首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Growth and digestibility trials were conducted to evaluate the use of flash dried yeast (FDY) as a supplement in practical shrimp feeds. The six‐week growth trial evaluated the effects of FDY supplementation (0, 10, 20, 40 and 60 g kg–1) in the plant‐based practical diet on the performances and proximate compositions of juvenile Pacific white shrimp, Litopenaeus vannamei. Final biomass, final mean weight, per cent weight gain (WG), feed conversion (FCR) and protein retention efficiency (PRE) of Pacific white shrimp were not significantly influenced when FDY was added up to 40 g kg–1 of the diet. However, 60 g kg–1 FDY supplementation significantly reduced growth, feed utilization and protein retention. Supplementation of FDY in the practical diets of Pacific white shrimp did not affect protein, moisture, lipid, crude fibre, and ash content of whole shrimp body. Apparent digestibility coefficients of energy, protein, and amino acid (AA) for FDY were determined using chromic oxide as an inert marker and the 70:30 replacement technique. The energy and protein digestibility of FDY were 38.20% and 53.47%, respectively, which were significantly lower than fishmeal (FM) and soybean meal (SBM) that were run at the same time. Most amino acid digestibility of FDY was lowest among the three ingredients tested. Results of this work indicated that energy, protein and amino acid digestibility of FDY are lower compared to SBM and FM, and high levels supplementation (≥60 g kg–1) of FDY can cause negative effects to the growth response of Pacific white shrimp. Based on these results, further research regarding the effects of the low level inclusion of FDY in practical diets on immune responses of Pacific white shrimp is warranted.  相似文献   

2.
A digestibility trial was conducted to determine apparent digestibility coefficients of dry matter, protein, energy and amino acids of animal, plant and microbial ingredients for Pacific white shrimp, Litopenaeus vannamei. The tested ingredients included traditional soybean meal (TSBM), PepsoyGen soybean meal (PSBM), NutriVance soybean meal (NSBM), fish meal (FM), poultry meal (PM), squid hydrolysis (SQH), scallop hydrolysis (SCH), flash dried yeast (FDY), two batches of Ulva meal (UMF and UMS) and bacteria biomass (BB). A basal diet was formulated and produced along with the experimental diets which included 300 g/kg of each ingredient and 700 g/kg of the basal diet. Juvenile shrimp (initial mean weight: 12 g, six shrimp/tank, n = 3) were stocked in a recirculation system. Apparent dry matter, protein and energy digestibility coefficients ranged from ?40.11% to 78.51%, 15.17% to 97.03% and 13.33% to 82.56% among different protein sources, respectively. In general, protein and energy digestibilities in soy sources (77.6% to 97.03% and 62.77% to 82.56%, respectively) are higher than the tested animal protein (51.39% to 71.41% and 45.29% to 69.77%, respectively) and single‐cell protein sources (15.17% to 53.47% and 13.33% to 40.39%, respectively). Among the three soybean sources, TSBM showed highest protein and energy digestibility. Apparent individual amino acid digestibility coefficients were also variable among different types of ingredients, and there was a reasonable correspondence to protein digestibility. The most digestible feed ingredients for Pacific white shrimp in this study were conventional soybean meal (SBM) and NutriVance soybean meal (NSBM), which indicated that these ingredients are good protein and amino acid sources for Pacific white shrimp. Resultant digestibility data may provide useful information to commercial shrimp feed industry.  相似文献   

3.
A growth trial and a digestibility trial were conducted to evaluate the efficacy of carbohydrase supplemented to practical shrimp feeds. The 5‐wk growth trial investigated the effects of carbohydrase supplementation at 0, 0.01, 0.02, 0.03, 0.04, and 0.05% in soybean‐based diets on the performance of juvenile Pacific white shrimp, Litopenaeus vannamei. No significant differences were observed in final biomass, final mean weight, weight gain, feed conversion ratio, and survival across all treatments. The digestibility trial was conducted to evaluate the effects of carbohydrase supplementation at 0.02%, which is the recommended dose by the company that developed the carbohydrase on apparent digestibility coefficients of dry matter, protein, and energy of Pacific white shrimp. Protein digestibility was significantly improved when fed diets contained 0.02% carbohydrase in contrast with the basal diet. No significant differences were found in apparent digestibility coefficients of dry matter and energy. Based on the positive results on protein digestibility, further research regarding the efficacy of exogenous enzymes and their application is warranted.  相似文献   

4.
Four commercial solvent‐extracted oilseed meals/cakes, viz. soybean meal (SBM), groundnut oil cake (GNC), rapeseed meal (RSM) and sunflower oil cake (SFC), were fermented with fungus Aspergillus niger, and its effect on apparent digestibility coefficient (ADC) was studied in Penaeus vannamei. Reference diet and eight experimental diets containing 700 g/kg reference diet and 300 g/kg test ingredient with 5 g/kg chromic oxide were formulated. Each diet was randomly allotted to three tanks containing ten shrimps. Shrimps were adapted to the experimental diets for a week, and faeces were collected using Falcon tube from second week onwards. The ADC of all the ingredients significantly (p < .05) increased with fermentation and the increase being higher in SBM (78.46%–91.71%) for dry matter and in SFC (71.51%–87.02%) for protein. Analysis of variance showed that the ADC of both dry matter and protein significantly (p < .05) differed in treatments (p = <.001) and ingredients (p = <.001). The average ADC of ingredients was ranked as SBM > GNC > RSM > SFC. The most digestible essential amino acid (EAA) in fermented ingredients was methionine in SBM, arginine in GNC, valine in RSM and histidine in SFC. A better improvement in amino acid digestibility was observed in fermented SFC. Results indicated that P. vannamei efficiently digests fermented ingredients compared to unfermented ones.  相似文献   

5.
Three growth trials and a digestibility trial were designed to evaluate the efficacy of a novel bacterial biomass (BB) in commercial‐type feed formulation for Pacific white shrimp, Litopenaeus vannamei. In trial 1, the basal diet was supplemented with 0, 60 and 120 g/kg BB to replace soybean meal (SBM). Significant improvement was observed in the survival when BB was incorporated in the diets. However, shrimp fed diets containing 120 g/kg BB exhibited significantly lower weight gain (WG) and higher feed conversion ratio (FCR). To confirm the results from trial 1 and explore the effects of BB supplementation at low levels, the basal diet was incorporated with 0, 10, 20, 40, 60 and 120 g/kg BB to replace SBM in trial 2. Significant reductions in WG, FCR, lipid content of whole body, protein retention efficiency and most amino acids retention efficiency were detected in shrimp fed with diet containing 120 g/kg BB. Trial 3 was designed to elucidate whether the digestible protein is the cause of reduced growth. No improvements in terms of growth performance and FCR were detected in the treatments balanced for digestible protein. Apparent digestibility coefficients of energy, protein and amino acid (AA) for BB were determined using chromic oxide as an inert marker and the 70:30 replacement technique. The energy, protein and individual amino acid digestibility coefficients of BB were significantly lower than those of fish meal (FM) and SBM that were given at the same time. Results of this study indicated that BB can be utilized up to 40 g/kg in shrimp feed without causing a decrease in growth. However, supplementations (≥60 g/kg) of BB can result in negative effects on growth response, FCR and protein as well as amino acids retention efficiency. At the lower levels of inclusion, shrimp performance was improved when BB was supplemented on a digestibility basis; however, at the higher level of inclusion, there was no improvement, indicating there may be other nutrients limiting. Based on enhanced survival in the treatment with BB supplementation in trial 1, further research regarding the immune effects of BB in practical shrimp feed will be necessary.  相似文献   

6.
An 8‐week growth trial was conducted to evaluate the efficacy of crystalline methionine (C‐Met) or microencapsulated methionine (M‐Met) in practical diets for Pacific white shrimp Litopenaeus vannamei. A high fishmeal reference diet was formulated with 15% fishmeal, and then, soybean meal (SBM) was used to replace 50% fishmeal as a low fishmeal basal diet (7.5% fishmeal). Graded levels (0.1%, 0.15% and 0.2%) of methionine originating from C‐Met or M‐Met were added to the basal diet. Each diet was randomly assigned to three tanks (40 shrimps per tank) in an indoor flow through seawater system. The results showed that the shrimp fed the basal diet with 0.15% or 0.20% methionine originating from 0.375% or 0.5% M‐Met had significantly higher final weight and weight gain as compared to shrimp fed the basal diet. The supplementation M‐Met in the basal diets resulted in increased serum ammonia in shrimp. Hepatopancreas amylase activity of shrimp showed a decreasing trend with increasing methionine supplementation, which is in contrast with the upswing trend in trypsin at pancreatic segment. This study indicated that the diets supplemented with 0.15% or 0.20% of methionine from M‐Met (0.58% or 0.65% of dietary methionine respectively) were effective in improving the nutritional value of SBM‐based diets deficient in methionine (0.48%) for the Pacific white shrimp.  相似文献   

7.
This study was designed to evaluate the efficacy of eight sources (designated A–H) of soybean meal (SBM) which included six new non‐genetically modified soya varieties in practical feed formulation for Pacific white shrimp, Litopenaeus vannamei, using both growth and digestibility trials. A soybean meal‐based reference diet was formulated using conventional soybean meal (527 g kg?1 diet), which was then replaced on an isonitrogenous basis with various other experimental soybean meals. In a 6‐week growth trial, shrimp in four replicate tanks per dietary treatment (10 shrimp per tank, initial weight 0.52 ± 0.04 g) were cultured in a recirculating system. There were no significant differences with respects to per cent weight gain and survival across all dietary treatments; however, final weights and feed conversion ratio (FCR) were lower in shrimp offered diet 3. Apparent digestibility coefficients for the eight (A–H) different soybean meals were determined in L. vannamei for dry matter (ADMD), gross energy (ADE) and crude protein (ADP) using 10 g kg?1 chromic oxide as inert marker with 70 : 30 replacement techniques. Coefficients ranged from 71.3% to 88.3%, from 76.6% to 91.3% and from 93.6% to 99.8%, for ADMD, ADE and ADP, respectively. Improved digestibility values were observed in soybean C which was characterized by crude protein (471 g kg?1), crude fat (97 g kg?1), low cooking temperature (180 °C), higher nitrogen solubility index (689 g kg?1) and protein dispersibility index (619 g kg?1). This indicates that new lines of soybean meal can be used to improve digestibility coefficients in shrimp feeds.  相似文献   

8.
A 10‐week feeding trial was conducted to evaluate the effects of supplementing different levels of dl ‐methionyl‐dl ‐methionine (AQUAVI® Met‐Met) in plant protein–based diets on Litopenaeus vannamei. The positive control (PC) and negative control (NC) diets were designed with 20% and 8% fishmeal respectively, and other six diets were formulated with graded levels of Met‐Met from 0.05% to 0.30% with a 0.05% increment on the basis of NC diet (MM 0.05–MM 0.3). Six replicates were randomly assigned to each diet with 50 shrimp each having initial weight of 0.98 ± 0.02 g. The variation of FM concentration from 20% to 8% and supplemented with graded levels of Met‐Met did not affect the survival rate, feed conversion ratio, protein efficiency ratio, whole body and muscle proximate compositions (p > 0.05). However, diets with ≤0.20% Met‐Met supplementation resulted in significantly increased weight gain and specific growth rate, after which both parameters reached plateau. Shrimp fed the NC diet showed significantly lower total essential amino acid (EAA) content in muscle (p < 0.05). Supplementation of Met‐Met significantly improved apparent digestibility coefficients of dry matter, crude protein, lipid, phosphorus and EAAs (p < 0.05). Based on broken‐line analysis, the methionine requirement for white shrimp was estimated to be 0.87% when using Met‐Met as methionine source.  相似文献   

9.
Three six‐week growth trials and a digestibility trial were conducted to evaluate a fish meal analogue (FMA) as a replacement for fish meal (FM) in shrimp feeds. Trials 1 and 2 evaluated and confirmed the potential of FMA supplementation (0, 48.5, 97, 145.5 and 194 g/kg) as a replacement for FM up to 200 g/kg without balancing for phosphorus (P) in practical diets for juvenile Pacific white shrimp L. vannamei. At the end of trial 1, shrimp offered diets containing 48.5 g/kg FMA exhibited significantly higher weight gain (WG) than those fed with the diet containing 145.5 g/kg FMA. At the end of trial 2, dietary FMA inclusion at 48.5 and 97 g/kg significantly improved WG and protein retention (PR), while reducing FCR and protein content of shrimp body compared to the diet containing 194 g/kg FMA. To determine whether P deficiency is the cause of reduced growth, the third trial was conducted utilizing equivalent diet but balanced for P. At the end of trial 3, shrimp fed diet containing 48.5 g/kg FMA+P showed significantly higher WG and PR than those fed diet containing 145.5 g/kg FMA+P. No decreasing trend of growth was detected in the diets containing FMA compared to the FM‐based diet. Apparent digestibility coefficients of dry matter, energy, protein and amino acids of FMA were determined using chromic oxide as an inert maker and the 70:30 replacement technique. The energy, protein and individual amino acid digestibility of FMA were significantly lower than those of soybean meal and FM which were run at the same time. Results of this work indicate that FMA can replace up to 200 g/kg FM in shrimp diets with supplemental inorganic P. Given the good growth across the range of inclusion without any indication of a growth depression, the low nutrient digestibility of FMA may be due to an atypical response or the product simply does not work with the testing technique.  相似文献   

10.
A feeding trial was conducted to assess the effects of dietary Schizochytrium meal supplementation on survival, growth performance, activities of digestive enzymes and fatty acid composition in Pacific white shrimp (Litopenaeus vannamei) larvae (initial body weight 4.21 ± 0.10 mg). Four isonitrogenous and isolipidic diets were formulated to contain graded levels of Schizochytrium meal: 0% (S0, the control diet), 2% (S2), 4% (S4) and 6% dry matter (S6). Results showed that there was no significant difference in survival of shrimps among dietary treatments (> 0.05). Shrimps fed diets with 2% and 4% microalgae meal had significantly higher specific growth rate (SGR) than that of shrimps fed diets with 0% and 6% microalgae meal, and no significant differences were observed between shrimps fed diets with 2% and 4% microalgae meal (> 0.05). Activity of trypsin in the pancreatic and intestinal segments, and activity of amylase in the pancreatic segments were not significantly affected by dietary microalgae meal levels (> 0.05). Specific activities of both alkaline phosphatase and leucine‐aminopeptidase in intestine and purified brush border membrane of intestine were significantly higher in shrimps fed diet with 2% microalgae meal (< 0.05). There were no significant differences in C18:2n‐6, n‐3 fatty acids, n‐6fatty acids, PUFA and n‐3/n‐6 in muscle samples among dietary treatments. C16:1n‐7, C18:1n‐9, MUFA, C18:3n‐3 and C20:5n‐3 decreased, however, C20:4n‐6 increased in the muscle as dietary microalgae meal level increased. In conclusion, 4% Schizochytrium meal in microdiets of shrimps can improve growth performance and may be a valuable additive in the microdiets of shrimps.  相似文献   

11.
An 8‐week feeding trial was conducted to evaluate the effects of replacing fish meal (FM) with soybean meal (SBM) and peanut meal (PM) on growth, feed utilization, body composition and haemolymph indexes of juvenile white shrimp Litopenaeus vannamei, Boone. Five diets were formulated: a control diet (FM30) containing 30% fish meal and four other diets (FM20, FM15, FM10 and FM5) in which protein from fish meal was substituted by protein from SBM and PM. The dietary amino acids of diets FM20, FM15, FM10 and FM5 were equal to those of the diet FM30 by adding crystalline amino acids (lysine and methionine). Each diet was randomly assigned to triplicate groups of 30 shrimps (initial weight = 0.48 g), each three times daily. The results indicated that shrimp fed the diets FM15, FM10 and FM5 had poor growth performance and feed utilization compared with shrimp fed the control diet. No difference was observed in feed intake, survival and body composition among dietary treatments. The plasma total cholesterol level of shrimp and the digestibility of dry matter, protein and energy contained in the diets decreased significantly with increasing PM and SBM inclusion levels. Results of this study suggested that fish meal can be reduced from 300 to 200 g kg?1 when replaced by a mixture of SBM and PM.  相似文献   

12.
The effects of fructooligosaccharide (FOS) on growth performance, immunity and predominant autochthonous intestinal microbiota of shrimp (Litopenaeus vannamei) fed diets with fish meal (FM) partially replaced by soybean meal (SBM) were evaluated. After acclimation, shrimps (1.82 ± 0.01 g/kg) were allocated into 15 tanks (25 shrimps per tank) and fed five different diets including positive control diet (C0, containing 250 g/kg FM and 285 g/kg SBM), control diet (C, containing 125 g/kg FM, 439 g/kg SBM) and three experimental diets supplemented with 1.0 g/kg FOS (T1), 2.0 g/kg FOS (T2) and 4.0 g/kg FOS (T3) to control diet (C) respectively. Shrimps were fed diets to apparent satiation three times per day, and 15 shrimps from each aquarium were randomly sampled and analysed at the end of the 6‐week feeding trial. The results showed that FBW, WGR, SGR and SR decreased, while FCR and FI increased significantly in control (C) compared with positive control (C0). Besides, significantly decreased trypsase and lipase activities, and SOD, AKP and ACP activities were recorded in control (C) compared with positive control (C0). On the other hand, significantly improved SGR and decreased FCR were observed in groups T1, T2 and T3 compared with control (C). Moreover, lipase and amylase activities enhanced significantly in group T3 compared with the control (C), while GOT and GPT activities dropped significantly with the increment supplementation of FOS in diets. Compared with the control (C), SOD activity enhanced significantly and MDA level decreased significantly in groups T2 and T3, and improved AKP and ACP activities were observed in group T3. In addition, dietary FOS improved the microbial diversity, and suppressed several potential pathogens, such as Vibrio tubiashii, Vibrio parahaemolyticus and Photobacterium damselae‐like strains in the intestine of shrimp. Overall, these results proved FOS could relieve the side effects induced by SBM and supported the use of 2.0–4.0 g/kg FOS in shrimp diets with FM partially replaced by SBM.  相似文献   

13.
The main objective of this study was to evaluate the effect of methionine supplementation when reducing fishmeal levels in diets for white shrimp (Litopenaeus vannamei). Tested diets consisted of a positive control with 260 g/kg fishmeal (D1), two negative controls with 100 g/kg fishmeal and no amino acid (AA) supplementation (D2) or supplemented with lysine but not methionine (D3), and four additional diets with 100g/kg fishmeal supplemented with increasing levels of DL‐Met (1.0, 2.0 or 3.0 g/kg) (D4, D5, D6) or Met‐Met (1.0 g/kg) (D7). Each diet was fed to four groups of 30 shrimp for 8 weeks at a daily rate of 70 g/kg body weight. Reduction in fishmeal from 260 g/kg down to 100 g/kg did not significantly affect survival rate, feed conversion ratio (FCR), protein efficiency ratio (PER) or protein retention efficiency (PR%) of white shrimp. However, growth performance (final body weight, FBW; weight gain, WG; specific growth rate, SGR) was reduced when dietary fishmeal level was reduced from 260 g/kg (D1) to 100 g/kg without methionine supplementation (D2). The growth performance (FBW, WG and SGR) of shrimp was significantly increased by supplementation of the 100 g/kg fishmeal diet with increasing levels of DL‐Met (< .05). Same performance as positive control (D1) was achieved with diets containing 100 g/kg fishmeal and supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. The highest values of growth performance (FBW, WG and SGR) were found in shrimp fed D6 and D7 diets, which were significantly higher than those of shrimp fed D2 and D3 diets (< .05) but without statistical differences with shrimp fed D1, D4 and D5 diets (> .05). The highest values of whole‐body and muscle protein contents were found in shrimp fed D1 diet, which were significantly higher than those of shrimp fed all other diets (< .05). The highest value of intestinal tract proteolytic enzyme activity was found in shrimp fed Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) and 3 g/kg DL‐Met‐supplemented diet (D6) (< .05). The highest values of apparent digestibility coefficients (ADCs) of dry matter and crude protein were found in Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) (< .05). Shrimp fed the D1 diet showed the highest value of total essential amino acid (EAA) and was significantly higher than shrimp fed D2–D3 (< .05) but without significant difference with shrimp fed D4–D7 (> .05). In conclusion, results showed that same performance can be achieved with diets containing 260 or 100 g/kg fishmeal supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. Moreover, supplementation of limiting methionine in low‐fishmeal diets seems to improve the digestive proteolytic activity, improving digestibility of dry matter and protein, and eventually to promote growth of juvenile white shrimp in fishmeal reduction diets.  相似文献   

14.
Solvent extracted soybean meal (SBM) is generated using different varieties of soybeans grown under a range of conditions and then processed at different crushing plants. Due to its competitive cost and availability, it is a popular plant‐based protein source for shrimp feed formulations. However, there is limited information about effects of variations in the nutritional composition of soybean meal have on performances of shrimp. Hence, the present study was designed to determine the effects of different soybean sources on the growth performances of Litopenaeus vannamei. Two growth trials were conducted with iso‐nitrogenous and iso‐lipidic (350 g/kg protein and 80 g/kg lipid) test diets formulated with 25 sources of soybean meal. Trial one incorporated 14 treatments including a soy‐based diet containing 517 g/kg SBM (eight replicates) and this soy source was then replaced with 13 different soybean sources (four replicates per treatment). The second trial used the same basal diet and 11 different sources of soybean meal (Total 12 diets) with five replicates per treatment. Both growth trials were conducted with a stocking density of 10 shrimps/aquarium in a semi‐closed recirculating system and the initial weight of shrimps for trials 1 and 2 were 0.23 g ± 0.02 and 0.67 g ± 0.02 respectively. During the two trials, shrimp were fed four times/day assuming a FCR of 1.8, over 42 days for trial 1 and 35 days for trial 2. Results indicated that there are differences among sources of soybean meal for standardized percentage TGC. Diet 21 that contained SBM4550 had the largest value for TGC whereas the lowest value for TGC was observed for shrimp fed diet 17 that contained SBM45536. According to the statistical analysis that was used to interpret the growth performance data from the complete chemical profile of the SBM, phosphorous, phytate‐phosphorous and total phytic acid levels had positive correlations (p < 0.005) with TGC whereas raffinose (= 0.086) had a negative correlation with TGC. Results of this work indicates phosphorous, phosphorous in phytic acid and total phytic acid and raffinose are important components in SBM that may have significant effects on the growth performances of pacific white shrimp.  相似文献   

15.
A growth trial and a digestibility trial were conducted to evaluate the efficacy of phytase supplemented to practical shrimp feeds. The 5 weeks growth trial evaluated the effects of phytase supplementation in replete phosphorus (P) diets on the performances and compositions of juvenile Pacific white shrimp, Litopenaeus vannamei. No significant differences were observed in final biomass, final mean weight, weight gain, feed conversion ratio (FCR), protein retention and survival across all the treatments. Shrimp reared on the P deficient diet had significantly higher P retention and lower whole body P levels as compared to shrimp fed the other diets. Copper content in the whole shrimp body was significantly increased in the treatment supplemented with 1,000 IU kg?1 feed phytase. The digestibility trial was conducted to study the combined effects of phytase supplementation levels and diet type (plant‐based versus fishmeal‐based) on apparent digestibility coefficients of Pacific white shrimp, Litopenaeus vannamei. There were no effects of diet type so the data was combined. Phytase incorporation at both 500 and 2,000 IU kg?1 significantly improved protein digestibility, whereas P digestibility was enhanced when 2,000 IU kg?1 phytase was supplemented to the diet. Apparent digestibility coefficients of alanine, arginine, aspartic acid, cysteine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, ornithine, phenylalanine, proline, serine, threonine, tyrosine and valine were significantly increased when fed diets contained 500 and 2,000 IU kg?1 phytase supplementation. Results of this work demonstrate that under the conditions of the study growth was not enhanced by phytase supplementation in P replete diets. However, nutrient retention for Cu and digestibility of P, protein and a number of amino acids were enhanced.  相似文献   

16.
An 8‐week feeding trial was conducted to evaluate the effects of replacing fish meal with soybean meal (SBM) on growth, feed utilization, and nitrogen (N) and phosphorus (P) excretion of juvenile Pseudobagrus ussuriensis (initial average weight 0.50 ± 0.00 g). Seven isonitrogenous and isolipidic diets were formulated to contain SBM to replace fish meal protein at 0% (S0), 10% (S10), 20% (S20), 30% (S30), 40% (S40), 50% (S50) and 60% (S60) respectively. To investigate the effects of supplementation with crystalline amino acid to balance diet S60, one diet was formulated to add 0.30% methionine (SM60). The results showed that there was no significant difference in weight gain among fish fed S0, S10, S20, S30 and S40 diets, however, a significant reduction in this variable occurred when 50% and 60% of fish meal protein was replaced by SBM (P < 0.05). Apparent digestibility coefficients of dry matter, crude protein and phosphorus of diets were affected by dietary SBM levels. N and P excretion indicate that fish meal replacement by SBM led to an increase in N excretion, but led to a reduction in P excretion. No differences were detected in growth, feed utilization and N and P excretion between fish feed diets S60 and SM60. The results of this study show that 40% of fish meal protein could be replaced by SBM in diets of juvenile P. ussuriensis without having a significant negative effect on growth or feed efficiency, but that higher dietary SBM levels reduce fish performance.  相似文献   

17.
A 56‐day feeding trial was conducted to investigate the effects of replacing fish meal (FM) with soybean meal (SBM) and fermented soybean meal (FSBM) on growth performance, nutrition utilization and intestinal histology of largemouth bass. The basal diet contained 350 g/kg FM (control), and then, FM was replaced with SBM or FSBM of 15%, 30%, 45% and 60% respectively. The results showed that the specific growth rate of fish fed FSBM‐60, SBM‐45 and SBM‐60 diets significantly decreased, and the feed conversion ratio of SBM‐30, SBM‐45, SBM‐60, FSBM‐45 and FSBM‐60 groups increased when compared to the control group (p < .05). The apparent digestibility coefficients of dry matter and crude protein of SBM‐45, SBM‐60 and FSBM‐60 groups were significantly lower than those of the control group (p < .05), and the substitution of FM with SBM and FSBM (45% and 60%) significantly reduced the protein retention (p < .05). Serum total protein contents of SBM‐60 and FSBM‐60 groups and serum cholesterol contents of SBM‐45, SBM‐60 and FSBM‐60 groups were significantly lower than those of the control group (p < .05). The SBM‐30 and SBM‐60 groups showed significantly higher alanine aminotransferase activity than the control group (p < .05). The intestinal histology analysis resulted that the villus length of the SBM‐60 group and the villus width of the SBM‐45, SBM‐60 and FSBM‐60 groups decreased when compared to the control (p < .05). In conclusion, FSBM could replace 30% FM in diet of largemouth bass containing 350 g/kg FM, while the substitution level of FM with SBM was only 15%.  相似文献   

18.
Numerous advanced soybean meal (SBM) products are available in the market today, which were produced through modified or improved methodologies from the traditional solvent extraction procedure, to reduce or eliminate the antinutritional factors and improve bioavailability of nutrients. Despite the higher manufacturing cost, inclusion levels of these new SBM products into fish feed formulations can still be limited due to the secondary quality characteristics caused during processing. Hence, this study was designed to evaluate the effect of differently processed SBM, on growth performances of pacific white shrimps (Litopenaeus vannamei). The growth trial was conducted with test diets formulated with two sources of solvent‐extracted (SESBM44 and SESBM49), enzyme‐treated (ETSBM), fermented SBM (FSBM) and alcohol‐extracted soy protein concentrate (SPC) as the primary protein source (650 g/kg). As per the statistical analysis, diets incorporated with SESBM44, SESBM49 and ETSBM yielded a significantly higher growth performance and lower FCR. Results of this study infer that the traditional solvent‐extracted SBM perform equally well as enzyme‐treated SBM, whereas reduced performances of the shrimp offered fermented SBM and alcohol‐extracted soy protein concentrate might be due to reduced nutrient digestibility, palatability or other nutrient shifts caused by processing.  相似文献   

19.
Apparent digestibility coefficients of dry matter (DM), crude protein, crude lipid, gross energy, phosphorus and amino acids in Peruvian fish meal (FM), fermented soybean meal, extruded soybean meal, soybean meal, peanut meal, wheat gluten meal, corn gluten meal, shrimp byproduct meal, meat and bone meal (MBM), poultry meat meal and plasma protein meal (PPM) were determined for white shrimp (Litopenaeus vannamei). A reference diet (RF) and test diets (consisting of 70% RF diet and 30% of the feedstuff) were used with 0.5% chromic oxide as an external indicator. A total of 1440 shrimp (initial mean body weight 1.05 ± 0.01 g) were randomly stocked into thirty‐six 500‐L fibreglass tanks with 40 shrimp per tank and three tanks per diet. Faeces were collected from triplicate groups of shrimp by a faecal collection vessel attached to the shrimp‐rearing tank. The shrimp were fed to apparent satiation four times a day and the feeding experiment lasted for 6 weeks. Statistics indicate that apparent DM digestibilities for white shrimp (L. vannamei) were the highest for FM, ranged 52.83–71.23% for other animal products and 69.98–77.10% for plant products. The protein and lipid from plant and animal sources were well digested by white shrimp. Apparent protein and lipid digestibility were in the range 87.89–93.18% and 91.57–95.28%, respectively, in plant products, and 75.00–92.34% and 83.72–92.79%, respectively, for animal products. The white shrimp demonstrated a high capacity to utilize phosphorus in the ingredients. The apparent phosphorus digestibility ranges of animal feedstuffs and plant feedstuffs were 58.90–71.61% and 75.77–82.30% respectively. Amino acid availability reflected protein digestibility, except that in MBM, for which the availability of some amino acid was lower, possibly due to protein damage during processing. Digestibility information could promote the use of ingredient substitution in least‐cost formulated diets for white shrimp.  相似文献   

20.
Four 70‐day growth trials were performed to investigate the effects of substitution of dietary fishmeal (FM) by soya bean meal (SBM) in different sizes of gibel carp CASIII (Carassius auratus gibelio). The initial weights of fry, juvenile, 1‐year fish and broodstock of gibel carp were 0.8, 5.0, 62.7 and 135.6 g, respectively. In each trial, eight diets were formulated to be iso‐nitrogenous and iso‐energetic, and different levels of soy bean meal protein were used to replace fishmeal protein at 0%, 20%, 40%, 60%, 80% and 100%. Another diet containing all SBM protein and supplemented with crystalline amino acids was also tested. The results showed that apparent digestibility coefficients (ADCs) of dry matter and energy decreased with SBM substitution while the ADCs of phosphorus increased. The ADCs of protein of high SBM substitution were higher than those of FM groups. Juveniles show lower ADCs than grown‐up fish. Dietary SBM substitution showed negative effects on survival, growth and feed utilization in gibel carp. One‐year fish and broodstock gibel carp have relatively higher tolerance to dietary SBM than fry and juveniles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号