首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactic acid bacteria (LAB) have a crucial role in inorganic selenium metabolism as well as their known desirable effects on fish. In this study, the synergistic effects of dietary sodium selenite and Pediococcus acidilactici on growth performance, intestinal bacterial counts, selenium bioavailability, hepatic antioxidant enzyme thioredoxin reductase activity and hepatic glycolytic enzyme activity that is hexokinase, phosphofructokinase and pyruvate kinase, and non‐specific immune response such as serum lysozyme and complements C3, C4 and ACH50 activity in rainbow trout (Oncorhynchus mykiss) were investigated. Thus, a 3 × 3 factorial design experiment was conducted with nine purified diets including three levels of sodium selenite (0, 1 and 2 mg/kg) and three levels of P. acidilactici (0, 7 and 9 log CFU/g). After 8 weeks of feeding, weight gain and specific growth rate were increased by increasing dietary sodium selenite and P. acidilactici levels compared to control (p < .05), whereas feed conversion ratio and condition factor was decreased by increasing dietary sodium selenite and P. acidilactici amounts in comparison with control (p < .05). Survival rate was not significantly affected among the experimental treatments (p > .05). Total cultivable bacterial populations after 4 and 8 weeks of the feeding trial were not significantly different among the dietary treatments, while LAB levels were higher in P. acidilactici‐fed groups than in control and selenium‐fed groups (p < .05). Selenocysteine, methylselenocysteine and selenomethionine levels in the intestine of rainbow trout were increased by increasing the sodium selenite and P. acidilactici levels (p < .05), and selenocysteine was found the most selenium species in the trout intestine. The quantity of total selenium in the whole body, intestine, blood, liver and muscle of rainbow trout were increased by increasing the amounts of sodium selenite and P. acidilactici compared to control (p < .05). Hepatic thioredoxin reductase and hexokinase activity were increased by increasing dietary selenium and P. acidilactici levels in comparison to control (p < .05), whereas phosphofructokinase and pyruvate kinase activity in the liver of rainbow trout were not significantly different between the dietary treatments. Serum lysozyme, complements C3, C4 and ACH50 activity were enhanced by increasing dietary selenium and P. acidilactici levels compared to control (p < .05). The most synergistic effects of dietary supplements on growth and metabolism of rainbow trout were obtained at 2 mg/kg sodium selenite and 7 log CFU/g P. acidilactici. The findings revealed the synergistic effect of dietary selenium and P. acidilactici on growth and metabolism in rainbow trout (O. mykiss).  相似文献   

2.
In order to clarify the respiratory responses strategy of Amur sturgeon Acipenser schrenckii exposed to water temperature changes, respiratory parameters of the fish were studied under two temperature regimes: fish acclimated at 13°C for Group I, temperature was increased to 16°C, 19°C, 22°C and 25°C and then returned stepwise to 22°C, 19°C, 16°C and 13°C; and fish acclimated at 25°C for Group II, the water temperature was reduced in steps to 22°C, 19°C, 16°C and 13°C, subsequently, returned to 16°C, 19°C, 22°C and 25°C. The results showed that the respiratory frequency (fR), oxygen consumption rate (VO2) and gill ventilation (VG) of the fish were directly dependent on the acute temperature in both acclimation groups (p < .05). The initial 25°C VO2 in Group II was significantly higher than the initial 13°C VO2 in Group I (p < .05), but was significantly lower than that at 25°C in Group I (p < .05). In Group I, respiratory stroke volume (VS.R) of fish significantly increased or decreased with the acute temperature increases or decreases, respectively (p < .05); oxygen consumption efficiencies (EO2) of fish did not significantly show differences when temperature increased to 25°C from 13°C (p > .05), but the EO2 significantly declined while returning to acclimation temperature (p < .05). In Group II, the VS.R of the fish did not significantly change with acute temperature fluctuations between 25 and 13°C (p > .05), while the EO2 increased with acute temperature increases (p < .05). The Q10 values for fR, VO2, VS.R, VG and EO2 were 1.53–1.72, 1.92–2.06, 1.07–1.60, 1.78–2.44 and 1.11–1.65 at 13–25°C of temperature interval respectively. Amur sturgeon showed partial metabolic compensation to temperature changes. The study results suggest that the ability of Amur sturgeon to regulate metabolism in response to acute temperature changes makes this species good adaptability in the aquaculture rearing.  相似文献   

3.
The effects of dietary administration of inorganic zinc (zinc sulphate, ZnSO4) and nano zinc (zinc oxide nanoparticles, ZnO‐NP) were evaluated in rohu, Labeo rohita fingerlings. Fish were fed with a basal diet (Control) supplemented with ZnSO4 (T1, T2 and T3) and ZnO‐NP (T4, T5 and T6) at 10, 20 and 30 mg/kg, respectively, for a duration of 45 days. The results revealed that fish fed diet containing 20 mg ZnO‐NP per kg (T5) had the highest weight gain and specific growth rate (SGR, % per day), which was significantly different (p < .05) from the other experimental diets. Significantly (p < .05), higher activities of the digestive and metabolic enzymes were recorded in the fish fed ZnO‐NP containing diets as compared to the diets containing inorganic Zn or control diet. The maximum serum glucose and protein levels were noted in fish reared on diet T5. Both SGOT and SGPT activities were significantly increased in fish fed Zn‐supplemented diets (T1 to T6), as compared to the control group. Similarly, innate immune parameters were improved with feeding Zn incorporated diets. The highest phagocytic (40.74 ± 0.65%) and respiratory burst (0.33 ± 0.001, OD 630nm) activities were recorded in the fish fed diet containing ZnO‐NPs at 20 mg/kg (T5). The maximum superoxide production and serum peroxidase activity were detected in the fish fed T5 and T6 diets. Overall, results indicated that short‐duration feeding (≤45 days) of dietary ZnO‐NP (20 mg/kg) improved growth, enzyme activity, serum biochemical parameters and immune function in rohu fingerlings.  相似文献   

4.
An 8‐week feeding trial was conducted with extruded practical diets containing 320 g/kg of crude protein from plant‐based sources to determine the effects of L‐lysine on growth performances, muscle‐growth‐related gene (myoD, myogenine and myostatin) expression and haemato‐biochemical responses in juvenile genetically improved farmed tilapia (GIFT). Five isonitrogenous and isoenergetic diets were formulated to contain graded levels of lysine (14.3, 16, 17.5, 19 and 20.5 g/kg of diet). Each diet was randomly assigned to triplicate groups of 30 juvenile fish (5.2 ± 0.1 g), which were fed thrice a day (9:00, 13:00 and 17:00 hr). Maximum growth performances were observed in fish fed with lysine at 19 g/kg of diet. There was no significant (p > .05) effect on whole‐body composition and amino acids profile by dietary lysine supplementation. Significant (p < .05) changes were observed in relative expression of muscle‐growth‐related genes namely myoD and myogenine and in plasma metabolites by dietary lysine supplementation. In contrast, the relative expression of myostatin was not affected by dietary lysine supplementation. Broken‐line regression analysis and second‐order polynomial regression analysis of weight gain and N gain against dietary lysine levels showed that the dietary lysine requirement for juvenile GIFT tilapia was 18–18.3 g/kg of diet and 19.3–19.5 g/kg of diet, respectively.  相似文献   

5.
The imbalance of fish oil (FO) supply and demand has motivated efforts to identify an alternative for aqua feed. An 8‐week feeding trial was conducted to evaluate the effects of dietary fish oil partial replacement with mixed oil from linseed and lard (1:1) on growth, body composition and immunity when the N3 long‐chain polyunsaturated fatty acid (N3 LC‐PUFAs) requirement is met for Nibea albiflora. Two types of experimental diets were formulated with 100% fish oil (FO) or 69% mixed oil (Mix). The results indicated that the Mix diet significantly improved the specific growth rate (SGR), weight gain (WG), feed efficiency ratio (FER), muscle tissue growth hormone receptor (GHR), insulin‐like growth factor 1 (IGF1) and insulin‐like growth factor 1 receptor (IGF1R) gene expression of the yellow drum (p < .05). No significant difference in the survival rate (SR), feed intake (FI), hepatosomatic index (HSI), viscerosomatic index (VSI), condition factor (CF), N3 PUFA percentage, liver antioxidant enzyme activities or pro‐inflammatory gene expression was observed between the two treatments. Therefore, terrestrial blend lipid from linseed and lard could be used as an alternative for dietary fish oil without compromising growth performance and immunity for the juvenile yellow drum.  相似文献   

6.
The feeding trial was conducted to evaluate the potentials of Clostridium butyricum in the diet of tilapia. Fish (~14 g) were fed with basal diet supplemented with 0 (Control), 0.5 (C‐1), 1 (C‐2), 2 (C‐3), 4 (C‐4) and 8 (C‐5) g/kg commercial probiotic‐containing C. butyricum (1.5 × 108 CFU/g) for 8 weeks. The results showed that weight gain significantly increased, and feed conversion ratio decreased in the C‐2, C‐3 and C‐4 groups (p < .05). The protein retention (except C‐1 group), lipid retention and apparent digestibility coefficient (ADC) of dry matter in probiotic supplementation groups were significantly enhanced, and ADC of protein in the C‐4 group was also improved (p < .05). The supplementation of probiotic significantly increased villus height in anterior intestines and reduced the numbers of intestinal Escherichia coli (p < .05). High‐throughput sequencing showed that top three phyla namely Planctomycetes in all probiotic‐containing groups, Proteobacteria in the C‐1 and C‐2 groups and Chloroflexi in the C‐3 group had higher level than the NC group. The cumulative mortality was reduced by dietary probiotic after challenging with Aeromonas hydrophila (p < .05). In conclusion, C. butyricum can be supplemented at 1–2 g/kg feed for promoting the growth, feed utilization, gut health and microbiota of tilapia.  相似文献   

7.
Y. Wang  M. Li  K. Filer  Y. Xue  Q. Ai  K. Mai 《Aquaculture Nutrition》2017,23(5):1113-1120
This trial was conducted to evaluate the effects of replacing dietary fish oil with Schizochytrium meal for Pacific white shrimp (Litopenaeus vannamei) larvae (initial body weight 4.21 ± 0.10 mg). Six test microdiets were formulated using Schizochytrium meal to replace 0 g/kg, 250 g/kg, 500 g/kg, 750 g/kg, 1000 g/kg or 1500 g/kg fish oil DHA. No significant differences were observed in survival, growth, final body length and activities of digestive enzyme among shrimp fed different diets (p > .05). No significant differences were observed in C20:5n‐3 (EPA) in muscle samples (p > .05). C18:3n‐3 and C20:4n‐6 in muscle increased as Schizochytrium meal replacement level increased (p < .05). No significant differences were observed in C22:6n‐3 (DHA) and n‐3 fatty acids among shrimp fed diets that algae meal replaced 0 g/kg ‐ 1000 g/kg of fish oil. Shrimp fed diet R150 had higher DHA content than other groups and had higher n‐3 fatty acids than that of shrimp fed diets R50, R75 and R100 (p < .05). C18:2n‐6, PUFA and n‐6 fatty acids in muscle increased, while n‐3/n‐6 ratio decreased with increasing algae meal replacement level from 0 g/kg to 1000 g/kg (p < .05). In conclusion, Schizochytrium meal could replace 1500 g/kg fish oil DHA in the microdiets without negatively affecting shrimp larvae survival, growth and activities of digestive enzyme.  相似文献   

8.
The effects of isoenergetic diets with high (HP) and low (LP) protein‐to‐lipid ratios on feeding rate (SFR), feed conversion (FCR), growth (TGC) and relative‐ and absolute nutrient retention were investigated using both whole‐body weight (BW) and carcass weight (CW) to assess the production efficiency. Three different feeding trials in seawater were conducted: two large‐scale trials with yearling smolt (S1) and under‐yearling smolt (S0) and one small‐scale with S1 smolt. The initial body weights in the trials were 105, 319 and 978 g, respectively, and the fish were fed and monitored until they reached harvest weights. In all three trials, the dietary HP group attained significantly higher (p < .05) CW at harvest based on fish with equal BW. Also, fish fed the HP diets significantly improved FCR (p < .05) when based on CW. In the small‐scale trial, fish fed HP diet, especially during late autumn and spring, significantly (p < .001) improved FCRBW and FCRCW. Improved FCR coincided with significantly higher (p < .05) relative energy retention in the dietary HP group. In all three trials, the HP groups had significantly higher (p < .05) TGC with regard to both BW and CW. Taken together, the present studies indicate that growth performance and feed utilization in modern salmon farming has the potential to be further improved by increasing the dietary protein‐to‐lipid ratio. In addition, dietary influence is more precisely assessed when using carcass as the weight denominator when analysing feed utilization and growth performance.  相似文献   

9.
This study investigated the effects of glutamate (Glu) in low‐phosphorus diets on growth performance, haematological indices, antioxidant enzyme activity, immune‐related gene expression and resistance to Aeromonas hydrophila in juvenile mirror carp (Cyprinus carpio) (5.07 ± 0.02 g). Fish were fed either graded levels of Glu (0 g/kg, 5 g/kg,  10 g/kg and 20 g/kg, named G0, G0.5, G1 and G2, respectively) in a low‐phosphorus diet (15 g/kg NaH2PO4, 0.49), or a normal phosphorus diet ( 20 g/kg NaH2PO4, 0.61) without added Glu (C), for 8 weeks. At the end of the feeding trial, the fish were challenged with A. hydrophila. Compared with G0 group, 10 g/kg and 20 g/kg Glu supplementation of the low‐phosphorus diet significantly improved the final weight, WGR, SGR and PER, and decreased FCR (p < .05). Glu supplementation of the low‐phosphorus diet significantly enhanced the T‐AOC, SOD activity and GSH content in intestine (p < .05). Glu supplementation significantly reduced MDA content in foregut and midgut and increased CAT activity in midgut and hindgut (p < .05). Regarding immune‐related gene expression, Glu supplementation significantly diminished the up‐regulation of intestinal TNF‐α, IL‐1β and IL‐8 mRNA levels induced by phosphorus deficiency (p < .05). The survival rate of the G1 group was significantly higher than that of the G0 group (p < .05). In conclusion, 10 g/kg Glu supplementation in low‐phosphorus diets can improve the growth performance, enhance the activity of intestinal antioxidant enzymes and strengthen the immune function of juvenile mirror carp.  相似文献   

10.
The present research was designed to investigate the growth promoting and immunostimulating properties of Moringa oleferia leaf meal (MLM) in grass carp. Juvenile grass carp (22.03 g ± 1.164) were fed with diets supplemented with 0, 50, 100 and 150 g/kg MLM for 48 days. At the end of feeding trial, skin mucus was used for analysis of lysozyme, protease, antiprotease and peroxidase activity. Head kidney was used for expression analysis of tumour necrosis factor‐alpha, interleukin‐8 and interferon‐γ. The obtained results showed that fish fed with 100 and 150 g/kg MLM had significant increase in weight gain and specific growth rate (p < .05). However, condition factor was not altered. The MLM (50 and 100 g/kg) inclusion resulted in higher mucus lysozyme and protease activity (p < .05), while peroxidase activity increased only in fish fed with 100 g/kg MLM and antiprotease activity was not altered. Expression of tnf‐α increased in a dose‐dependent manner, and significant (p < .05) increase was recorded in fish fed with 150 g/kg MLM. The expression of il‐8 and ifn‐γ increased in fish fed with 50 and 150 g/kg MLM; however, the increase was not significant (p > .05). In conclusion, supplementing juvenile grass carp feed with MLM up to 150 g/kg has growth promoting and immunostimulating effects.  相似文献   

11.
A 65‐day feeding trial was conducted to investigate the effects of dietary antimicrobial peptide APSH‐07 on the growth performance, anti‐oxidation responses, stress resistance and intestine microbiota of large yellow croaker Larimichthys crocea. Four isonitrogenous and isolipidic diets were formulated with 0, 30, 60 and 90 mg/kg of APSH‐07, respectively. The results showed that the fish fed with 90 mg/kg of dietary APSH‐07 had the significantly highest specific growth rate (p < .05). The activities of catalase, superoxide dismutase, the total anti‐oxidative capacity and lysozyme had the significantly highest values in liver of fish fed with 90 mg/kg of dietary APSH‐07 (p < .05). Serum glucose increased significantly in fish fed diets without APSH‐07 supplementation after temperature stress, while serum cortisol increased significantly in those after trawl stress (p < .05). Fish fed with 90 mg/kg of dietary APSH‐07 showed significantly higher operational taxonomic units, ACE estimator and phylogenetic diversity whole tree in intestine microbiota compared to fish fed without APSH‐07 (p < .05). In conclusion, under the present experimental condition, 90 mg/kg of antimicrobial peptide APSH‐07 supplementation in diet had the better growth performance, higher anti‐oxidation and stress resistance capacity, and a potentially more beneficial intestine microbial community of large yellow croaker.  相似文献   

12.
In this experiment, a feeding trial was performed to determine the effects of fructooligosaccharide (FOS) on growth performance, digestive enzyme activity and immune response of Japanese sea bass, Lateolabrax japonicus juveniles (initial weight 38.3 ± 0.5 g), and the fish were examined following feeding with six levels of FOS (0, 0.5, 1, 2, 4 and 6 g/kg) for 28 days. Significant enhancement of weight gain (WG) and specific growth rate (SGR) was found in fish fed 1 g/kg FOS incorporated diets (p < .05), while the feed conversion ratio (FCR) in the 1, 2 g/kg FOS groups reduced significantly compared with the control (p < .05). Besides, the crude lipid in the 4, 6 g/kg FOS groups increased significantly compared with the control (p < .05). On the other hand, the erepsin and lipase activities significantly elevated in intestine of fish fed 2 g/kg FOS (p < .05) and the lysozyme activity in serum of fish fed 2 g/kg FOS were significantly higher than that in the control (p < .05). Moreover, the alkaline phosphatase activities in serum of fish fed 0.5, 1, 2 g/kg FOS were significantly higher than in control (p < .05). Regression analysis showed that the relationships between dietary FOS levels and either SGR, FCR, erepsin or lysozyme activities were best expressed by regression equations, and the optimal inclusion levels are 1.37, 1.80, 3.06, 3.11, 1.93 and 1.80 g/kg for SGR, FCR, erepsin, lipase, lysozyme and total superoxide dismutase activities, respectively. Overall, this study revealed that FOS incorporated diets could beneficial for L. japonicus culture in terms of increasing the growth, digestion and immune activities. Under the present experimental condition, the optimal supplementary level of FOS in the diet of L. japonicus is 1–3 g/kg.  相似文献   

13.
The study amalgamated earthworm and agro‐industrial wastes through vermicomposting and then evaluated the potential of the bedding (mixture of Eisenia fetida and vermicompost) to replace fishmeal in semi‐intensive farming of Oreochromis niloticus. The bedding was used to substitute fishmeal at inclusion rates of 100, 60, 30 and 0% (D100, D60, D30 and control D0). In triplicates, the four homogeneous diets were fed to quadruplicate groups of 30 g O. niloticus for 112 days. There was no significant difference (p > .05) in mortalities, average length gain and FCR among all tests. Nevertheless, diet D0 had significantly (p < .05) superior amino acid profile, low fibre content and fish carcass crude protein (63.2 ± 0.72% dry matter). Subsequently, D30 and D0 produced fish with significantly higher (p < .05) mean weight gain (256.03 ± 0.4 g) and biomass (369,136 g) respectively. On to the contrary, diet D100 had significantly higher (p < .05) crude lipids content (9.4 ± 0.6% dry matter), economic returns and profit index than the control diet due to the comparatively low cost of producing the earthworm bedding. This simple biotechnology can commercially be upscaled to sustainably produce cheap and nutritious fish feed capable of increasing yields and maximizing profits.  相似文献   

14.
The present study investigated the effects of combination of dietary Bacillus subtilis and trans‐cinnamic acid on serum biochemical parameters, innate immune responses and resistance of rainbow trout, Oncorhynchus mykiss to Yersinia ruckeri. Six experimental groups of fish with mean weights of 20.58 ± 0.35 g were used in the study. Five experimental groups of fish were fed diets containing Bacillus subtilis (107 per gram) or a mix of the Bacillus subtilis (BS) and trans‐cinnamic acid (25 mg/kg‐25trcBS, 50 mg/kg‐50trcBS, 75 mg/kg‐75 trcBS, 150 mg/kg‐150 trcBS), whereas an additive‐free basal diet served as the control (Cont). In this study, an increase was observed in granulocyte percentage, respiratory burst activity, phagocytic activity, phagocytic index, myeloperoxidase activity and total antiprotease activity especially in fish fed with mix of the BS and trans‐cinnamic acid‐supplemented diets (p < .05). Moreover, at the end of the 20‐day challenge period the survival rates and antibody titre (p < .05), and relative per cent survival were higher in the BS group and all trcBS groups compared with control group. As a conclusion, the results in the present study show that feeding rainbow trout with diets containing a mix of B. subtilis and trans‐cinnamic acid over a 60‐day period might be sufficient for improving fish immune responses and disease resistance against Y. ruckeri.  相似文献   

15.
An 8‐week feeding experiment was aimed to investigate the effect of dietary tea polyphenols (TP) on growth, immunity and lipid metabolism in juvenile black carp Mylopharyngodon piceus (initial weight 5.90 ± 0.03 g). Tea polyphenols were added at different levels (0, 25, 50, 100 and 500 mg/kg; TP0, TP25, TP50, TP100 and TP500). The results are as follows: the highest specific growth rate (SGR) and condition factor (CF) and activity of trypsin (TRS) of intestine in TP50, but SGR and activities of lipase (LPS)and TRS of intestine and content of whole body crude protein in TP500 were remarkably lower than TP0. Compared with TP0, content of serum superoxide dismutase (SOD) and glutamic oxalacetic transaminase (GOT) remarkably increased (p < .05), but contents of glutathione (GSH), glutathione peroxidase (GSH‐Pox), malondialdehyde (MDA), triglyceride (TG) and low‐density lipoprotein cholesterol (LDL‐C) were significantly decreased (p < .05), content of cortisol was remarkably lower in TP50 and TP100 (p < .05), expression of growth hormone (GH) and melanocortin 4 receptor (MC4R) in liver and GH in muscle were remarkably up‐regulated in TP50, but expression of apolipoprotein A‐1 (ApoA1), GH and MC4R of intestine, ApoA1 of liver and MC4R of muscle in TP500 were remarkably down‐regulated, contents of complement 3 (C3), complement 4 (C4), high‐density lipoprotein cholesterol (HDL‐C) and LDL‐C were significantly reduced in TP500 (p < .05). In conclusion, TP could improve growth performance and oxidative capacity on juvenile black carp, and its optimal dosage was 50 mg/kg.  相似文献   

16.
A 60‐day experiment was carried out to investigate dietary starch levels on growth performance, hepatic glucose metabolism and liver histology of largemouth bass, Micropterus salmoides. Fish (initial weight 22.00 ± 0.02 g) were fed five graded levels of dietary corn starch (0, 50, 100, 150 and 200 g/kg). Fish fed low (0 and 50 g/kg) dietary starch showed significantly higher weight gain than other groups (p < .05). Liver lipid and glycogen accumulations were induced when dietary starch higher than 100 g/kg. After 20 days of feeding, hexokinase activity and mRNA expression were decreased in fish fed dietary starch higher than 150 g/kg (p < .05) and the pyruvate kinase showed the opposite tendency. Insulin receptor 1 (irs1), glucagon‐like peptide‐1 receptor and glucose transport protein 2 (glut2) mRNA expression were decreased with the increasing dietary starch after 10 days of feeding (p < .05). These results indicated gluconeogenesis was depressed and β‐oxidation was enhanced in response to high dietary starch, while the glycolysis was inhibited and endocrine system was impaired when fish fed high dietary starch; then, glucose homeostasis was disturbed and finally led to the glucose intolerance of largemouth bass.  相似文献   

17.
Dietary copper requirement of Heteropneustes fossilis (6.74 ± 0.03 g) was determined by feeding purified diets containing same protein (400 g/kg) and gross energy (17.89 kJ/g) but different levels of copper for 12 weeks. Graded amount of CuSO4.5H2O (0, 1.96, 3.93, 5.89, 7.86, 9.82, 11.79 mg/kg) was supplemented to basal diet to attain desired dietary copper levels (0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mg/kg). Analysed dietary copper concentrations were 4.28, 4.63, 5.28, 5.70, 6.19 and 6.69 mg/kg. Absolute weight gain, feed conversion ratio and protein gain improved with the increasing levels of dietary copper up to 5.28 mg/kg. Further inclusion of copper at a level of 5.70 mg/kg did not improve the above parameters. Significantly higher (p < .05) plasma ceruloplasmin, liver copper‐zinc superoxide dismutase, catalase activities and lower thiobarbituric acid reactive substances were evident in fish receiving diets with 5.28 and 5.70 mg/kg copper compared to other groups. Whole body and liver copper concentrations increased significantly (p < .05) with increasing dietary copper levels. Quadratic regression analysis of absolute weight gain, feed conversion ratio, protein gain and broken‐line regression analysis of plasma ceruloplasmin activity and liver TBARS value against the variable dietary copper levels depicted the dietary copper requirements for fingerling H. fossilis in the range of 5.24–5.68 mg/kg.  相似文献   

18.
This study evaluated the impact of dietary ginger and liquorice supplementation on growth performance, physiological and histopathological profiles and heavy metal accumulation in Nile tilapia fingerlings. Fish (n = 1,800, 17.5 ± 0.11 g BW) were randomly distributed into four treatment groups in triplicates and received no supplementation (control group), 5 ml aqueous ginger extract/kg feed (ginger group), 4 ml aqueous liquorice extract/kg feed (liquorice group) or 2.5 ml ginger plus 2 ml liquorice aqueous extracts/kg feed (mix group). The ginger‐liquorice mix supply improved the growth performance and feed efficiency (p < .05), increased the haematocrit and haemoglobin (p < .05), leucocytes (p = .108), neutrophils (p = .054), serum total protein (p < .05), albumin (p = .011) and globulin (p = .094) but decreased (p < .05) the blood urea nitrogen and creatinine than feeding liquorice or ginger lonely compared to the control. Heavy metal loads in pond water induced lamellar telangiectasis of gills and necrosis with sloughing of intestinal villi tips. These detrimental effects were alleviated, and the intestinal villus length (p = .041) and crypt depth (p = .069) were increased with liquorice supply. In all treatment groups, heavy metal contents in fish flesh were lower compared to the control. Thus, using ginger and/or liquorice aqueous extracts can decrease heavy metal accumulation in the fish flesh and exert positive effects on growth performance, metabolic profile and the intestinal and gill morphology of Nile tilapia.  相似文献   

19.
Swim bladder is an ideal source of collagen production in fish for improved human health. Proline (Pro) is the main proteinogenic amino acid needed for collagen production. However, the effects of Pro supplementation on the swim bladder collagen synthesis have rarely been evaluated in fish. We determined the effects of dietary Pro supplementation on swim bladder collagen synthesis and its possible signalling pathway in spotted drum, Nibea diacanthus. A total of 450 N. diacanthus (100 ± 3.05 g) were randomly assigned into six treatments and fed with diets supplemented with different levels of Pro (0, 2.5, 5, 7.5, 10 and 12.5 g/kg of dry diet, hereafter P0, P1, P2, P3, P4 and P5, respectively) for 8 weeks. At the end, we evaluated collagen synthesis in swim bladder and the expression of genes related to TGF‐β/Smad pathway in the fish. Dietary Pro levels increased significantly the contents of crude protein, total collagen (TC) and the levels of some amino acids in swim bladder than the control diet (p < .05). The optimum amount of dietary Pro inclusion in diets for swim bladder collagen synthesis in N. diacanthus was 7.6 and 7.5 g/kg based on crude protein and TC in swim bladder, respectively. Dietary Pro levels increased significantly the proline 4‐hydroxylase (P4H) content in fish serum, swim bladder, muscle and liver tissues than control (p < .05). The relative expression of collagen type I alpha 1 (COL1A1), alpha 2 (COL1A2) and mothers against decapentaplegic homolog 2 (Smad2) genes in liver and swim bladder initially increased significantly as the concentration of Pro and later decreased (p < .05). Similarly, the relative expression of transforming growth factor beta (TGF‐β), P4Ha2 and P4Ha3 genes in the swim bladder increased significantly as dietary Pro levels increased (p < .05). Using K‐means clustering analysis, dietary proline partly promoted collagen accumulation in swim bladder through upregulation of Smad2 and TGF‐βRT genes. Taken together, Pro affected the collagen metabolism in swim bladder, probably by regulating the TGF‐β/Smad pathway, most likely via transient overexpression of Smad2 gene.  相似文献   

20.
The aim of this study was to assess the effects of different dietary fibre concentrates (DFC: Mucilage = MG; pectin = PN or β‐glucan+mannan = βg+M), on biochemical parameters, stress and immune response and skin mucus of jundiá (Rhamdia quelen). The fish (7.16 ± 0.06 g) were fed with Control diet (0 g/kg of DFC); diet supplemented with 5 g/kg of commercial prebiotic (CP 5) or diets supplemented with 5 or 10 g/kg of MG; PN or βg+M. After 8 weeks of the feeding trials, biochemical parameters (cholesterol, glucose, albumin and total protein), cortisol, immunoglobulin IgM and mucoproteins of skin mucus were assessed. Results demonstrated that supplementation with PN increased cholesterol levels (p<.05). After application of the stressor, most fish, except those in the PN and 10 g/kg MG groups, showed significant increases (p<.05) in cholesterol, glucose and albumin levels. The jundiás showed no difference in cortisol levels after application of the stressor (p>.05). IgM levels were significantly high in fish supplemented with DFC (p<.05). However, the concentration of mucoproteins in skin mucus was not influenced in the different treatments (p>.05). The results showed that supplementation with DFC promoted beneficial effects on the metabolism of jundiá.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号