首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth, feed efficiency and proximate and lipid class composition of subadults Octopus vulgaris (788 ± 133 g; 18.5°C) fed formulated diets of low lipid (LL: 8 g kg?1) and high lipid levels (HL: 84 g kg?1) and each one of these with three different levels of glutamate supplementation (0, 5 and 20 g kg?1) were compared. All the animals accepted the diets with a survival of 100%. The addition of glutamate did not stimulate feeding rates in any of the assays (2.48–2.64 and 1.86–2.01%Body weight day?1 for LL and HL, respectively; P > 0.05). The best growth, feed efficiency and protein productive value were observed in the groups fed 5 or 20 g kg?1 glutamate supplementation at both lipid levels, with significant differences for LL diet (P < 0.05). A better feed efficiency was achieved with the HL diet (14.6–27.5% vs. 2.5–19.2% for LL diet). There were no significant differences in the proximate composition of carcass (animal excluding the digestive gland). However, a substantial amount of lipids accumulated in the digestive gland, mainly triglycerides, was detected as a consequence of higher lipid ingestion or glutamate supplementation. It was notable the lower percentages of phosphatidylethanolamine and phosphatidylcholine in the digestive gland of animals with best growth.  相似文献   

2.
The combined effects of temperature (18–34°C) and light intensity (100–1,800 lx) on the vitellus utilization, duration of vitelline absorption and larval growth in Pseudobagrus ussuriensis were studied under laboratory conditions using a central composite design and response surface methodology. The results showed that the first‐ and second‐order effects of temperature and light intensity were significant (< 0.05), the interactive effect between temperature and light intensity was non‐significant (p > 0.05) and the effects of light intensity were greater than that of temperature. Predicated on the reliable models of vitelline utilization regarding temperature and light intensity, the optimal rearing environment shaped by a temperature/light intensity of 25–26°C/1,030 lx (12.98 μmol m?2 s?1) was obtained via model optimization. Verification results attained under laboratory conditions showed that vitelline utilization was most efficient at these optima. The application of the environmental optima would contribute to refining the seed quality in the larviculture of this species.  相似文献   

3.
In order to optimize the optimal cultivation conditions of freshwater algae Desmodesmus armatus for biomass production. In this study, the optimum source of carbon, nitrogen and intensity of light were investigated. Particularly, the variables which are affect the biomass of D. armatus was screened by the Plackett‐Burman (PB) method. Furthermore, the optimized medium composition using central composite design (CCD) of response surface method (RSM) central for D. armatus was reconstituted accordingly to have 0.93 g/L nitrate, 0.04 g/L phosphate, 0.15 g/L magnesium sulphate and 0.07 g/L bicarbonate, and optimum growth conditions of temperature at 27°C, light intensity of 108 μmol m?2 s?1, pH 7.00 and air flow of 0.50 L/min. After 12 days, the biomass, protein and polysaccharose content were 1.65 ± 0.15 g/L, 53.61 ± 1.25% and 6.15 ± 0.43%, respectively. Finally, the optimized conditions were applied to the outdoor 800‐L photobioreactor for scale‐up cultivation.  相似文献   

4.
Photosynthetic activity of Zostera japonica seedlings was measured using a gas volumeter at 0 and 6 days in culture under eight light (0–800 μmol photons/m2/s) and ten water temperature conditions (5–35°C). Seedlings from Ago Bay, Mie Prefecture were cultured in incubators accurately controlled at each test temperature for 1 week. After 1 week, maximum gross photosynthesis (P maxg) appeared at 29°C and most seedlings cultured at 30–35°C bleached and withered. At the same time, the light compensation point (I c) increased only at 30°C during the culture period. As a result, the upper critical water temperature for survival was 29°C in Z. japonica seedlings, which agrees well with that for the southern boundary of Z. japonica around Japanese coast. It is necessary to monitor this species around this boundary as a bio-indicator for seawater warming.  相似文献   

5.
The red alga Chondria crassicaulis has a wide‐ranging bioactive chemical composition and is used as a local foodstuff, representing a potentially new cultivar in Korea. The cultivation techniques were developed by examining the monthly changes in frond weight in a field population of C. crassicaulis from November 2016 to October 2017. For seedling production, temperature and irradiance effects on the attachment and growth of vegetative propagules of C. crassicaulis were evaluated. In addition, effects of day length and salinity on the propagule growth were examined. C. crassicaulis is a year‐round species with a maximum frond wet weight of 817 mg observed in July 2017, as seawater temperature increases to 20°C. The attachment of vegetative propagules was significantly affected by temperature and irradiance, with maximal values detected at 20–25°C and 60 µmol photons m?2 s?1. The relative growth rates of vegetative propagules of C. crassicaulis were the highest at 20–25°C, 60 µmol photons m?2 s?1, and a salinity of 25 psu. In conclusion, due to its tremendous tolerance under variable environmental conditions, the vegetative propagules of C. crassicaulis can be used as seedlings for mass cultivation.  相似文献   

6.
This study investigated short‐term effects of increasing water temperature from 27 to 41°C on survival and feed consumption of Penaeus indicus at three different ages: PL25 (postlarvae 25 days old), PL50 and PL90. For each age group, water temperature was maintained at 27°C in the control, but increased to 32, 35, 38 and 41°C at a rate of 1°C every eight hours. The temperature was then kept stable until the end of the 7‐day experiment. Results showed that increasing water temperature affected both survival and feed consumption of the experimental shrimps (p < .01). Survival was highest at 32 and 35°C ranging from 93.8% to 100%, but significantly reduced to 40.0%–81.6% at 38°C. No shrimp survived the 41°C treatment. PL25 were more tolerant to 38–41°C than PL50 and PL90 in terms of survival. Increasing water temperature had no effects on feed consumption of PL25 (p > .05). For PL50 and PL90, feed consumption significantly increased at 38 and 41°C (p < .01) and was similar within the range of 27–35°C. This study suggests that P. indicus in tropical areas can tolerate water temperatures of at least 35°C and should be considered for farming during the summer time.  相似文献   

7.
8.
The effect of temperature on the food consumption rate and the digestive enzyme activities of Clarias batrachus (80.60 ± 5.34 g) were evaluated. Fish were exposed to six different temperatures of 10, 15, 20, 25, 30 and 35 °C following an acclimation temperature of 25 °C. The rate of temperature change was 2 °C day?1. Highest food consumption was recorded at 25 °C. It gradually reduced with decreasing water temperature. Food consumption rate was significantly (< 0.05) lower at 10 °C compared with other treatments. Hence, 46.67, 8.20–23.58 and 1.02–6.15% reduced food consumptions were recorded in groups exposed at 10, 15 and 20 °C temperatures, respectively, compared with the 25 °C. The consumption rate was not affected in fish exposed at 30 and 35 °C. Total protease, trypsin and chymotrypsin activities were significantly (< 0.05) higher in fish exposed at 25 °C compared with others. Lipase activity was significantly (< 0.05) higher in fish exposed at 30 °C compared with others. Lowest enzyme activities were recorded at 10 °C. Water temperature below 25 °C affected the food consumption and digestive enzyme activities in fish that served as indicators of stress in fish.  相似文献   

9.
10.
In order to clarify the respiratory responses strategy of Amur sturgeon Acipenser schrenckii exposed to water temperature changes, respiratory parameters of the fish were studied under two temperature regimes: fish acclimated at 13°C for Group I, temperature was increased to 16°C, 19°C, 22°C and 25°C and then returned stepwise to 22°C, 19°C, 16°C and 13°C; and fish acclimated at 25°C for Group II, the water temperature was reduced in steps to 22°C, 19°C, 16°C and 13°C, subsequently, returned to 16°C, 19°C, 22°C and 25°C. The results showed that the respiratory frequency (fR), oxygen consumption rate (VO2) and gill ventilation (VG) of the fish were directly dependent on the acute temperature in both acclimation groups (p < .05). The initial 25°C VO2 in Group II was significantly higher than the initial 13°C VO2 in Group I (p < .05), but was significantly lower than that at 25°C in Group I (p < .05). In Group I, respiratory stroke volume (VS.R) of fish significantly increased or decreased with the acute temperature increases or decreases, respectively (p < .05); oxygen consumption efficiencies (EO2) of fish did not significantly show differences when temperature increased to 25°C from 13°C (p > .05), but the EO2 significantly declined while returning to acclimation temperature (p < .05). In Group II, the VS.R of the fish did not significantly change with acute temperature fluctuations between 25 and 13°C (p > .05), while the EO2 increased with acute temperature increases (p < .05). The Q10 values for fR, VO2, VS.R, VG and EO2 were 1.53–1.72, 1.92–2.06, 1.07–1.60, 1.78–2.44 and 1.11–1.65 at 13–25°C of temperature interval respectively. Amur sturgeon showed partial metabolic compensation to temperature changes. The study results suggest that the ability of Amur sturgeon to regulate metabolism in response to acute temperature changes makes this species good adaptability in the aquaculture rearing.  相似文献   

11.
The physiological responses of the juvenile Crassostrea nippona in terms of filtration, oxygen consumption and ammonia excretion to changes in temperature (16–32°C), salinity (15–35 psu) and body size (small, medium and large) were investigated. In this study, the values of filtration rate (FR), oxygen consumption rate (OCR) and ammonia excretion rate (AER) increased with temperature rising from 16°C to 24°C, reaching the highest values at 24°C and 28°C; with any further increase in temperature above this limit, these values decrease drastically (p < .05). The highest Q10 coefficients were 2.75 for large, 3.54 for medium at 16–20 and 3.47 for small size at 20–24°C respectively. Moreover, the responses of FR and OCR were found to be influenced significantly by salinity, tending to increase concomitantly with salinity up to 25–30 psu, though the values of these parameters were diminished dramatically (p < .05) above this level, showing a reverse pattern from that observed in AER, which firstly decreased to the lowest level at 25 and 30 psu, and then severely (p < .05) increased to the highest level at 35 psu. In addition, the low O:N ratios of all sizes of C. nippona at 16°C and 30–35 psu were indicative of a protein‐dominated catabolism, whereas the O:N ratios of large size at 20–32°C and all sizes at 20–30 psu, indicating that the metabolic energy from protein diminished and lipid and carbohydrate were used as the energy substrates. Physiological rates of C. nippona were well correlated with its size. The average values of mass exponents (b‐values) estimated in the present study were 0.657 for OCR and 0.776 for AER at different temperatures, and 0.647 for OCR and 0.767 for AER at varying salinities, signifying that physiological process of C. nippona becomes relatively slower with increasing body size regardless of temperature or salinity. Finally, our results confirm that the optimal temperature and salinity for juvenile C. nippona lie within 24–28°C and 25–30 psu respectively. The results of physiological traits in response to environmental factors of this species are informative in site selection for the cultivation.  相似文献   

12.
The current study investigates whether it is possible to increase the meat content of captive male king crab (Paralithodes camtschaticus) (average = 2.2 kg) by feeding manufactured diets at different temperatures (4°C, 8°C and 12°C). A 110 days trial was undertaken with groups of male king crabs held in 12 land‐based holding tanks. All crabs survival in the lowest temperature treatment, one animal died in the medium‐temperature group (8°C) and four animals in the highest temperature treatment (12°C). The results showed that feed intake increased with increasing temperature from an average of 1.0 g kg?1 day?1 at 4°C to 2.8 g kg?1 day?1 crab at 12°C. The percentage meat content was significantly higher at the final census (60.0%) compared with the initial census (37.5%) in all temperature groups, but there were no significant differences in the percentage meat content of the king crabs held in the different temperature treatments at the conclusion of the experiment. Oxygen consumption was also significantly affected by temperature and increased with increasing temperature. The results of the experiment show that the optimal temperature to maintain, and enhance, the meat content of king crab is close to 4°C.  相似文献   

13.
Juvenile mirror carp were fed diets containing 303.4, 321.7, 341.2, 361.0 and 379.1 g kg?1 proteins, respectively, and reared at different water temperatures (18, 23 and 28°C) for 60 days. Gene expression of heat shock protein gene (Hsp70) and the warm temperature acclimation‐related 65 kDa protein gene (Wap65), immunity and antioxidant status in the carp were investigated. Results indicated that the contents of serum complement 3 (C3), complement 4 (C4) and immunoglobulin M (IgM), as well as activities of liver superoxide dismutase (SOD) and lysozyme (LSZ) were significantly enhanced with increasing dietary protein (< 0.05), while content of malondiadehyde (MDA) decreased. Gene expression level of Wap65 in the liver significantly increased with dietary protein, while gene expression of Hsp70 decreased. The contents of C3, C4 and IgM, the activities of SOD and LSZ and gene expression level of Wap65 in the liver significantly increased with temperature. These results suggest that: Serum immune parameter, antioxidant enzymes and Hsp70 and Wap65 expression interact in fish to improve ability to adapt to the environment; and the optimal conditions for the immunity of carp are 348.1?354.5 g kg?1 protein at 18°C, 352.3?364.9 g kg?1 at 23°C and 360.2?364.3 g kg?1 at 28°C, and the optimum temperature for carp is 23°C.  相似文献   

14.
The effect of incubation temperature on embryonic development and yolk‐sac larva of the Pacific red snapper Lutjanus peru were evaluated by testing the effect of 26, 28 and 30°C, as this is the natural thermal interval reported during the spawning season of Pacific red snapper in the Gulf of California, Mexico. Sixteen developmental stages were observed. The incubation temperature affected the rate of development and time to hatching, being shorter at 30 than at 26°C, but no significant effect (P < 0.05) on larval length at hatching was registered. The depletion rate of yolk sac and oil globule was affected by incubation temperature particularly during the first 12 h post hatching (hph). At the end of the experiment (48 hph), significantly (P < 0.05) larger larvae were recorded at 26°C (TL = 3.22 ± 0.01 mm) than at 28° (TL = 3.01 ± 0.02 mm) and 30°C (TL = 2.97 ± 0.05 mm). Incubation of newly fertilized eggs at 26°C produces larger larvae, which may help to improve feeding efficiency and survival during first feeding.  相似文献   

15.
This study reports a year‐round recruitment of spat of four commercial bivalve species; Pteria sterna, Euvola vogdesi, Pinctada mazatlanica and Pinna rugosa collected in the region of Puerto Peñasco, north‐eastern coast of the Gulf of California. Bimonthly recruitment of commercial bivalve spat on netlon® collectors was evaluated for six sites from June 2007 to August 2008. To describe spat recruitment abundances with environmental parameters, sea surface temperature (°C) and surface chlorophyll a concentration (mg m?3) were characterized by means of monthly Aqua/MODIS satellite data. For each species a repeated measures anova was used to evaluate differences in the number of spat between months, sites and depths. Maximum sea surface temperature was recorded in August–September (~31.5°C) and the minimum in January–February (~15°C), while the minimum surface chlorophyll a was observed in June–September (mean range = 1.5–2 mg m?3) and the maximum in January–March (mean range = 2–5 mg m?3). Spat recruitment showed distinct patterns; P. sterna can be characterized as having a Winter–Spring pattern, E. vogdesi a winter pattern, while P. mazatlanica and P. rugosa a summer spat recruitment pattern. This information constitutes part of the fundamental data needed for the development of aquaculture and conservation initiatives in the region based on wild spat supply.  相似文献   

16.
Caspian roach (Rutilus rutilus caspicus), a spring spawning teleost, were subjected to various photoperiod and temperature regimes to study the feasibility of shifting the timing of spawning for artificial propagation purposes. A total of 650 female reproductively mature R. rutilus caspicus were subjected to different photoperiod and temperature regimes including four light regimes (natural light (NL), 16 hr of light (L):8 hr of darkness (D), 9L:15D, 11L:13D), each affected by three temperature regimes (14, 20 and 24°C) for 70 days. Five fish per tank were randomly sampled on Feb. 10, Feb. 20, March 28, April 15 and April 30 (natural spawning time). Ovarian tissue sections were studied using light microscope and transmission electron microscope (TEM). The levels of 17‐β estradiol (E2) and 17αhydroxyprogesterone (OHP) were also measured in the serum samples. In late winter (March 28th), the gonadal maturation and spawning were accelerated in fish treated with the long day length (16L/8D) and warm temperature (20°C). While, the maturation of oocytes and spawning delayed in fish exposed to low temperature (14°C) and short day length (9L/15D and 11L/13D). Photoperiod seems to play a more important role in the ovarian development of the R. rutilus caspicus compared to temperature; since even among the fish treated with the lowest temperature (14°C), those exposed to a longer day length (16L/8D), matured and spawned earlier than the others. Considering that the earliest spawning occurred in R. rutilus caspicus treated with 16L/8D at 20°C and the latest spawning occurred in fish exposed to low temperature and short photoperiod, it can be concluded that temperature and photoperiod play an important role in accelerating oocyte maturation and spawning.  相似文献   

17.
As a crucial step in developing a bioenergetics model for Pacific Chub Mackerel Scomber japonicus (hereafter chub mackerel), parameters related to metabolism, the largest dissipation term in bioenergetics modelling, were estimated. Swimming energetics and metabolic data for nine chub mackerel were collected at 14°C, a low temperature within the typical thermal range of this species, using variable‐speed swim‐tunnel respirometry. These new data were combined with previous speed‐dependent metabolic data at 18 and 24°C and single‐speed (1 fork length per second: FL/s) metabolic data at 15 and 20°C to estimate respiration parameters for model development. Based on the combined data, the optimal swimming speed (the swimming speed with the minimum cost of transport, Uopt) was 42.5 cm/s (1.5–3.0 FL/s or 2.1 ± 0.4 FL/s) and showed no significant dependence on temperature or fish size. The daily mass‐specific oxygen consumption rate (R, g O2 g fish?1 day?1) was expressed as a function of fish mass (W), temperature (T) and swimming speed (U): R = 0.0103W?0.490 e(0.0457T) e(0.0235U). Compared to other small pelagic fishes such as Pacific Herring Clupea harengus pallasii, Pacific Sardine Sardinops sagax and various anchovy species, chub mackerel respiration showed a lower dependence on fish mass, temperature and swimming speed, suggesting a greater swimming ability and lower sensitivity to environmental temperature variation.  相似文献   

18.
The interactive effects of salinity and temperature on development and hatching success of lingcod, Ophiodon elongatus Girard, were studied by incubating eggs at four temperatures (6, 9, 12 and 15°C) and five salinities (15, 20, 25, 30 and 35 g L?1). Hatch did not occur in any of the 15°C treatments. Degree days (°C days) to first hatch was not influenced by temperature or salinity, however, calendar days to first hatch differed significantly for temperature (P<0.0001, 61±1, 44±1 and 35±1 days for 6, 9 and 12°C respectively). Degree days to 50% (427.1±4.2) hatch was not significantly influenced by temperature but was by salinity (P=0.0324). Viable hatch (live with no deformities, 74.1±4.0%) was greatest at 9°C and 25 g L?1 but not significantly different in the range of 20–30 g L?1. Larval length (9.4±0.13 mm) was greatest at 9°C and 20–30 g L?1. Temperature and salinity significantly influenced all categories of deformities with treatments at the upper (12°C and 35 g L?1) and lower limits (6°C and 15 g L?1) producing the greatest deformities. The optimal temperature and salinity for incubating Puget Sound lingcod eggs was found to be 9°C and 20–30 g L?1.  相似文献   

19.
In a small‐scale culture experiment, larval haddock, Melanogrammus aeglefinus L., were raised under various combinations of light quality [blue (470 nm), green (530 nm) or full‐spectrum white light] and light intensity [low (0.3–0.4 µmol  s?1  m?2) or high (1.7–1.9 µmol  s?1  m?2)], and in total darkness (both fed, and starved). Larval growth (0.9% day?1 in standard length; 2.4% day?1 in body area) was not significantly different between any combination of coloured light. At the time of total mortality in the starved treatment, survival was significantly reduced under low intensity, full‐spectrum white light (13%) vs. all other coloured light treatments (68%). Larvae raised under both continuous dark treatments (fed and starved) exhibited morphological changes associated with irreversible starvation (point‐of‐no‐return). Lack of a pronounced effect of light quality on larval haddock growth probably results from a combination of plasticity in early larval vision, and enhanced encounter rates between larvae and prey at the relatively high prey densities used in aquaculture.  相似文献   

20.
We evaluated the effect of high temperature on Apostichopus japonicus gametes. Gametes were exposed to the optimal temperature (18°C; control) or one of six high temperature treatments (26, 27, 28, 29, 30 and 31°C) and the cleavage rate (CR) of fertilized eggs was measured as an indication of fertilization ability. At control temperatures (18°C), the male and female gametes had high fertilization ability (CR ≥95.0%) in 5 h and the time at which 50% of gametes lost the ability to successfully fertilize (LT50) was 7.03 h. All gametes were non‐viable after 9 h. When male and female gametes were both exposed to high temperature, the LT50 was lower than that when female or male gametes were treated individually at the same high temperature (P < 0.05). The LT50 was lower for male gametes treated alone than for female gametes treated alone. In conclusion, exposure to high temperature results in a decline in fertilization ability of A. japonicus gametes, and this decline was more rapid at higher temperature. The female gametes were more resistant to high temperatures than male gametes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号