首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of dietary fish oil (FO) substitution with blends of vegetal oils (VO: canola, linseed, olive, sunflower, corn and coconut oils) in plant protein‐rich diets on reproductive performance and fatty acid dynamics of embryos was evaluated in female rainbow trout (Oncorhynchus mykiss) brooders (1.8 ± 0.1 kg). Four diets were formulated in which 20% (FO80/VO20), 50% (FO50/VO50), 75% (FO25/VO75) and 100% (VO100) of FO were replaced by mixture of VO. The above‐mentioned diets were administered for a short period prior to spawning (3 months). Fish fed the VO100 had the lowest fertilization rate (81.3 ± 2.3), whereas brooders fed the FO80/VO20 diet had the lowest survival rates at eyed embryo stage (83.7 ± 1.6%) and hatching rate (79.9 ± 3.1%). The fatty acid dynamics of embryos were not only affected by embryonic developmental stages, but also they were influenced by the dietary fatty acid profile. Our study confirmed that using blends of different VO sources and FM residual fat in the FO25/VO75 for the short‐term period prior to spawning seemed to be a good strategy in terms of successful reproduction for sparing high levels of FM and FO in diet of O. mykiss brooders.  相似文献   

2.
To investigate the feasibility of total replacement of dietary fish oil (FO) with vegetable oils (VOs) and the optimal dietary polyunsaturated fatty acid (PUFA) level in the marine herbivorous teleost Siganus canaliculatus, six isonitrogenous (32%) and isolipidic (8%) diets were formulated. Control diet used FO as lipid source, whereas diets VO1–VO5 contained various blends of palm, soybean, rapeseed, and linseed oils, in which the dietary PUFA levels were 42.0, 38.2, 33.8, 29.9, and 27.1%, respectively. After S. canaliculatus juveniles were fed with the diets for 9 wk, their growth performance exhibited no significant difference among the dietary groups. The tissue fatty acid (FA) profiles in liver and fillet generally reflected the dietary FA compositions and showed no significant difference among the VO dietary groups. The results suggest that dietary FO can be replaced completely by VO, without affecting their growth performance. Concerning the effects of the dietary FA profile on the survival rate, hepatosomatic index and viscerosomatic index, and PUFA composition in fillets, diets VO1 and VO2 were more favorable compared with diets VO3–VO5. Considering the availability and cost of the VOs, diet VO2 was recommended for practical use in S. canaliculatus.  相似文献   

3.
The objective of this study was to determine the major nutrient limiting growth and lipid metabolism in African catfish fed diets composed of vegetable ingredients. Four diets were formulated from contrasted meal (fish meal: FM; vegetable meal: VM) and oil (fish oil: FO; vegetable oil: VO) sources. Replacement of FO by VO did not affect specific growth rate (SGR) and feed efficiency, whereas lower values were recorded in the case of FM replacement. LC‐PUFAs muscle contents were higher in fish fed control FMFO diet than in fish fed vegetable ingredients. However, the decrease in docosahexaenoic acid (DHA) concentration in FMVO group was limited compared to VM groups despite the same low DHA level in those three diets. These results may suggest an activation of LC‐PUFA biosynthesis from PUFA precursors brought with vegetable oils in FMVO group. This hypothesize is reinforced by the significant stimulation of elovl5 gene expression in liver and intestine from fish fed FMVO. Therefore, this study demonstrated that African catfish is able to bioconvert LC‐PUFAs at a significant biological level when FO is replaced by VO whereas the use of plant proteins has strong detrimental effects on growth performances.  相似文献   

4.
This study was undertaken to evaluate the effect of dietary lipid source [linseed oil (LO, rich in 18:3 n?3); corn oil (CO, rich in 18:2 n?6); olive oil (OO, rich in 18:1n?9); and fish oil (FO, rich in LC‐PUFA)] and level (9% L and 18% L) on growth, body composition and selected plasma biochemistry parameters in hybrid catfish (Pseudoplatystoma reticulatum × Leiarius marmoratus) juveniles. Moreover, liver histology (lipids, glycogen, cell vacuolization) and key metabolic enzyme activities were also evaluated. After 8 weeks of feeding, there were no differences in growth performance and whole‐body composition between groups. Plasma lipoprotein, muscle and liver composition, and G6PD and ME activity were affected by lipid level and source. No differences were observed between groups in hepatic ALT activity; however, AST activity was lower in fish fed the 9% L diets. Overall, liver and muscle fatty acid composition reflected that of diet FA composition, with increased n3/n6 ratio, high HUFA and low MUFA in fish fed FO compared with the VO diets. Higher liver glycogen content was observed in fish fed the 18% L than the 9% L diets, except for fish fed FO diet. Considering the experimental diets used, these results indicate that hybrid catfish can efficiently utilize VO supplementation as an energy source, without affecting growth performance and fillet composition.  相似文献   

5.
This study aimed to test the hypothesis that the efficiency of a finishing period can be improved by reducing the initial fat content of fish fillets, by means of a period of food deprivation. Two groups of rainbow trout (Oncorhynchus mykiss) were fed for an 18‐week grow‐out period on a vegetable oil‐based diet (VO) or a fish oil‐based diet (FO). VO fed fish were then split into two sub groups: one (VO/FO) was shifted to the FO diet for 8 weeks, whilst the other (UF/FO) was deprived of food (unfed) for 2 weeks and then fed the FO diet for the remaining 6 weeks. The control treatment (FO/FO) was represented by fish continuously fed FO. The subsequent reduction of total fat in the UF/FO treatment was then responsible for a much faster recovery towards a FO‐like fatty acid profile, validating the proposed hypothesis. However, the modification of the fatty acid composition of fish fillets during the feed withholding period, coupled with the postponement of the finishing diet, resulted in only minor beneficial effects of this strategy, and the loss of potential weight gain. However, the n‐3 LC‐PUFA content in UF/VO fish fillets was significantly higher than fish subjected to the VO/FO treatment.  相似文献   

6.
The aim of this study was to investigate the effects of different oils on growth performance and lipid metabolism of the grouper, Epinephelus coioides. Five experimental fish meal‐based isonitrogenous and isolipidic diets were formulated containing either 5.5%‐added fish oil (FO), soybean oil (SBO), corn oil (CO), sunflower oil (SFO) or peanut oil (PO). Each diet was fed to triplicate groups of 20 fish (initial body weight 13.2±0.02 g) grown in seawater at 28.0–30.5 °C for 8 weeks. Fish were fed twice a day to visual satiety. No significant differences in the survival, weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio or hepatosomatic index were found between fish fed the FO or vegetable oils (VO) diets. Dietary lipid sources did not affect whole‐body composition among grouper fed the various diets. Muscle of fish fed the FO diet had significantly higher levels of 14:0, 16:0, 16:1n‐7, 20:5n‐3[eicosapentaenoic acid (EPA)] and docosahexaenoic acid (DHA)+EPA (except for PO fed fish) compared with those of fish fed VO diets. However, the levels of 18:1n‐9, 18:2n‐6 and DHA/EPA ratios in the muscle of fish fed FO diet were significantly lower than those of fish fed the VO diets. The liver of fish fed the FO diet had significantly higher levels of 18:0, 20:5n‐3, 22:6n‐3, n‐3 highly unsaturated fatty acids and DHA+EPA than those of fish fed the VO diets, whereas increases in 18:1n‐9, 18:2n‐6 and mono‐unsaturated fatty acid levels were observed in the liver of fish fed the VO diets.  相似文献   

7.
8.
The aim of this work was to study the fatty acid (FA) bioconversion ability in Eurasian perch fed with diets differing in their polyunsaturated fatty acids (PUFA) from n‐3 and n‐6 series content at two development stages: adults in exogenous vitellogenesis, and juveniles during the on‐growing phase. Duplicate groups of adults and juveniles were fed for 12 weeks with four diets: D1 and D2, two diets prepared with fish oil partially or totally as the lipid source, and so containing long‐chain PUFA (LC‐PUFA). Those two diets differed by their n‐3/n‐6 FA dietary ratio (0.2 and 7.0, respectively), D1 being characterized by a high n‐6 LC‐PUFA level, while D2 had a high level of n‐3 LC‐PUFA. D3 and D4 were constituted only with vegetable oils, and were therefore devoid of LC‐PUFA. D3 was characterized by a high level of 18:2 n‐6 (n‐6/n‐3 ratio of 0.3), while D4 was characterized by a high level of 18:3 n‐3 (n‐3/n‐6 ratio of 1.9). Both groups of fish were able to elongate and desaturate the 18:3 n‐3 precursor into eicosapentaenoic acid and docosahexaenoic acid, regarding the FA profile of livers. Furthermore, total elongation/desaturation from [1‐14C]18:3 n‐3 of LC‐PUFA was higher in fish fed with the high dietary 18:3 n‐3 level compared to the diet rich in n‐3 LC‐PUFA. By opposition, the bioconversion of 18:2 n‐6 into LC‐PUFA was limited, regarding the elongation/desaturation activity of LC‐PUFA from [1‐14C]18:2 n‐6. In view of the great ability for bioconversion of n‐3 FA, linseed oil is a promising alternative to fish oil in formulating feed for juveniles perch as there were no differences in terms of specific growth rate between the treatments, but adults undergoing maturation should have at least partially LC‐PUFA in their diet, particularly arachidonic acid (ARA) which is important during maturation, as breeders are not able to bioconvert 18:2 n‐6 into ARA.  相似文献   

9.
Copepod oil (CO) from the marine zooplankton, Calanus finmarchicus, is a potential alternative to fish oils (FOs) for inclusion in aquafeeds. The oil is composed mainly of wax esters (WE) containing high levels of saturated fatty acids (SFAs) and monounsaturated fatty alcohols that are poorly digested by fish at low temperatures. Consequently, tissue lipid compositions may be adversely affected in salmon‐fed CO at low temperatures. This study examined the lipid and FA compositions of muscle and liver of Atlantic salmon reared at two temperatures (3 and 12 °C) and fed diets containing either FO or CO, supplying 50% of dietary lipid as WE, at two fat levels (~330 g kg?1, high; ~180 g kg?1, low). Fish were acclimatized to rearing temperature for 1 month and then fed one of four diets: high‐fat fish oil (HFFO), high‐fat Calanus oil (HFCO), low‐fat fish oil (LFFO) and low‐fat Calanus oil (LFCO). The fish were grown to produce an approximate doubling of initial weight at harvest (220 days at 3 °C and 67 days at 12 °C), and lipid content, lipid class composition and FA composition of liver and muscle were determined. The differences in tissue lipid composition between dietary groups were relatively small. The majority of FA in triacylglycerols (TAG) in both tissues were monounsaturated, and their levels were generally higher at 3 °C than 12 °C. Polyunsaturated fatty acids (PUFA), particularly (n‐3) PUFA, predominated in the polar lipids, and their level was not significantly affected by temperature. The PUFA content of TAG was highest (~26%) in the muscle of fish fed the HFCO diet at both temperatures. Tissue levels of SFAs were lower in fish‐fed diets containing HFCO than those fed HFFO, LFFO or LFCO, particularly at 3 °C. The results are consistent with Atlantic salmon being able to incorporate both the FA and fatty alcohol components of WE into tissue lipids but, overall, the effects of environmental temperature on tissue lipids were more pronounced in fish fed the CO diets than FO diets.  相似文献   

10.
11.
This study was undertaken to assess the effects of fish oil (FO) substitution by a mixture of alternative vegetable oils (VO) on Seriola dumerili culture performance. A 154‐day feeding experiment was conducted using juveniles (39.2 ± 1.6 g average weight). Three isolipidic and isoenergetic meal‐based diets were formulated varying their lipid component. The control diet contained 100% FO (FO100), whereas diets VO50 and VO100 included 1/2 of oil blend and all the oil from blend of palm oil (PO) and linseed oil (LO) as substitute for FO, respectively. Dietary regime did not significantly affect growth performance, biometric indices, feed efficiency, plasma chemistry and liver and muscle lipid contents. Nonetheless, dietary VO inclusion impacted on the fatty acid profile of target tissues, especially in the liver. Fatty acid profiles of the fillets reflected those of the dietary oils except that there was apparent selective utilization of palmitic acid (C16:0) and oleic acid (C18:1n‐9) and apparent selective retention of long‐chain polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA, C20:5n‐3) and docosahexaenoic acid (DHA, C22:6n‐3). The nutritional value and the potential ability to prevent the development of coronary heart diseases of the flesh lipid fraction decreased with gradual FO substitution.  相似文献   

12.
This study aimed to evaluate the vitellogenic transference and incorporation of long‐chain polyunsaturated fatty acids (LC‐PUFA) into the membranes of Prochilodus lineatus embryos, aiming to increase the permeability to cryoprotectants and resistance to electric fields. One hundred thirty broodstock of P. lineatus were fed with control (C) or fish oil‐supplemented diets (FO) for 12 months. The fatty acid (FA) profle was determined using gas chromatography. For the neutral fraction, the FO group had a decrease in monounsaturated fatty acids (MUFA) and an increase in n3PUFA and, n6PUFA. To test for cryoprotectant toxicity, embryos were exposed for 20 min to a cryoprotectant solution of 1,2‐Propanediol (Prop) at a concentration of 5 or 6 molar (M). For FO, a reduction in survival of 33.1% was observed in 5 M, and no survival was observed at 6 M. Embryo samples were exposed the six polarized electric fields (3.4–51.6 joules), and with 11.2 J of energy, the control group exhibited reduced survival in 98.3% of the fish, whereas the FO presented superior resistance, exhibiting a survival similar to that of the OJ up to 40.2 J. We conclude that FA were transferred between P. lineatus broodstock to the embryos, with an increase in LC‐PUFA resulting in lower survival rates in the cryoprotectant test in the FO group and a greater physical plasticity of FO embryos to electrical field tests.  相似文献   

13.
Tilapia (Oreochromis niloticus) previously reared on a commercial feed were fed three experimental diets with added 60 g kg−1 of soybean (SO), linseed (LO) or fish oils (FO), for 6 weeks. The final bodyweight (week 6) of fish was significantly lower when feeding the vegetable oils. At 0, 2, 4 and 6 weeks, fillet, liver, visceral fat, testis and ovary triacylglycerols (TAG) and phospholipids (PL) were analysed for their fatty acid (FA) composition. The simple FA dilution model has been successfully applied to describe the incorporation of numerous dietary FAs into both tissue TAGs and PLs. Fillet PL FAs reacted more sensitively on the FAs of the SO and LO diets, when compared to the TAGs. Alterations of the hepatic TAG and PL fractions were minor and less predictable. Testicular PLs have been found to preferentially accumulate n3 FAs, in particular docosahexaenoic acid (DHA) (C22:6 n3). In contrast, ovarian TAGs showed a predominant accretion of oleic acid by the FO diet. The increased dietary unsaturation index (SO, FO) was found to augment hepatic in vivo lipid peroxidation, as assessed by the tissue malondialdehyde concentrations.  相似文献   

14.
We studied the effects of dietary n‐3 LC‐PUFAs on the activities and mRNA expression levels of tissue lipoprotein lipase (LPL) and fatty acid synthase (FAS) during vitellogenesis and ovarian fatty acid composition in female silver pomfret broodstock. Broodstock were fed one of four experimental diets for 185 days: FO (100% fish oil), FSO (70% fish oil + 30% soybean oil), SFO (30% fish oil + 70% soybean oil) or SO (100% soybean oil). The results revealed that hepatic LPL and FAS and ovarian FAS activities and mRNA expression levels significantly increased at vitellogenesis and postvitellogenesis relative to previtellogenesis, with no significant differences between these two stages, except for hepatic LPL mRNA expression. Dietary n‐3 LC‐PUFAs decreased tissue FAS and increased LPL activities and mRNA expression levels. The ovarian concentrations of 20:4n‐6 (ARA), 20:5n‐3 (EPA), 22:6n‐3 (DHA) and n‐3 LC‐PUFAs were directly influenced by n‐3 LC‐PUFA levels. Total n‐3 LC‐PUFA concentrations in SO were 57% lower than those in FO, while 18:2n‐6 concentrations in SO were 4.7 ×  higher than those in FO. These results revealed that high dietary n‐3 LC‐PUFAs levels significantly affected tissue lipid metabolism in female silver pomfret broodstock during vitellogenesis by upregulating LPL and downregulating FAS.  相似文献   

15.
The fillet fatty acids (FAs) and volatile compounds (VCs) of gilthead sea bream, fed either fish oil‐based diet (FO) or plant oils (PO), were studied in dorsal and ventral fillet parts over a 12‐day ice storage. Fillet FA reflected the FA composition of the respective diets. Monounsaturated FAs were reduced with storage, while no FA differentiations occurred between fillet parts. VCs varied between diet treatments, with food chain‐transported compounds (α‐pinene and dimethylsulphide) showing higher abundance in the FO group. VCs proposed as fish spoilage indicators (trimethylamine, pentanal, propanal, 3‐methylbutanal and 1‐penten‐3‐ol) increased with storage, while concentration of carbon disulphide associated with fresh fish aroma decreased during the same period. VCs varied between fillet parts, with ventral part exhibiting higher concentrations in fat‐soluble (terpenes, aromatic hydrocarbons) and spoilage‐associated VCs. Sensory analysis revealed no significant differences between diet groups with the exception of fattiness, which was found significantly higher in the plant oil group.  相似文献   

16.
The aim of this study was to evaluate the long‐term effects (7‐month experiment) of diets consisting of fish oil (Kilka fish) and vegetable oil (rapeseed) on the reproductive performance of sterlet sturgeon (Acipenser ruthenus) broodstock. Forty‐five broodstock (990.3 ± 20.05 g) were randomly allocated to three different diet treatments. Three experimental diets were formulated with graded levels of fish oil (100% FO), vegetable oil (100% VO), and a combination of fish and vegetable oil (50% FO + 50% VO). At the end of the 7‐month feeding trial period, the weight gain and final weight were changed significantly different between the treatments (p < 0.05). Broodstock fed the FO + VO diet had higher growth than those fed the only FO or VO diets (p < 0.05). The highest germinal vesicle migration percentage was observed in FO + VO treatment (p < 0.05). The DHA/EPA, DHA/ARA and EPA/ARA ratios in oocyte exhibited a significant difference in the different treatments (p < 0.05). This study indicates that nutrition of broodstock with diet including FO + VO (p < 0.05) can positively affect the growth performance of larvae compared with only FO or VO diets. Furthermore, the high levels of 18:1n‐9, AL and ALA contents in oocytes from broodstock fed VO and the lowest ALA content in oocytes from broodstock fed FO underlined the important role of broodstock diets in the reproductive process and embryonic and/or larval developments of sterlet.  相似文献   

17.
The recent decreasing worldwide supplies of marine oils have forced the aquaculture industry to investigate alternative lipid sources for use in marine fish feeds. The aim of this study was to determine the impact of dietary replacement of fish oil by vegetable oils on gilthead seabream (Sparus aurata) growth performance, nutritive utilization, body composition, and fatty acid profile as well as feed cost. Two dietary vegetable oil (VO) mix blends (VO1 and VO2) in which: sunflower (SO), cottonseed (CO) and linseed (LO) for VO1 or soybean oil (SBO) for VO2, were tested as 60% fish oil (FO) substitutes versus the 100% FO control or reference diet (FO). Three iso-proteic (46% CP) and iso-lipidic (18%) experimental diets were hand fed, twice a day, 6 days a week to apparent visual satiety to triplicate groups of seabream growers (average initial weight, 130.9 ± 3.44 g), until fish reached market size (300–400 g/fish) after 20 weeks at mean ambient temperature 27.0 ± 1.8°C. All experimental diets were well accepted by seabream growers regardless of the different lipid sources used, as overall mean feed intake (FI) and daily intake (DFI) were not significantly different (P > 0.05) among dietary treatments. In terms of growth performance, fish fed VO1 diet (with LO) exhibited a relatively lower, but significant (P < 0.05), total weight gain (WG) than fish fed all FO diet (FO). However, mean value of WG of fish fed either vegetable oil-tested diet was nonsignificantly different. Feeding seabream growers vegetable oil (VO) diets (VO1 or VO2) had no significant effect on specific growth rate (SGR), daily weight index (DWI), or feed conversion ratio (FCR) among dietary treatments. Consumption of VO for 20 weeks did not significantly alter the major nutrient composition of fish, but the muscle fatty acid (FA) profile was significantly altered compared to the reference FO diet. Comparatively reduced levels of eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA), as well as elevated levels of linoleic and linolenic acids (LA and LNA) compared with fish fed the FO were noticed. In terms of economics, 17 or 20% reduction in Kg feed cost was obtained for diets VO1 or VO2, respectively. In terms of growth performance and cost, VO2 diet showed slight relative superiority over VO1 diet. However, in terms of liver structure morphology, VO1 diet (with LO) has resulted in less fat-infiltration and altered hepatic cells than VO2 (with SBO). As these traits do not affect yield or the price paid for the fish, VO2 diet has therefore been considered better than VO1 as complementary lipid sources for gilthead seabream grower diets.  相似文献   

18.
Barramundi (Lates calcarifer), a catadromous teleost of commercial interest, perform well when fed a wide range of dietary oils. However, the range of alternative oils now being explored is typically rich in saturated and monounsaturated fatty acids (SFA and MUFA). In this study, the response of juvenile barramundi (47.0 g per fish initial weight) fed isolipidic and isoenergetic diets with 82 g kg?1 added oil was tested. The experimental test diets had a 2 : 1 or 1 : 2 ratio of SFA to MUFA (SFA‐D and MUFA‐D, respectively) compared to a control diet (CTRL‐D) fed for 8 weeks. The diets containing mostly olive oil (dietary MUFA‐D) and mostly refined palm oil (dietary SFA‐D) did not impact the growth performance or feed utilization parameters of the barramundi. The in vivo beta‐oxidation activity was consistent with the dietary fatty acid composition, with the most dominant FA being heavily beta‐oxidized. Together, the in vivo whole‐body mass balance of fatty acids showed that n‐3 long‐chain polyunsaturated fatty acids (LC‐PUFA) were most efficiently utilized in the SFA‐D‐ and MUFA‐D‐fed fish. This study provides evidence that additional dietary MUFA and SFA are suitable lipid classes for juvenile barramundi and they are both equally efficient at sparing LC‐PUFA from an oxidative fate.  相似文献   

19.
This study has assessed the effects of vitamin E (?E, +LE, +HE; 0, 100, 1000 mg/kg, respectively) in fish diets containing high levels (HL; 10%) of fish oil (FO) or mixed vegetable oils (VO) on the growth and inflammatory, oxidative stress, and apoptotic gene expression in the head kidney of olive flounder, Paralichthys olivaceus. Consequently, the highest weight gain was achieved in the FO group and the lowest in the HL‐VO + LE group. The gene expression levels of each group were compared to the 5% FO group. The 5% VO group showed higher expression levels of tumor necrosis factor (TNF) α, interleukin (IL)‐1β, and scinderin‐like (ScinL) genes. Although lysozyme gene expression was higher in the HL‐VO + LE group, the other gene expression levels of the HL‐FO/VO + LE groups were not different from those of the FO group. The HL‐FO/VO?E/+HE groups showed a higher TNFα gene expression, but the cytochrome oxidase subunit III gene expression was higher in the HL‐FO?E and HL‐VO + HE groups. Lysozyme gene expression was higher in the HL‐FO?E and HL‐VO?E/+HE groups. IL‐6 and ScinL gene expression were higher in the HL‐VO‐E and HL‐VO + HE groups, respectively. In conclusion, mixed VO and too high or too low vitamin E levels in fish diets may affect inflammatory, oxidative stress, and apoptotic gene expression in the head kidney of olive flounder.  相似文献   

20.
Pike perch (Sander lucioperca) has been identified as specie destined to diverse European inland aquaculture, but knowledge on the nutritional requirements is weak. Therefore, we investigated the effect of varying dietary fatty acid (FA) profile by partial replacement of fish oil (FO) with vegetable oils on growth, FA and body composition of juvenile pike perch. An extruded basal diet containing 59 g kg?1 crude lipids (FO) was added with 60 g kg?1 FO, 60 g kg?1 linseed oil (LO) or 60 g kg?1 soybean oil (SO). The resulting dietary FA composition differed mainly in the triglyceride fraction and was characterized by highest amounts of linolenic acid (18:3 n‐3) in the LO diet and linoleic acid in the SO diet. Diet enriched with FO contained highest contents of highly unsaturated FA 20:5 n‐3 (eicosapentaenic acid) and 22:6 n‐3 (docosahexaenic acid). Pike perch were held in a recirculation system and each feeding group (in triplicate) was fed with experimental diets at a daily rate of 35 g kg?1 of biomass for 57 days by automatic feeders. Weight gain and specific growth rate of experimental feeding groups ranged between 18.47 and 19.58 g and 1.37–1.45% day?1 and was not affected by the dietary composition indicating that FO can be replaced by vegetable oils without negative impact on growth performance. In contrast to the whole body and muscle composition, liver tissue was affected by the varying diets. Liver tissues of fish fed diets enriched with vegetable oils showed significantly increased lipid contents of 162 (LO) and 147 (SO) g kg?1 and indicate decreased lipid utilization compared with fish fed FO diet (liver lipid content 112 g kg?1). Nevertheless, hepatosomatic index of pike perch was not influenced by dietary lipid composition. The FA profile of pike perch was generally determined by the dietary FAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号