首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
冠层温度指导冬小麦灌溉的试验研究   总被引:1,自引:0,他引:1  
在冬小麦主要生育期,测定了6个不同水分处理的冠层温度、气温以及土壤含水率,计算了冠气温差并分析了它们之间的相互关系。结果表明:作物水分胁迫指数CWSI和冠层-空气温差(Tc-Ta)是利用冠层温度评价作物水分状况的重要方法。冠层温度和冠气温差都有明显的日变化过程,其中冠层温度在下午14:00前后达到最大值;中午12:00~14:00时段冠气温差反应冬小麦的供水状况最具代表性;冬小麦适宜水分处理的冠气温差阈值为-1.5℃<ΔT<1.3℃。冬小麦旺盛生长期间(15/4~25/5)的水分胁迫指数平均值与最终籽粒产量的关系是一种非线性的关系,平均水分胁迫指数在0.18~0.23范围为冬小麦的最优供水标准。  相似文献   

2.
基于无人机热红外的水分胁迫指数与土壤含水率关系研究   总被引:1,自引:0,他引:1  
为了实时快速监测作物根系活动层的土壤含水率,利用低空无人机搭载的热红外相机获取经4种水分处理的棉花花铃期一天中5个时刻的冠层温度,并连续观测5 d,应用水分胁迫指数(CWSI)的理论模式、简化模式、定义模式计算得到3种CWSI,与棉花根系不同土壤深度含水率建立模型。研究表明:3种胁迫指数与土壤含水率具有幂函数关系,其中理论模式与土壤含水率的相关性最佳,定义模式次之,简化模式最差;在一天中不同监测时间点上,3种CWSI的监测精度在13∶00最高,9∶00和17∶00最差;在监测深度上,3种胁迫指数与0~60 cm处的土壤含水率关系最为紧密,0~30 cm次之,0~15 cm最差。该研究可大面积获取作物根系层土壤含水率,提高作物根系层土壤含水率的反演精度。  相似文献   

3.
茶树水分胁迫建模及试验   总被引:1,自引:0,他引:1  
通过观测冬季和春季塑料大棚中不同灌溉条件下茶树的冠层温度、空气温湿度、土壤热流密度、土壤湿度、太阳净辐射照度及风速等因素,利用Idso经验模式确定了冠气温差的下限方程.通过观察不同水分处理条件下茶树作物水分胁迫指数的日变化和季节变化,得出了反映茶树水分状况的关系曲线.研究分析了Jackson的理论模式与Idso的经验模式反映茶树水分胁迫的差异性,针对华南地区经常出现的冬旱及春旱,首先通过人工田间数据采集的方法,分9—12月和1—3月2个阶段测量茶树作物水分胁迫指数中所涉及的各个参数,建立了茶树冬季和春季的作物水分胁迫指数模型.研究结果发现,茶树冬季和春季作物水分胁迫指数模型相差不大,冬季经验模型中,系数A和B的值分别为1.265和-0.220,而春季经验模型中,系数A和B的值分别是1.230和-0.214,这可能与茶树属于多年生植物,冬季和春季叶面积指数等变化不大相关.  相似文献   

4.
作物水分胁迫指数(Crop water stress index,CWSI)经验模型的建立与气候和种植条件密切相关。本文以内蒙古自治区鄂尔多斯市达拉特旗大田玉米为对象,研究CWSI的最优经验模型。玉米在营养生长阶段(Vegetative stage,V期)、生殖期(Reproductive stage,R期)和成熟期(Maturation stage,M期)分别进行不同灌溉水平的处理,采用红外测温传感器采集玉米冠层温度。分别结合田间和实验地旁标准气象站空气温湿度数据建立了CWSI经验模型的无水分胁迫基线。基于2种无水分胁迫基线,分别利用饱和水汽压梯度获取的无蒸腾作用基线和5℃无蒸腾作用基线建立了4种CWSI经验模型,得出反映大田玉米水分胁迫状况的关系曲线,并进行对比。结果表明,基于实验地旁标准气象站空气温湿度数据建立的CWSI经验模型具有很大的波动性,并不能很好反映玉米的水分胁迫状况,其值常常超出正常范围0~1。而基于田间空气温湿度数据建立的CWSI经验模型则可以很好地监测内蒙古自治区大田玉米水分胁迫状况,M期3种不同水分处理100%、52%和28%具有较好的CWSI数值梯度,分别为0.04、0.14和0.32。相比于基于饱和水汽压梯度获取的无蒸腾作用基线,以5℃作为无蒸腾作用基线时得到的CWSI数值较小,可以较好地反映水分胁迫状况,对应上述M期3种不同水分处理CWSI值分别为0.02、0.10和0.22,具有较为合理的梯度。经过初步检验和分析,认为基于田间空气温湿度数据建立的CWSI经验模型较为合理,可以有效监测大田玉米水分胁迫状况。  相似文献   

5.
大田玉米水分胁迫指数经验模型建立方法   总被引:2,自引:0,他引:2  
作物水分胁迫指数(Crop water stress index,CWSI)经验模型的建立与气候和种植条件密切相关。以内蒙古自治区鄂尔多斯市达拉特旗大田玉米为对象,研究了CWSI的最优经验模型。玉米在营养生长阶段(Vegetative stage,V期)、生殖期(Reproductive stage,R期)和成熟期(Maturation stage,M期)分别进行不同灌溉水平的处理,采用红外测温传感器采集玉米冠层温度。分别结合田间和实验地旁标准气象站空气温湿度数据建立了CWSI经验模型的无水分胁迫基线。基于2种无水分胁迫基线,分别利用饱和水汽压梯度获取的无蒸腾作用基线和5℃无蒸腾作用基线建立了4种CWSI经验模型,得出反映大田玉米水分胁迫状况的关系曲线,并进行对比。结果表明,基于实验地旁标准气象站空气温湿度数据建立的CWSI经验模型具有很大的波动性,并不能很好反映玉米的水分胁迫状况,其值常常超出正常范围(0~1)。而基于田间空气温湿度数据建立的CWSI经验模型则可以很好地监测内蒙古自治区大田玉米水分胁迫状况,M期3种不同水分处理100%、52%和28%具有较好的CWSI数值梯度,分别为0.03、0.14和0.32。相比于基于饱和水汽压梯度获取的无蒸腾作用基线,以5℃作为无蒸腾作用基线时得到的CWSI数值较小,可以较好地反映水分胁迫状况,对应上述M期3种不同水分处理CWSI值分别为0.02、0.10和0.22,具有较为合理的梯度。经过初步检验和分析,认为基于田间空气温湿度数据建立的CWSI经验模型较为合理,可以有效监测大田玉米水分胁迫状况。  相似文献   

6.
作物冠层温度是反映作物水分状况的一个良好指标,在研究环境因素对冠层温度影响的基础上,分析了不同土壤水分条件下棉花冠层温度的变化规律。研究表明了冠层温度与细胞液浓度之间存在良好关系,建立的冠层温度与气温差同气象因素和土壤水分的关系可用于判断作物的缺水状况  相似文献   

7.
基于无人机热红外遥感的冬小麦水分胁迫研究   总被引:1,自引:0,他引:1  
为探究水分胁迫对冬小麦生长的影响,以不同水分处理的冬小麦为试验对象,利用无人机搭载热红外传感器,通过采集其不同生育期中一天不同时刻(11∶00,13∶00)的冠层热红外图像,提取其冠层温度信息,同时测定小麦叶片的气孔导度(Gs)、蒸腾速率(Tr)和田间土壤体积含水率(SWC)等信息。分别研究不同水分胁迫指数(CWSI、I_G、ICWSI)与各参数之间的关系,同时使用一元线性模型和多元线性回归模型进行建模并验证。结果表明:CWSI、I_G和ICWSI与Gs、Tr和SWC之间存在着显著的相关关系,在一元模型中,SWC对不同水分胁迫指数的预测效果更好,验证R~2均在0.800以上,相对分析误差均在2.0以上,在多元模型中,CWSI的预测效果最好,验证R~2为0.928,相对分析误差为3.041,同时多元模型的预测效果均优于一元模型。该研究可快速获取大量作物信息,为利用无人机热红外遥感探究冬小麦的水分胁迫状况提供了一条新途径。  相似文献   

8.
剔除土壤背景的棉花水分胁迫无人机热红外遥感诊断   总被引:7,自引:0,他引:7  
剔除无人机热红外影像中的土壤背景是提高作物水分诊断精度的有效途径,但也是热红外图像处理的难点问题。本文以不同水分处理的花铃期棉花为研究对象,分别在09:00、13:00和17:00等3个时刻,连续5 d采集无人机高分辨率热红外影像,并采用二值化Ostu算法和Canny边缘检测算法对热红外图像进行掩膜处理,实现对土壤背景的剔除,然后分别计算二值化Ostu算法、Canny边缘检测算法和包含土壤背景下的3种棉花水分胁迫指数(Crop water stress index,CWSI),最后建立不同时刻下3种CWSI与棉花叶片气孔导度Gs的关系模型。研究结果表明,应用Canny边缘检测算法可有效剔除热红外影像中的土壤背景,剔除土壤背景后的温度直方图呈单峰的偏态分布;3种处理方法获得的作物水分胁迫指数CWSI中,Canny边缘检测算法的CWSI最小,二值化Ostu算法的CWSI较高,包含土壤背景的CWSI最大;采用Canny边缘检测算法剔除土壤背景后的CWSI与棉花叶片气孔导度Gs的决定系数R2达到0.84,Ostu算法的结果次之,包含土壤背景的最差。本研究可为无人机热红外遥感监测作物水分状况提供参考。  相似文献   

9.
剔除无人机热红外影像中的土壤背景是提高作物水分诊断精度的有效途径,但也是热红外图像处理的难点问题。本文以不同水分处理的花铃期棉花为研究对象,分别在9:00、13:00和17:00等3个时刻,连续5 d采集无人机高分辨率热红外影像,并采用二值化Ostu算法和Canny边缘检测算法对热红外图像进行掩膜处理,实现对土壤背景的剔除,然后分别计算二值化Ostu算法、Canny边缘检测算法和包含土壤背景下的3种棉花水分胁迫指数(Crop water stress index,CWSI),最后建立不同时刻下3种CWSI与棉花叶片气孔导度Gs的关系模型。研究结果表明,应用Canny边缘检测算法可有效剔除热红外影像中的土壤背景,剔除土壤背景后的温度直方图呈单峰的偏态分布;3种处理方法获得的作物水分胁迫指数CWSI中,Canny边缘检测算法的CWSI最小,二值化Ostu算法的CWSI较高,包含土壤背景的CWSI最大;采用Canny边缘检测算法剔除土壤背景后的CWSI与棉花叶片气孔导度Gs的决定系数R2达到0.84,Ostu算法的结果次之,包含土壤背景的最差。本研究可为无人机热红外遥感监测作物水分状况提供参考。  相似文献   

10.
作物冠层或叶片温度的变化可以反映作物的水分状况[1]。为此,根据能量平衡原理分析了作物的冠层(叶片)—空气温差变化的影响因素,并采用模糊推理技术,以叶片—空气温差及相关的环境因素(空气水汽压差、光照强度、空气温湿度和风速等)为输入变量,以CWSI为输出变量,探讨基于植物叶片—空气温差的作物水分亏缺诊断的智能化方法,实现了作物水分亏缺指标的动态分析,有效地解决了环境因素对CWSI计算结果的影响。采用温室生长的黄瓜为对象进行试验,试验表明:该诊断方法可有效地反映作物水分亏缺程度,克服了传统诊断的局限性。  相似文献   

11.
Application of a new method to evaluate crop water stress index   总被引:1,自引:0,他引:1  
Optimum water management and irrigation require timely detection of crop water condition. Usually crop water condition can be indicated by crop water stress index (CWSI), which can be estimated based on the measurements of either soil water or plant status. Estimation of CWSI by canopy temperature is one of them and has the potential to be widely applied because of its quick response and remotely measurable features. To calculate CWSI, the conventional canopy-temperature-based model (Jackson’s model) requires the measurement or estimation of the canopy temperature, the maximum canopy temperature (T cu), and the minimum canopy temperature (T cl). Because extensive measurements are necessary to estimate T cu and T cl, its application is limited. In this study, by introducing the temperature of an imitation leaf (a leaf without transpiration, T p) and based on the principles of energy balance, we studied the possibility to replace T cu by T p and reduce the included parameters for CWSI calculation. Field experiments were carried out in a winter wheat (Triticum aestivum L.) field in Luancheng area, Hebei Province, the main production area of winter wheat in China. Six irrigation treatments were established and soil water content, leaf water potential, soil evaporation rate, plant transpiration rate, biomass, yield, and regular meteorological variables of each treatment were measured. Results indicate that the values of T cu agree with the values of T p with a regression coefficient r=0.988. While the values of CWSI estimated by the use of T p are in agreement with CWSI by Jackson’s method, with a regression coefficient r=0.999. Furthermore, CWSI estimated by the use of T p has good relations with soil water content and leaf water potential, showing that the estimated CWSI by T p is a good indicator of soil water and plant status. Therefore, it is concluded that T cu can be replaced by T p and the included parameters for CWSI calculation can be significantly reduced by this replacement.  相似文献   

12.
Summary A field study was conducted on cotton (Gossypium hirsutum L. c.v. Acala SJ-2) to investigate the effects of soil salinity on the responses of stress indices derived from canopy temperature, leaf diffusion resistance and leaf water potential. The four salinity treatments used in this study were obtained by mixtures of aqueduct and well water to provide mean soil water electrical conductivities of 17, 27, 32 and 38 dS/m in the upper 0.6 m of soil profile. The study was conducted on a sandy loam saline-alkali soil in the lower San Joaquin Valley of California on 30 July 1981, when the soil profile was adequately irrigated to remove any interference of soil matric potential on the stress measurements. Measurements of canopy temperature, leaf water potential and leaf diffusion resistance were made hourly throughout the day.Crop water stress index (CWSI) estimates derived from canopy temperature measurements in the least saline treatment had values similar to those found for cotton grown under minimum salinity profiles. Throughout the course of the day the treatments affected CWSI values with the maximum differences occurring in mid-afternoon. Salinity induced differences were also evident in the leaf diffusion resistance and leaf water potential measurements. Vapor pressure deficit was found to indicate the evaporative demand at which cotton could maintain potential water use for the various soil salinity levels studied. At vapor pressure deficits greater than 5 kPa, cotton would appear stressed at in situ soil water electrical conductivities exceeding 15 dS/m. The CWSI was as sensitive to osmotic stress as other, more traditional plant measures, provided a broader spatial resolution and appeared to be a practical tool for assessing osmotic stress occurring within irrigated cotton fields.  相似文献   

13.
This research was initiated to examine water use of differentially irrigated sorghum (Sorghum bicolor (L.) Moench) and to evaluate the plant water stress using canopy temperature measurements.Field experiments were conducted for 3 years characterised by different weather conditions at Montpellier, France. The crop was subjected to 14 differentially irrigated treatments which included, each year, a full irrigated and a dry treatment. Plant and soil measurements monitored during the crop cycle included soil water content, leaf water potential, and canopy temperature.Mid-day measurement of crop canopy temperature (Tc) /air temperature (Ta) difference reached a maximum of 7°C in the dry treatment and was maintained close to 0°C in full irrigated treatment. The relationships between (Tc-Ta) and vapour pressure deficit (VPD) commonly referred to as ‘baseline’ in the determination of crop water stress indicator (CWSI) were examined on function of wind speed and global solar radiation. Three approaches of estimating CWSI were compared. Summations of stress-degree-day (SDD) and temperature-stress-day (TSD) were well related to both relative evapotranspiration and yield (r2 > 0.70).  相似文献   

14.
Plant water status is a key factor impacting crop growth and agricultural water management. Crop water stress may alter canopy temperature, the energy balance, transpiration, photosynthesis, canopy water use efficiency, and crop yield. The objective of this study was to calculate the Crop Water Stress Index (CWSI) from canopy temperature and energy balance measurements and evaluate the utility of CWSI to quantify water stress by comparing CWSI to latent heat and carbon dioxide (CO2) flux measurements over canopies of winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.). The experiment was conducted at the Yucheng Integrated Agricultural Experimental Station of the Chinese Academy of Sciences from 2003 to 2005. Latent heat and CO2 fluxes (by eddy covariance), canopy and air temperature, relative humidity, net radiation, wind speed, and soil heat flux were averaged at half-hour intervals. Leaf area index and crop height were measured every 7 days. CWSI was calculated from measured canopy-air temperature differences using the Jackson method. Under high net radiation conditions (greater than 500 W m−2), calculated values of minimum canopy-air temperature differences were similar to previously published empirically determined non-water-stressed baselines. Valid measures of CWSI were only obtained when canopy closure minimized the influence of viewed soil on infrared canopy temperature measurements (leaf area index was greater than 2.5 m2 m−2). Wheat and maize latent heat flux and canopy CO2 flux generally decreased linearly with increases in CWSI when net radiation levels were greater than 300 W m−2. The responses of latent heat flux and CO2 flux to CWSI did not demonstrate a consistent relationship in wheat that would recommend it as a reliable water stress quantification tool. The responses of latent heat flux and CO2 flux to CWSI were more consistent in maize, suggesting that CWSI could be useful in identifying and quantifying water stress conditions when net radiation was greater than 300 W m−2. The results suggest that CWSI calculated by the Jackson method under varying solar radiation and wind speed conditions may be used for irrigation scheduling and agricultural water management of maize in irrigated agricultural regions, such as the North China Plain.  相似文献   

15.
Evaluating canopy temperature-based indices for irrigation scheduling   总被引:1,自引:0,他引:1  
Summary Since the development of commercial versions of infrared sensors, they have been increasingly used to determine canopy temperature and schedule irrigations. However, some shortcomings of the technique have been identified, among them the sensitivity of canopy temperature measurements to weather fluctuations. Based on field and computer simulated data, an analysis of the suitability of crop water stress indices (CWSI's) developed from canopy temperature under variable weather conditions was done. Important day to day fluctuations of CWSI values determined using an empirical baseline (empirical CWSI) appeared common for nonstressed crops, particularly under low vapor pressure deficit conditions. These fluctuations generate uncertainty in the use of this empirical index to determine needs for irrigation. The use of an improved index (theoretical CWSI) requiring measurements of net radiation, soil heat flux and wind speed, and estimates of aerodynamic and canopy resistances reduced but did not eliminate these fluctuations. Results using a simulation model showed that the empirical CWSI provided late indication of irrigation needs, after some water stress has developed, which may limit its application for crops sensitive to water stress. These simulations also indicated that the theoretical CWSI was able to track the development of water stress and provide reasonable indication of irrigation needs. However, this result may not be fully realized in field applications where the determination of CWSI may be affected by various sources of variability which are not accounted for by the model.  相似文献   

16.
Crop water stress index relationships with crop productivity   总被引:1,自引:0,他引:1  
Summary Field experiments between 1983 and 1987 were used to study the effect of crop development on crop water stress index (CWSI) parameters and the relationship of CWSI with the yield of cotton and grain sorghum. The absolute slopes of nonstressed baselines (NSBL) generally increased until canopy cover reached 70% (Table 1). NSBL derived from data collected when canopy temperature exceeded 27.4 °C had greater absolute slopes and higher R 2-values than NSBL that included all diurnal measurements (Table 1). Average CWSI values of cotton and grain sorghum grown under varying soil water regimes were negatively correlated with yield. Grain sorghum yield was more sensitive to CWSI values than was cotton lint yield (Figs. 1 and 2). Multiyear data analysis indicated that yields from cotton that experienced a completely stressed condition during part of each day during the boll setting period would be 40% of those from completely nonstressed cotton (Fig. 3). Negative values of CWSI computed for cotton growing under non-water stressed conditions were associated with uncertainties in calculations of aerodynamic resistance (r aand in estimating canopy resistance at potential evapotranspiration (r cp).  相似文献   

17.
Evaluation of crop water stress index for LEPA irrigated corn   总被引:6,自引:0,他引:6  
This study was designed to evaluate the crop water stress index (CWSI) for low-energy precision application (LEPA) irrigated corn (Zea mays L.) grown on slowly-permeable Pullman clay loam soil (fine, mixed, Torrertic Paleustoll) during the 1992 growing season at Bushland, Tex. The effects of six different irrigation levels (100%, 80%, 60%, 40%, 20%, and 0% replenishment of soil water depleted from the 1.5-m soil profile depth) on corn yields and the resulting CWSI were investigated. Irrigations were applied in 25 mm increments to maintain the soil water in the 100% treatment within 60–80% of the “plant extractable soil water” using LEPA technology, which wets alternate furrows only. The 1992 growing season was slightly wetter than normal. Thus, irrigation water use was less than normal, but the corn dry matter and grain yield were still significantly increased by irrigation. The yield, water use, and water use efficiency of fully irrigated corn were 1.246 kg/m2, 786 mm, and 1.34 kg/m3, respectively. CWSI was calculated from measurements of infrared canopy temperatures, ambient air temperatures, and vapor pressure deficit values for the six irrigation levels. A “non-water-stressed baseline” equation for corn was developed using the diurnal infrared canopy temperature measurements as T cT a = 1.06–2.56 VPD, where T c was the canopy temperature (°C), Ta was the air temperature (°C) and VPD was the vapor pressure deficit (kPa). Trends in CWSI values were consistent with the soil water contents induced by the deficit irrigations. Both the dry matter and grain yields decreased with increased soil water deficit. Minimal yield reductions were observed at a threshold CWSI value of 0.33 or less for corn. The CWSI was useful for evaluating crop water stress in corn and should be a valuable tool to assist irrigation decision making together with soil water measurements and/or evapotranspiration models. Received: 19 May 1998  相似文献   

18.
用冠层温度定量诊断作物根系活动层   总被引:3,自引:0,他引:3  
冠层温度在定量诊断作物水分亏缺中得到了广泛的应用,1998年和1999年在新疆乌兰乌苏农业气象站试验田对覆膜棉花和玉米进行了研究,在此研究成果的基础上,提出了冠层温度最佳的测定时间,进行了用冠层温度定量诊断作物根系活动层的初步研究,结果表明可以利用CWSI与不同土层含水量的相关系数动态,准确地确定作物根系主要活动层的范围。  相似文献   

19.
Determination of temporal and spatial distribution of water use (WU) within agricultural land is critical for irrigation management and could be achieved by remotely sensed data. The aim of this study was to estimate WU of dwarf green beans under excessive and limited irrigation water application conditions through indicators based on remotely sensed data. For this purpose, field experiments were conducted comprising of six different irrigation water levels. Soil water content, climatic parameters, canopy temperature and spectral reflectance were all monitored. Reference evapotranspiration (ET0), crop coefficient Kc and potential crop evapotraspiration (ETc) were calculated by means of methods described in FAO-56. In addition, WU values were determined by using soil water balance residual and various indexes were calculated. Water use fraction (WUF), which represents both excessive and limited irrigation applications, was defined through WU, ET0 and Kc. Based on the relationships between WUF and remotely sensed indexes, WU of each irrigation treatments were then estimated. According to comparisons between estimated and measured WU, in general crop water stress index (CWSI) can be offered for monitoring of irrigated land. At the same time, under water stress, correlation between measured WU and estimated WU based on CWSI was the highest too. However, canopy-air temperature difference (Tc − Ta) is more reliable than others for excessive water use conditions. Where there is no data related to canopy temperature, some of spectral vegetation indexes could be preferable in the estimation of WU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号