver and muscle glycogen level increased gradually. Total protein, triglycerides and cholesterol in serum were all maximized in the D4 diet and glucose in the D5 (CHO:L = 8.51) diet. Digestive enzyme activity in the intestine was significantly affected by dietary CHO:L ratio. Liver hexokinase, phosphofructokinase and glucose‐6‐phosphate dehydrogenase activity increased significantly as CHO:L ratio increased. Liver lysozyme and acid phosphatase activity in the groupers fed the D3 (CHO:L = 2.33) diet was significantly higher than that of other diets. Liver fructose‐1,6‐bisphosphatase and alkaline phosphatase activity reached a maximum value in the D4 diet and was significantly higher than that in the D1 diet. Taking the above results together, it can be concluded that an optimal dietary CHO:L ratio of 2.33 is suitable for grouper culture concerning growth performance and health.  相似文献   

8.
This study investigated the effects of coconut oil as a dietary supplement on the growth, lipid metabolism and related gene expressions of juvenile orange‐spotted grouper Epinephelus coioides. Coconut oil at concentrations of 0, 10, 30 and 50 g/kg was used to replace dietary lipids in a basal diet containing 150 g/kg lipids. The four experimental diets were, respectively, fed to triplicate groups of juvenile groupers (initial weight: 8.53 ± 0.13 g) in a recirculating system for 8 weeks. Fish fed the diet containing 50 g/kg coconut oil exhibited lower (p < .05) weight gain than did fish fed the diet containing 30 g/kg coconut oil; however, no significant differences in weight gain were observed between fish fed diets containing 0 and 10 g/kg coconut oil. Hepatic carnitine palmitoyltransferase‐1, fatty acid synthase, fatty acid elongase, fatty acid desaturase and peroxisome proliferator‐activated receptor gamma gene expressions were all the highest in fish fed the diet containing 10 g/kg coconut oil. Fish fed the coconut oil‐free basal diet demonstrated upregulated gene expression of neuropeptide Y. The results suggest that dietary supplementation with 10 g/kg coconut oil exerted beneficial effects on lipid metabolism by E. coioides.  相似文献   

9.
The study evaluated effects of cholesterol supplementation in a diet with high soybean meal (SBM) on the growth and cholesterol metabolism of giant grouper (Epinephelus lanceolatus). All‐fish‐meal diet was used as control. The diet including SBM (replaced 50% of the fish meal protein, SBM diet) and the SBM diet supplemented with 10 g/kg cholesterol (SBM + cholesterol) were used as experimental diets. Three diets were each fed to triplicate groups of juvenile grouper (initial body weight: 12.39 ± 0.36 g) in a recirculating aquaculture system for 8 weeks. Grouper fed the control diet showed higher (p < .05) weight gain, feed intake, feed efficiency and protein efficiency ratio than the other two dietary treatments. Hepatic cholesterol concentrations and 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase gene expressions were higher in fish fed the control diet than fish fed the control diet and SBM + cholesterol diet. Hepatic cholesterol 7α‐hydroxylase gene expression was higher in fish fed the SBM + cholesterol diet than that in fish fed the control diet. Results indicate that giant grouper on a diet low in cholesterol can regulate cholesterol synthesis, suggesting that the reduced dietary cholesterol intake in the fish fed diet containing SBM is sufficiently compensated by increased cholesterol synthesis.  相似文献   

10.
Groupers are economically important for aquaculture in Thailand. A novel hybrid grouper (Epinephelus lanceolatus × Epinephelus fuscoguttatus) has been successful cross‐bred; therefore, the present work aimed to assess the hybrid's traits. The growth performance, strength and tolerance to a pathogenic bacterial infection of this hybrid were compared with its parent species, tiger grouper and giant grouper. The results of all measured growth parameters indicated that the hybrid strain grew fastest followed by giant and tiger grouper respectively. The expressions of the growth‐related genes, insulin‐like growth factor (IGF) I and II, were also analysed in fish muscle and liver which are the main target organs in fish growth regulation. Among tested species, similar expression patterns of IGF‐I and IGF‐II were detected in both organs. The levels of these genes in liver and muscle of hybrid and giant grouper were higher than those of tiger grouper comparable with the growth manner. After challenge with Vibrio vulnificus, the immunological parameters, clearance time of Vibrio in haemolymph and survival was measured to verify the fish immunity. Leucocyte number, lysozyme activity and the ability to eliminate the pathogen were very high in hybrid and giant grouper while these parameters were lower in tiger grouper. Correspondingly, the mortality rate of tiger grouper was higher than others and % survival at the end of observation time (15 days post challenge) was lowest in infected tiger grouper. Altogether, the results suggested that the hybrid grouper has desirable traits that will improve cultured grouper.  相似文献   

11.
We evaluated the influence of different proportions of 5′‐inosine monophosphate (IMP) and 5′‐guanosine monophosphate (GMP) on growth, feed digestibility and activity of digestive enzymes of turbot Scophthalmus maximus. Weight gain and daily feed intake were significantly higher in S. maximus fed with IMP or GMP, in comparison with fish fed with neither IMP nor GMP. The growth of 0.05% IMP + 0.05% GMP group was the best, and the intestinal digestive function was improved. The addition of IMP and GMP to fish diets significantly increased the apparent feed digestibility coefficient of dry matter and protein, as well as intestinal protease activity. The highest intestinal protease activity was observed in fish fed with 1 g/kg IMP. However, the lipase activity in hepatopancreas decreased significantly after addition of nucleic acid. According to our results, the optimal level of dietary IMP is 1 g/kg, which is in line with most of the growth performance and feed digestibility.  相似文献   

12.
The present study was conducted to investigate the protein requirement of grouper Epinephelus coioides at grow‐out stage (initial weight of 102.8 ± 1.02 g). Six iso‐lipidic diets were formulated using white fish meal and casein as protein sources with graded levels of protein (350, 400, 450, 500, 550 and 600 g/kg). Grouper was hand‐fed twice daily to apparent satiation in triplicates for 8 weeks. The results showed that lack of protein will lead to the declined of weight gain and specific growth rate and suitable protein not only improved growth, but also reduced feed coefficient rate. In addition, high‐protein level diet significantly decreased the morphological index of grouper. For the body proximate composition analysis, the high‐protein diets (500, 550, 600 g/kg) significantly increased the protein contents in the whole body and muscle which was contrary to as observed for the lipid content. High‐protein diets significantly improved the total protein levels of plasma which were contrast to as observed in triglyceride contents. Moreso, the cholesterol content was observed to be significantly decreased after high‐protein diet supplementation. The intestinal protease activity was observed to increase significantly with increasing protein supplementation whereas a decreasing trend was observed for the lipase and amylase activity with the highest going for the groups fed diets containing 350 g/kg protein as compared to the others. The liver alkaline phosphatase, superoxide dismutase and lysozyme activity increased with increasing protein level which later decreased. On the other hand, the acid phosphatase activity showed a significant downward trend. Based on SGR, the broken‐line regression analysis showed that the optimum dietary protein level and digestible protein level of the grouper Epinephelus coioides at grow‐out stage were 466.65 and 395.79 g/kg, respectively.  相似文献   

13.
Nutritional qualities of fish processing by‐products can further be improved through enzymatic hydrolysis. The objective of this study was to elucidate the efficacy of hydrolysed milkfish offal at different inclusion levels when fed to juvenile grouper, Epinephelus fuscoguttatus, with an initial body weight of 2.88 ± 0.06 g. The animals were fed for 56 days with seven diets supplemented with 0 (control), 5%, 15% and 25% of milkfish offal (MO) and milkfish offal hydrolysate (MOH). The diets were formulated to be isonitrogenous (45%) and isolipidic (11%). The diets were assigned to 21 tanks (15 fish per tank) with each diet having three replicates. Results from the experimental trials indicated that feed conversion efficiency, feed intake and weight gain of fish significantly (P < 0.05) improved when fed diets with MOH. No significant differences within the rest of the dietary treatments were observed. Survival rate (>90%) did not differ in all the dietary treatments. Proximate composition (crude protein, crude fat and ash) indicated no significant difference among fish fed from all the dietary treatments. Apparent digestibility of MOH indicated a 95% and 66% digestibility for protein and dry matter respectively. Plasma stress parameters (cortisol and glucose) were not influenced by the dietary treatment when fish were subjected to an acute stressor (5‐min chasing). Liver morphology indicated normal hepatocyte shape and the presence of lipid droplets in fish fed from all the dietary treatments. The results indicated that milkfish offal processed as hydrolysate can be utilized in grouper diets and can promote growth and feed efficiency when supplied at 10–15%.  相似文献   

14.
The glucose transporters (GLUTs) play vital role in mediating the glucose uptake process, the movement of glucose across plasma membranes. In this study, three GLUTs, GLUT1, GLUT2 and GLUT4 were cloned and characterized form pearl gentian grouper, a hybrid grouper, and their expressions in response to dietary carbohydrate level (8.02%, 11.89% and 16.08%) were investigated after feeding. The full‐length cDNA of GLUT1, GLUT2 and GLUT4 were 2,104, 3,759 and 2,815 bp, respectively, encoding a putative protein of 491, 508 and 505 amino acids respectively. The results of sequence and phylogenetic analysis revealed that grouper GLUTs were highly conserved and clustered together with their corresponding teleost orthologues, rather than mammals. In addition, GLUT1 was ubiquitously expressed in all detected tissues with relative high expressions in heart and brain. GLUT2 is relatively abundant in some certain tissues that release glucose, such as liver and intestine, and GLUT4 was expressed primarily in muscle and eye. The elevated dietary carbohydrate level had no significant difference on the expression of GLUT1 in grouper liver. The expression of GLUT2 in grouper liver was significantly up‐regulated with the increasing dietary carbohydrate from 8.02% to 11.89%, and therefore down‐regulated significantly. Meanwhile, the expression of GLUT4 in grouper muscle increased significantly with increasing dietary carbohydrate. Results of this study indicate that the up‐regulation of GLUTs in fish contribute to maintain glucose equilibrium to some extent when fish were fed with high carbohydrate diets.  相似文献   

15.
Quantitative l-lysine requirement of juvenile grouper Epinephelus coioides   总被引:3,自引:0,他引:3  
An 8‐week feeding trial was conducted to determine the quantitative lysine requirement of juvenile grouper Epinephelus coioides (initial mean weight: 15.84 ± 0.23 g, mean ± SD) in eighteen 500‐L indoors flow‐through circular fibreglass tanks provided with sand‐filtered aerated seawater by feeding diets containing six levels of l ‐lysine ranging from 19.2 to 39.5 g kg?1 dry diet in 4 g kg?1 increments. The diets, in which 250 g crude protein kg?1 diet came from fish meal and soybean protein concentrate, and 230 g kg?1 from crystalline amino acids, were formulated to simulate the amino acid profile of 480 g kg?1 whole chicken egg protein except for lysine. Each diet was assigned to three tanks in a completely randomized design. Grouper were fed to apparent satiation twice daily during the week and once daily on weekends. Weight gain and specific growth rate increased with increasing levels of dietary lysine up to 27.2 g kg?1 (P < 0.05) and remained nearly the same thereafter (P > 0.05). Feed efficiency was the poorest for fish fed the lowest lysine diet (P < 0.05) and showed no significant differences among other treatments (P > 0.05). Survival could not be related to dietary treatments. Body composition remained relatively constant except for lipid contents in muscle and liver. Total essential amino acid contents in liver increased with dietary lysine level although there was a slight decline for fish fed the highest lysine level of diet. Plasma protein content increased with increasing dietary lysine level (P < 0.05), but cholesterol, triacylglycerol and glucose contents were more variable and could not be related to dietary treatments. Dietary lysine level significantly influenced morphometrical parameters (condition factor, hepatosomatic index and intraperitoneal fat ratio) of juvenile grouper (P > 0.05). Broken‐line analysis of weight gain indicated the dietary lysine requirement of juvenile grouper to be 28.3 g kg?1 diet or 55.6 g kg?1 dietary protein.  相似文献   

16.
To investigate the effects of dietary tryptophan on growth and glycometabolism in juvenile blunt snout bream, 450 fish (initial weight 23.33 ± 0.03 g) were fed six practical diets with graded levels of tryptophan (from 0.79 g/kg to 5.96 g/kg dry matter) for 8 weeks. Results showed that final weight, per cent weight gain (PWG), protein efficiency rate, feed intake and feed conversion ratio (FCR) were significantly improved by 2.80 g/kg diet. The maximum values of protein and ash were observed in 2.80 g/kg diet, while moisture was minimum. Lipid content of fish fed 3.95 g/kg diet was significantly higher than other diets. The highest plasma insulin‐like growth factor‐1 (IGF‐1) content was observed in 0.79 g/kg diet. In the liver, IGF‐1 mRNA levels were significantly downregulated by 2.80 g/kg dietary tryptophan, while glucokinase levels were by 3.95 g/kg, while glucose‐6‐phosphatase and phosphoenolpyruvate carboxykinase mRNA levels showed a converse trend compared with IGF‐1. Based on PWG and FCR, the optimal dietary tryptophan level was determined to be 1.99 g/kg (6.20 g/kg of dietary protein) and 1.96 g/kg (6.11 g/kg of dietary protein), respectively, using broken‐line regression analysis.  相似文献   

17.
The objective of this study was to determine the minimum dietary requirements of the branched‐chain amino acids (BCAAs: leucine [Leu], isoleucine [Ile] and valine [Val]) for juvenile red drum, Sciaenops ocellatus. This was accomplished by conducting three independent 49‐day feeding trials with juvenile red drum. Experimental diets were prepared by supplementing a basal diet containing 370 g/kg crude protein from red drum muscle and crystalline amino acids with incremental levels of Leu (9.0, 13.0, 17.0, 21.0, 25.0 and 29.0 g/kg of dry diet), Ile (5.0, 8.0, 11.0, 14.0, 17.0 and 20.0 g/kg of dry diet) and Val (6.8, 8.0, 9.2, 10.4, 11.6, 12.8 and 14.0 g/kg of dry diet). Fish were fed to apparent satiation twice daily in each trial, after which growth performance parameters were calculated and body composition and concentrations of BCAAs in plasma were analysed. Incremental levels of dietary Leu, Ile and Val significantly affected weight gain, feed efficiency and protein retention. Analyses of the weight gain data using a broken‐line regression model estimated the minimum Leu, Ile and Val requirements for maximum growth of juvenile red drum to be 15.7 ± 1.7 g/kg (±95% confidence interval), 11.1 ± 2.3 g/kg and 12.4 ± 0.6 g/kg of dry diet, respectively.  相似文献   

18.
A 95‐day feeding trial was conducted to quantify the methionine + cystine requirement for finishing lambari, Astyanax altiparanae (6.10 ± 0.11 g). Six extruded isoproteic (310.14 g/kg crude protein) and isoenergetic (19.76 MJ/kg gross energy) diets were prepared to contain 6.71, 8.31, 11.31, 13.12, 15.59 and 19.74 g/kg dry diet of methionine + cystine. Quadruplicate groups of female lambari were randomly assigned to 24 aquaria (70 L each) and fed to apparent satiety six times daily. The methionine + cystine requirement was determined by quadratic regression analysis of growth performance, whole body composition, muscle development, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activity against dietary methionine + cystine concentrations, at 5% significance. Fish fed 6.71–11.31 g/kg dry diet of methionine + cystine showed increased weight gain, per cent weight gain, specific growth rate and protein efficiency ratio. There were no significant differences in whole body composition, muscle growth and activity of AST and ALT in fish fed the dietary treatments. In conclusion, according to the second‐order polynomial analysis of weight gain, the optimum dietary methionine + cystine requirements for finishing lambari were estimated to be 13.66 g/kg dry diet (4.40% dietary protein).  相似文献   

19.
An 8‐week feeding trial was conducted to assess the interaction between dietary protein levels and fish growth, digestibility and activity of immunity‐related enzymes of Plectropomus leopardus. Five diets with different protein levels (400 g/kg, 450 g/kg, 500 g/kg, 550 g/kg and 600 g/kg protein) were designed. P. leopardus fed with 500 g/kg, 550 g/kg and 600 g/kg dietary protein, showed higher weight gain rates than fish fed 400 g/kg and 450 g/kg dietary protein. Ingestion rate in fish fed with 500 g/kg dietary protein was significantly higher than those with other diets. P. leopardus fed with 500 g/kg, 550 g/kg and 600 g/kg dietary protein, showed that feed coefficients were significantly lower than those fed with 400 g/kg and 450 g/kg dietary protein. Net protein utilization was significantly lower in fish fed with 400 g/kg diet than those with other diets. Fish fed with 400 g/kg and 450 g/kg dietary protein had an apparent feed digestibility coefficient for dry matter that was significantly lower than that with other diets. Protease activity was highest in fish fed on 500 g/kg dietary protein. Fish fed with 500 g/kg dietary protein, had the highest superoxide dismutase activity. Fish fed with 600 g/kg dietary protein, had the highest alkaline phosphatase activity. Thus, a diet containing 500 g/kg protein is recommended for P. leopardus aquaculture.  相似文献   

20.
Dietary protein requirement of juvenile kelp grouper Epinephelus moara was investigated through a feeding trial. Experimental diets with graded crude protein (CP) levels (33.01%, 38.54%, 45.21%, 50.71%, 56.10% and 63.09% of dry matter respectively) were formulated. Six triplicate groups of fish (20 individuals per replicate with initial mean weight 6.00 g) were fed with each diet for 8 weeks. Best growth performance of fish was detected in 56.10% CP diet. The specific growth rate (SGR) significantly elevated with increasing dietary CP level to 50.71%, but there was no significant difference thereafter (p < .05). The feed conversion ratio (FCR) decreased significantly with dietary CP levels from 33.01% to 56.10% (p < .05). Glucose (GLU) and total protein (TP) concentrations in plasma had an increasing trend with dietary protein increasing. In the 33.01% CP group, plasma triglyceride (TG) content was significantly higher (1.67 mmol/L) than that in other dietary treatments (0.65–1.14 mmol/L). The lowest alanine transaminase (ALT) activity was observed in the 56.10% CP group (163.16 U/L). Crude lipid content in the muscle and liver was significantly elevated with increasing dietary protein levels (p < .05). The glycogen content in the liver decreased significantly as CP levels increased (p < .05). The fish fed diet with higher CP level (56.10% and 63.09%) had significantly higher energy retention (ER) and lipid retention (LR) than other treatments. Based on the broken‐line regression analysis of SGR and FCR, the optimal dietary protein requirement for juvenile kelp grouper is 54.61%–56.22%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号