首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
 The effects of sample pretreatment (field-moist, air-dried or tension rewetted) on aggregate stability measured by wet sieving or turbidimetry were compared for a group of soil samples ranging in organic C content from 20 to 40 g C kg–1. Concentrations of total N, total and hot-water-extractable carbohydrate and microbial biomass C were linearly related to those of organic C. Aggregate stability measured by wet sieving using air-dried or field-moist samples and that measured by turbidimetry, regardless of sample pretreatment, increased curvilinearly with increasing soil organic C content. However, when tension-rewetted samples were used for wet sieving, aggregate stability was essentially unaffected by soil organic C content. Measurements of aggregate stability (apart from wet sieving using rewetted soils) were closely correlated with one another and with organic C, total and extractable carbohydrate and microbial biomass C content of the soils. The short-term effects of aggregate stability were also studied. Soils from under long-term arable management and those under long-term arable followed by 1 or 3 years under pasture had similar organic C contents, but aggregate stability measured by turbidimetry and by wet sieving using air-dried or field-moist samples increased with increasing years under pasture. Light fraction C, microbial biomass and hot-water-extractable carbohydrate concentrations also increased. It was concluded that both total and labile soil organic C content are important in relation to water-stable aggregation and that the use of tension-rewetted samples to measure stability by wet sieving is unsatisfactory since little separation of values is achieved. Received: 6 January 1999  相似文献   

2.
The effects of cropping history (pasture or arable) and sample pretreatment (field-moist, air-dried or air-dried and then tension or vacuum rewetted) on aggregate stability as measured by wet sieving or turbidimetry were compared. When field-moist samples were used there was a tendency for aggregate stability, as measured by wet sieving, to decline with increasing time under arable cropping (i.e. decreasing soil organic matter content). Air-drying samples caused a pronounced decline in stability of soils from under arable management and as a consequence there was a marked decline in stability with increasing time under arable. Use of tension or vacuum rewetted samples resulted in high values of stability which were unaffected by cropping history. For turbidimetry, there was a marked decline in measured stability with increasing time under arable cropping when field-moist samples were used. Air-drying caused an increase in measured stability that was relatively greater for the less stable samples. In comparison with air-dried samples, tension and vacuum rewetting caused a decrease in stability values for relatively unstable soils. It is suggested that, upon air-drying (and contraction of aggregates), additional intermolecular associations were formed between soil constituents thus conferring greater stability on aggregates. This resulted in reduced dispersion (and the release of particles <0.04 mm in diameter) from the surfaces of aggregates and slaked aggregate fragments following rapid rewetting. As a consequence stability as measured by turbidimetry was increased by drying. For aggregates from a predominantly arable history, this stabilization was not great enough to prevent slaking occurring following rapid rewetting, with the formation of a large proportion of stabilized fragments <0.5 mm in diameter. The stability of these aggregates as measured by wet sieving was therefore decreased by drying.  相似文献   

3.
The effects of direct drilling, shallow and deep tine cultivation, ploughing, and of growing and permanent grass sward on the stability and organic matter content of surface soil aggregates were studied on a range of soils in Southern England. Cultivation treatments were applied continuously for 4 to 6 years. Generally, relative aggregate stability, assessed by turbidimetric and wet-sieving techniques, was enhanced by direct drilling and other forms of simplified cultivation compared with ploughing. Increased stability was associated with increased organic matter status and was not pronounced under grass. In the case of a soil which was previously under permanent grass stability and organic matter content declined after direct drilling but significantly less so than after mouldboard ploughing. Differences in aggregate stability were detected in some soils only after modifying the test procedure and it appeared likely that the magnitude of differences were variable within a season and were related possibly to the tilth forming properties of the soils.  相似文献   

4.
Surface runoff is the major way of P transport from agricultural land to surface waters. To assess the potential of P loss in runoff in relation to soil P status, the chemical nature and distribution of soil P in different size classes of water-stable aggregates were quantified for two distinctive soil types. For both soils unfertilized areas under pasture and well-fertilized arable soils were sampled. The content of total P, organic P and microbial biomass P (Pmic) decreased in the aggregate size order <0.1, 1–2, and 0.1–1.0 mm respectively. In contrast available P (extracted by Bray I reagent) was lowest in the <0.1 mm aggregate size. Cultivation decreased the percentage of 1–2 mm aggregates but increased that of the <0.1 mm aggregates. Fertilization increased markedly both total P and organic P in the <0.1 mm fraction of arable soils compared to the corresponding samples from unfertilized grassland soils. During aggregate separation, most of P loss was in the form of particulate P and less than 1% in solution. More organic P and Pmic were lost from the grassland soils than from the arable soils.  相似文献   

5.
Abstract. We compared the effects of conventional and organic arable farming on soil organic matter (SOM) content, soil structure, aggregate stability and C and N mineralization, which are considered important factors in defining sustainable land management. Within one soil series, three different farming systems were selected, including a conventional and an organic arable system and permanent pasture without tillage. The old pasture represents optimal conditions in terms of soil structure and organic matter inputs and is characterized by high earthworm activity. More than 70 years of different management has caused significant differences in soil properties. SOM content, mineralization, earthworm activity and water-stable aggregation decreased as a result of tillage and arable cropping when compared with pasture, but were significantly greater under organic farming than under conventional farming. Total SOM contents between 0 and 20 cm depth amounted to 15, 24 and 46 g kg−1 for the conventional arable, organic arable and permanent pasture fields, respectively. Although less sensitive to slaking than the conventionally managed field, the soil under organic farming was susceptible to compaction when high pressures were exerted on the soil under wet conditions. The beneficial effects of organic farming are generally associated with soil biochemical properties, but soil physical aspects should also be considered. Depending on soil type and climate, organic farmers need to be careful not to destroy the soil structure, so that they can enjoy maximum advantage from their organic farming systems.  相似文献   

6.
The influence of organic matter on aggregate stability in some British soils   总被引:14,自引:0,他引:14  
The stability of aggregates from 26 soils selected from agricultural areas was measured by wet-sieving and the results correlated with sand, silt, clay, nitrogen, organic matter and iron contents and with cation exchange capacity. Highly significant correlations were obtained for the relationships between aggregate stability and organic matter and some properties associated with it. No other soil constituent investigated had a significant relationship with aggregate stability, indicating that organic matter is mainly responsible for the stabilization of aggregates in these soils. The relationships between aggregate stability, and organic matter content plus some of its component fractions were examined in more detail using 120 soils. Total organic matter, total carbohydrate and humic material extracted by various reagents each gave highly or very highly significant correlations with aggregate stability. However, whilst it was not possible to distinguish whether any one organic component was more important than another, the results indicate that soil organic matter levels can be used diagnostically to identify soils which may show problems of structural instability.  相似文献   

7.
The effect of humus, readily decomposable organic matter, and carbohydrates of a nonspecific nature on the formation of water-stable aggregates in field rotation members of a calcareous soil in central Iran, Isfahan (fine loamy mixed thermic typic haplargid) has been studied. The study was carried out at Lavark experimental farm in plots receiving 0 (T1), 25 (T2), 50 (T3) and 100 (T4) Mg/ha of manure for 5 years successively with a cropping rotation of wheat (Triticum aestivum L.)–corn (Zea mays L.) every year and plots under similar chemical fertilizer management but with three different cropping rotations (T5, T6 and T7) that has been the prevalent cropping systems. Three replications of soil sample in each treatment and at the depths of 0–5 and 5–15 cm were used to measure organic carbon (OC), hot-water-soluble carbohydrate, dilute acid hydrolysable carbohydrate, cold-water-soluble carbohydrate and mean weight diameter of water stable aggregates. The highest amount of carbohydrate (700 mg/kg) and aggregate stability (0.8 mm) were obtained in plots with 100 Mg/ha manure (T4). The amount of carbohydrate extracted from soil samples decreased in the order of hot water, dilute acid and cold water extracts.Aggregate stability had a better correlation with hot water (r = 0.74**) and dilute acid-soluble carbohydrate (r = 0.73**) than organic carbon (r = 0.62**) content of soil. This indicates that the carbohydrate extracted by hot water and dilute acid may be a suitable indicator for showing soil quality, particularly in relation to soil aggregation.  相似文献   

8.
The effects of agricultural land use on organic matter content and related soil microbial and physical properties were compared with those under undisturbed native grassland in KwaZulu-Natal, South Africa. Two separate farms situated on Oxisols were used and both contained fields with continuous long-term (>20 y) cropping histories. At site 1, soil organic C content in the surface 30 cm followed the order permanent kikuyu pasture > annual ryegrass pasture > native grassland > sugarcane > maize under conventional tillage (CT). At site 2, organic C in the surface 30 cm decreased in the order kikuyu pasture > native grassland > annual ryegrass pasture > maize under zero tillage (ZT) > maize CT. Organic C, microbial biomass C, percentage organic C present as organic C, basal respiration and aggregate stability were substantially greater in the surface 5 cm under maize ZT than maize CT but this trend tended to be reversed in the 10- to 30-cm layer. In the undisturbed sites (e.g. native grassland and kikuyu pasture) the metabolic quotient increased with depth. By contrast, under maize CT and sugarcane there was no significant stratification of organic C, yet there was a sharp decrease in the metabolic quotient with depth. Aggregate stability was high under both native grassland and kikuyu pasture and it remained high to 40 cm depth under the deep-rooted kikuyu pasture. Although soil organic C content was similar under maize CT and sugarcane, values for microbial biomass C, percentage of organic present as microbial biomass, basal respiration and aggregate stability were lower, and those for metabolic quotient and bulk density were higher, under sugarcane. This was attributed to the fallow nature of the soil in the interrows of sugarcane fields. It was concluded that the loss of organic matter, microbial activity and aggregate stability is potentially problematic under maize CT, sugarcane and annual pasture and measures that improve organic matter status should be considered.  相似文献   

9.
Abstract

Soil aggregate stability is a crucial property regarding soil erodibility. However, results from different stability-assessment methods differ. The objective of this study was to compare two such methods on a set of southeast Norwegian agricultural soils. Traditionally, a raindrop-impact method has been used to determine the soil aggregate stability of Norwegian soils. Here, a more common, less destructive method was also used, a wet-sieve method using one sieve. Two soil fractions were studied, aggregates of 0.6–2 mm and 2–6 mm in diameter. The soil samples were chosen to give a wide range in clay content (5.7–68.0%) and soil organic matter (1.7–8.5% SOM). Using the wet-sieve method two different pre-treatments were performed; either using air-dried aggregates or slowly pre-wetted, air-dried aggregates. The aggregate stability found using the wet-sieve method gave generally higher stability values for soil aggregates 2–6 mm in diameter than using the standard raindrop-impact method (21% higher on average). Soils with high contents of silt and very fine sand (0.002–0.2 mm), however, were found to be more susceptible to destruction due to raindrop impact than to wet-sieving. Hence, using the wet-sieve method, the silty soils were ranked as more stable than by using the standard raindrop-impact method. Aggregate stability was positively correlated with the SOM and Al-oxides content and negatively correlated with the silt and the very fine sand content (0.002–0.02 mm). Using slowly, pre-wetted air-dried aggregates, which induce rebonding and reduce the effect of slaking, resulted in distinctively higher stability values than using air-dried aggregates in the wet-sieving method (34% higher on average). The wet-sieve method is less laborious and more widely used elsewhere, but the lower disruptive effect on silty soils should be kept in mind when using this method.  相似文献   

10.
We evaluated the influence of several organic matter management practices on the characteristics of carbohydrates in water-stable aggregates and soil aggregate stability at three Nigerian locations (Abakiliki, Nsukka and Umudike) where forests had been converted to arable farming. The effect of management practices to enhance aggregate stability was site-specific. The highest aggregate stability was obtained with Gliricidia sepium at Abakiliki, with Cajanus cajan followed by rice mill wastes (RW) at Nsukka and with the forested soil at Umudike. While none of the treatments at all sites was able to enhance the C and N contents of the soils to the levels obtained in the forested sites, a net improvement in carbohydrate and organic carbon (OC) content was found for some management practices. The carbohydrate status increased with G. sepium at Abakiliki, and with Dactylodenae bacterii alone or in combination with Pentaclethra species at Umudike, while at Nsukka all organic inputs increased carbohydrate content over the control and forested soils. However, neither total OC nor the carbohydrate content were significantly correlated to the variability in aggregate stability of these soils. The δ13C values found for acidic hydrolysates were constant within the soil aggregate sizes and generally distributed around −29 to −30‰, suggesting that the OC from these sites originated from C3 plants. Our results indicate that in these tropical Nigerian soils, aggregate stability and OC content are generally preserved by alley-cropping in well structured soil, whereas treatments with organic wastes are sustainable management practices in more fragile soils.  相似文献   

11.
Depending on agricultural management, soil aggregation can provide physical protection of organic matter against rapid decomposition. Within a given soil series, farm management affects the quality and quantity of organic inputs, soil disturbance and biological activity, and thereby the processes of aggregate formation (biogenic vs. physicogenic). We determined the physical protection of readily mineralizable organic matter against mineralization in undisturbed aggregates from a conventional arable field and a permanent pasture (>70 years). Soil samples from the two fields were incubated at constant temperature and moisture content, corresponding to field capacity. The increase in CO2 evolution due to crushing (<250 μm) of the aggregates was used to estimate the macroaggregate-protected C fraction. The fraction of C protected at the microstructural level was estimated from the increase in CO2 evolution after ball-mill grinding. In addition, aggregate size distribution and bulk density and porosity of undisturbed soil and macroaggregates were determined. Unprotected C fractions were not significantly different between the management systems and ranged from 1.9% to 2.4% of total organic C. In the arable soil, 1.4% of total soil organic C was physically protected in macroaggregates. Crushing of macroaggregates did not significantly increase C mineralization in the pasture soil. The results indicate that mineralization was considerably suppressed in the dominantly large and dense physicogenic macroaggregates from the arable field, but not in the dominantly porous, biogenic macroaggregates of the pasture soil. However, the protection in macroaggregates from the arable soil is not likely to be effective on the long-term because of the low water stability and the disrupting forces of cultivation under field conditions. A relatively high additional C mineralization from ground compared to crushed soil material, especially in the upper layer of the pasture soil, suggests a more important C protection at the microstructural level. Higher C protection in microaggregates from the pasture soil was supported by a previous micromorphological study of soil microstructures in thin sections of the considered management systems.  相似文献   

12.
Conversion of meadow and forest ecosystems to agricultural land generally leads to changes in soil structure. This comparative study presents the composition and stability of structural aggregates in humus horizons (0–30 cm) of noncarbonate silty‐clay Fluvisols in the Kolubara River Valley, W Serbia. Aggregates collected from under a native forest were compared to aggregates from meadows and arable fields which underwent crop rotation for > 100 y. The results show that size distribution and stability of structural aggregates in the humus horizons of arable soil are significantly impaired due to long‐term anthropogenization. In the humus horizons, the content of the agronomically most valuable aggregates (0.25–10 mm) decreased by a factor of ≈ 2, from 68%–74% to 37%–39%, while the percentage of cloddy aggregates (>10 mm) increased by a factor of ≈ 2, from 23%–31% to 48%–62%, compared to forest aggregates. The long‐term‐arable soil had significantly (p < 0.05) lower aggregate stability, determined by wet sieving, than meadow and forest soils. The lowest aggregate stability was found in aggregates > 3 mm. Their content is ≈ 2.5–3 times lower in arable soil (13%–16%) than in forest soil (32%–42%) at a depth of 0–20 cm. The largest mean weight diameters of dry aggregates (dMWD) with a range between 12.6 and 14.7 mm were found in arable soil, vs. 9.5–9.9 mm in meadow and 6.5–8.3 mm in forest. The arable soil had significantly lower mean weight diameters of wet‐stable aggregates (wMWD) and a lower structure coefficient (Ks) than forest and meadow soils. The dispersion ratio (DR) of arable soil was significantly higher than that of forest and meadow soils. Forest and meadow showed a significantly higher soil organic‐matter content (SOM) by 74% and 39%, respectively, compared with arable soil, while meadow uses decreased the SOM content by 57% compared with forest at a depth of 0–10 cm. In conclusion, the results showed that long‐term conventional tillage of soils from natural forest and meadow in the lowland ecosystems of W Serbia degraded soil aggregate–size distribution and stability and reduced SOM content, probably resulting in lower productivity and reduced crop yields.  相似文献   

13.
Two methods for the determination of aggregate stability, wet-sieving and the volumeter test (based on forced consolidation of an aggregate sample), were compared. The aim of this work was to find out whether results obtained with both methods were comparable and, if so, which one was less time-consuming for the same degree of accuracy.Optimum levels of soil moisture for obtaining reliable results were determined during preliminary tests. At these levels, results obtained with both methods showed close agreement. The results of wet-sieving were mainly correlated with the proportion of aggregates between 2 and 5 mm and organic matter content, whereas the results of the volumeter tests correlated with the clay-, silt-, organic matter- and calcium-content of the soil. The time necessary for the accomplishment of the volumeter test was about half that of the wet-sieving method.  相似文献   

14.
长期施肥对红壤性水稻土团聚体稳定性及固碳特征的影响   总被引:23,自引:2,他引:21  
施用有机肥是提高土壤有机碳(SOC)含量、促进土壤团聚体形成和改善土壤结构的重要措施。本研究旨在探讨长期作物残留和投入有机物料对水稻土团聚体分布及稳定性的影响,分析不同粒级团聚体的固碳特征及其与团聚体形成的相关性,以及土壤和不同粒级团聚体对累积碳投入的响应。长期定位施肥试验始于1986年,设不施肥(CK)、单施化肥(CF)、秸秆化肥混施(RS)、低量粪肥配施化肥(M1)和高量粪肥配施化肥(M2)5个处理。2009年采集0~10 cm土壤样品,测定总土以及大团聚体(LM,2 mm)、较大团聚体(SM,0.25~2 mm)、微团聚体(MA,0.25~0.053 mm)和黏粉粒(SC,0.053 mm)的质量比例及其SOC浓度,并分析闭蓄于SM内部的颗粒有机物(POM)、微团聚体(MA-SM)和黏粉粒(SC-SM)的质量含量和SOC浓度。结果表明,与CK和CF比较,有机肥混施化肥处理(RS、M1和M2)均显著提高了LM和SM的质量比例和平均当量直径(MWD),降低了SC质量含量;两个粪肥配施化肥处理(M1和M2)的效果优于秸秆化肥混施(RS),但是M1和M2间差异不显著;单施化肥则降低了稳定性团聚体的比例。团聚体的SOC浓度没有随粒级增大而增加,各处理均为LM和SM结合的SOC浓度最高,其次为SC,最小为MA。与CK比较,有机肥混施化肥处理均显著提高了各粒级团聚体的SOC浓度。总土SOC的增加主要取决于SM的SOC含量,而MA-SM组分决定了SM固持SOC的能力。总土、LM和SM的SOC含量以及从SM分离出的POM、MA-SM和SC-SM的SOC含量均与累积碳投入量呈显著正相关,但总土分离出的MA和SC的SOC含量对累积碳投入量反应不敏感,表现出碳饱和迹象。因此,尽管长期大量施用有机物料促进了红壤性水稻土大团聚体的形成和团聚体稳定性,增加了其SOC的固持,但有机质可能不是该土壤水稳性团聚体形成的最主要黏结剂。  相似文献   

15.
Water-stable macro-aggregate size fractions (>2.0 mm, 1.0–2.0 mm, 0.5–1.0 mm and 0.25–0.5 mm) and non-aggregated soil from a sandy loam under long-term clover-based pasture and from grass pasture were analysed to determine the role of acid- and water-extractable carbohydrate C, total hyphal length, microbial biomass, organic C and total and mycorrhizal root length in stabilization of the aggregates. Aggregates were examined by scanning electron microscopy (SEM) and the particle-size distribution of the size fractions was also determined. Macro-aggregation increased under grass, relative to clover-based pasture; however, the properties of the aggregate fractions measured did not reflect this difference. Microbial-biomass C, extractable-carbohydrate C, hyphal length, total and mycorrhizal root length and organic C content of the soils were poorly correlated with macro-aggregation. Within the aggregates, the proportion of 250–1000-km sand was smaller and clay, silt and fine sand (20–250 μm) were greater relative to non-aggregated soil, suggesting that the >250-μm sand in the non-aggregated soil limited the stabilization of macro-aggregates. Under SEM, no enmeshment of aggregates by hyphae and roots was apparent. Although 50–160 m hyphae g?1 soil was found within the aggregates, calculations showed that on average only 5 to 13 lengths of hyphae were associated with each 250-μm cube of soil within the aggregates, and suggested little potential to stabilize the aggregates by enmeshing. On average, all >2.0-mm aggregates contained less than 3.6 mm of roots and less than 50% by weight of <2.0-mm aggregates contained a single length of root. The findings cast doubt about the role of hyphae and fine roots in the stabilization of macro-aggregates through an enmeshing mechanism in sandy soils.  相似文献   

16.
Components of the organic matter have been studied in three soils from adjacent sites with different long-term treatments: soil I, prolonged arable cultivation; soil II, 17 years under grass after prolonged arable cultivation; and soil III, old pasture. Contents of total organic C in the top 15cm were 0.9% in soil I. 1.7% in soil II and 4.8% in soil III. The light fraction, comprising partially decomposed materials with a specific gravity < 2.06, represented greater proportions of the organic C in soils II and III (20–23 per cent) than in soil I (8.5 per cent). The light fraction of soil III had a relatively high N content.The proportions of the soil organic C released, by hydrolysis, as neutral sugars, uronic acids, amino sugars, amino acids and phenolic acids were generally similar in the three soils, although uronic acids and phenolic acids constituted somewhat greater proportions in soils II and III than in I.The light fractions contained greater proportions of neutral sugars and phenolic acids, and smaller proportions of amino sugars and amino acids than the whole soils.  相似文献   

17.
Abstract. Soil management studies show that intensive arable agriculture can lead to a decline in both organic matter levels and the stability of the soil structure. It is a priority to understand how soil structure responds when fresh organic materials are added to poor quality degraded arable soils. This is of particular interest because of its implication for carbon sequestration. We investigate whether the addition of organic materials can form stable aggregates in a degraded soil. Grass or peat residues were added to samples of soil obtained from the continuous grassland and arable plots of the long-term experiment at highfield, IACR-Rothamsted (UK) and incubated at 2° and 24°C, for upto 8 weeks at -5 kPa. At 1 day and at 2, 4 and 8 weeks the soil was slaked in de-ionised water and the aggregate size distributions were measured. The data was used to calculate mean weight diameters (MWD). The treatments with added grass showed increased aggregated relative to the control; the treatments with added peat did not. At 24°C the value of MWD increased with the incubation period, but at 2°C there was no further aggregation beyond week two. Respiration measurements were made and the samples that released the most CO2 were also those which re-aggregated the most. This suggests that the process of aggregation is microbiologically mediated. The results are discussed within the broader context of the implications of soil organic matter content on soil management.  相似文献   

18.
The growth of maize roots decreased fresh soil aggregate stability. Chemical pretreatment with sodium periodate (to assess the importance of polysaccharides) and acetylacetone (to assess the importance of organically bound Fe and Al) before measuring stability suggested that destruction of (organic matter)-(Fe or Al)-(mineral particle) linkages largely accounts for the effect. Removal of the Fe and Al cations by chelating agents released in the rhizosphere is the most likely mechanism. Changes in soil particle size distribution and the concentrations of water-extractable cations around maize roots did not appear to be implicated. Concentrations of water-extractable Mg and K were sometimes greater in fresh soil which had supported maize than in fallow controls, which may reflect both release of bicarbonate or organic anions by the roots and the slaking of aggregates, reducing stability of the fresh maize soils.  相似文献   

19.
The influence of electrolyte concentration (EC) and sodium adsorption ratio (SAR) on the tensile strength and aggregate stability via flocculation and dispersion behaviour of an Alfisol varying in organic carbon content due to different cropping systems was assessed using a split-split plot experiment involving eight soils, three levels of EC and seven levels of SAR.

Generally, at a given SAR value, mean weight diameter (MWD) increased with organic matter status of the soil in the following order: virgin pasture>wheat>wheat-fallow. As MWD decreased, the amount of dispersible clay increased at a given SAR indicating that more surfaces exposed due to slaking of aggregates led to more clay dispersion. Statistical analysis of changes in tensile strength with various factors showed that an increase in organic matter decreased the magnitude of changes in strength induced by sodicity because organic matter tends to increase aggregate stability (higher MWD). While individual soils had significant relationships between the tensile strength of the aggregates and the amount of spontaneously dispersible clay, this relationship was poor when the results of all soils were pooled together. The amounts of dispersible clay from dry aggregates were higher than from wet aggregates and dispersive breakdown of the aggregates of sodic soils occured irrespective of the mode of wetting. The most important factor in determining the soil strength was the amount of clay dispersed during wet-sieving analysis followed by MWD.  相似文献   


20.
土壤的团聚状况是土壤重要的物理性质之一,团聚体数量是衡量和评价土壤肥力的重要指标。施用有机肥是提高土壤有机碳(SOC)含量、促进土壤团聚体形成和改善土壤结构的重要措施。本文以华北地区曲周长期定位试验站的温室土壤和农田土壤为研究对象,运用湿筛法,对比研究施用化肥(NP)、有机肥加少量化肥(NPM)、单施有机肥(OM)3种施肥方式对温室和农田两种利用方式土壤水稳性团聚体含量、分布和稳定性的影响,以提示施肥措施对不同土地利用方式土壤水稳性团聚体特征的影响。结果表明:在温室土壤和农田土壤中,OM处理较NP和NPM处理显著降低了土壤容重,增加了土壤有机质含量(P0.05),且在0~10 cm土层中效果最为明显。其中在温室土壤0~10 cm土层,单施有机肥处理(OM1)的土壤容重为1.17 g·cm~(-3),分别较施用化肥(NP1)和有机肥加少量化肥(NPM1)处理降低12.0%和8.6%,OM1的土壤有机质含量为54.81 g·kg~(-1),较NP1和NPM1增加104.8%和35.7%;在农田土壤0~10 cm土层,单施有机肥处理(OM2)的土壤容重为1.19 g·cm~(-3),较施用化肥(NP2)、有机肥加少量化肥(NPM2)分别降低8.5%和7.0%,OM2的土壤有机质为22.67 g·kg~(-1),较NP2、NPM2分别增加23.1%和15.0%。温室土壤和农田土壤中,0~10 cm、10~20 cm和20~40 cm层土壤团聚体的平均重量直径(MWD)和几何平均直径(GMD)均为OMNPMNP;OM处理下水稳性团聚体的分形维数(D)值最低,NP处理下最大。OM处理显著降低0~20 cm土层内水稳性团聚体的D值,表层0~10 cm土层效果最为明显,土壤结构明显得到改善;相比农田土壤,温室土壤稳定性指标变化最为明显,团聚体结构改善效果最好。土壤有机质含量与0.25 mm水稳性团聚体含量间呈极显著正相关关系(P0.001),说明土壤有机质含量越高,0.25 mm水稳性团聚体的含量就越高,土壤团聚体水稳性越强,土壤结构越稳定。因此有机施肥方式能在补充土壤有机碳库和有效养分含量的同时,显著增加土壤中大团聚体的含量及其水稳性,是提高华北平原农田土壤、尤其是温室土壤结构稳定性和实现土壤可持续发展的有效措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号