首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Hot-water- and water-extractable organic matter were obtained from soil samples collected from a rice paddy 31 years after the start of a long-term rice experiment in Yamagata, Japan. Specifically, hot-water-extractable organic carbon and nitrogen (HWEOC and HWEON) were obtained by extraction at 80°C for 16 h, and water-extractable organic carbon and nitrogen (WEOC and WEON) were obtained by extraction at room temperature. The soil samples were collected from surface (0–15 cm) and subsurface (15–25 cm) layers of five plots that had been treated with inorganic fertilizers alone or with inorganic fertilizers plus organic matter, as follows: PK, NPK, NPK plus rice straw (RS), NPK plus rice straw compost (CM1), and NPK plus a high dose of rice straw compost (CM3). The soil/water ratio was 1:10 for both extraction temperatures. We found that the organic carbon and total nitrogen contents of the bulk soils were highly correlated with the extractable organic carbon and nitrogen contents regardless of extraction temperature, and the extractable organic carbon and nitrogen contents were higher in the plots that were treated with inorganic fertilizers plus organic matter than in the PK and NPK plots. The HWEOC and WEOC δ13C values ranged from ?28.2% to ?26.4% and were similar to the values for the applied rice straw and rice straw compost. There were no correlations between the HWEOC or WEOC δ13C values and the amounts of HWEOC or WEOC. The δ13C values of the bulk soils ranged from ?25.7% to ?23.2% and were lower for the RS and CM plots than for the PK and NPK plots. These results indicate that HWEOC and WEOC originated mainly from rice plants and the applied organic matter rather than from the indigenous soil organic matter. The significant positive correlations between the amounts of HWEOC and HWEON and the amount of available nitrogen (P < 0.001) imply that extractable organic matter can be used as an index for soil fertility in this long-term experiment. We concluded that the applied organic matter decomposed more rapidly than the indigenous soil organic matter and affected WEOC δ13C values and amounts.  相似文献   

2.

Purpose

The quality and quantity of dissolved organic carbon (DOC) in the soil can be used as indicators of the effects of perturbations on soil C. We studied the effects of land use systems (native forest, grassland, and arable land) in both Alberta, in western Canada, and Heilongjiang, in northeast China, on the quality and quantity of soil DOC.

Materials and methods

We studied the UV absorption, humification index (HIX), and biodegradability of water-extractable organic C, which is operationally defined as DOC. The relationship between biodegradability and the structural chemistry of soil organic matter studied with 13C-nuclear magnetic resonance (NMR) spectroscopy was also investigated.

Results and discussion

The UV absorption and HIX, biodegradability of DOC, and the proportion of organic matter functional groups were not different among the land use types in both Canada and China. When the samples from both countries were considered together, the extractability of DOC was negatively correlated with soil organic carbon content and carbonyl C, and positively correlated with O-alkyl C; the biodegradability of DOC was positively correlated with soil C/N ratio, and negatively correlated with the specific UV absorbance and HIX.

Conclusions

The main effect of land use type on soil organic matter was on its content but not the labile C characteristics or organic matter functional group composition, indicating the dominant control of the climate on the quality of DOC of the organic matter under different land use types we studied in the two cold temperate regions.  相似文献   

3.
This study tests the hypothesis that microbial biomass phosphorus (P) makes a significant contribution to P solubility in riparian buffer strip soils. In 36 soils collected from buffer strips within three UK soil associations, water-extractable inorganic P solubility was most strongly related to NaHCO3 extractable inorganic P. However, within individual soil associations where soil pedological properties and management were similar, water-extractable inorganic P was most strongly related to microbial biomass P. These results highlight the difficulty in predicting dissolved P leaching risk based on agronomic soil P tests alone and the dissolved P leaching risk presented by having soils high in organic matter and microbial biomass P in close proximity to surface waters.  相似文献   

4.
Modifications of bacterial activities are observed when continuous electric current is applied in soil for soil remediation purposes (electrokinetic). In this study we found a significant increase of 330% of the total heterotrophic culturable bacteria 2 d after soil samples had been submitted to pulsed electric field (PEF) treatment (E  4 KV/cm, τ  5 ms, 3 pulses) resulting from pulsed electric current injections. We hypothesized that this result was caused by qualitative and/or quantitative modifications of the dissolved organic matter and tested this using a γ-sterilized model soil. The incidence of electrical parameters (electric field intensity and pulse duration) on the water-extractable organic matter was analysed using two types of experimental set-ups for current injection. These experimental set-ups exhibited different volume, physical state (liquid, solid) of the soil samples and different electrical conditions. Total organic carbon content and fluorescence signature (excitation-emission matrix, EEM) were monitored for all samples. A 67% decrease in the ratio between higher and lower molecular weight fluorescent compounds was observed, indicating a new distribution of the fluorescent compounds into the dissolved organic matter following PEF treatment.  相似文献   

5.
Clear‐cutting of forest provides a unique opportunity to study the response of dynamic controls on dissolved organic matter. We examined differences in concentrations, fluxes and properties of dissolved organic matter from a control and a clear‐cut stand to reveal controlling factors on its dynamics. We measured dissolved organic C and N concentrations and fluxes in the Oi, Oe and Oa horizons of a Norway spruce stand and an adjacent clear‐cutting over 3 years. Aromaticity and complexity of organic molecules were determined by UV and fluorescence spectroscopy, and we measured δ13C ratios over 1 year. Annual fluxes of dissolved organic C and N remained unchanged in the thin Oi horizon (~ 260 kg C ha?1, ~ 8.5 kg N ha?1), despite the large reduction in fresh organic matter inputs after clear‐cutting. We conclude that production of dissolved organic matter is not limited by lack of resource. Gross fluxes of dissolved organic C and N increased by about 60% in the Oe and 40% in the Oa horizon upon clear‐cutting. Increasing organic C and N concentrations and increasing water fluxes resulted in 380 kg C ha?1 year?1 and 10.5 kg N ha?1 year?1 entering the mineral soil of the clear‐cut plots. We found numerous indications that the greater microbial activity induced by an increased temperature of 1.5°C in the forest floor is the major factor controlling the enhanced production of dissolved organic matter. Increasing aromaticity and complexity of organic molecules and depletion of 13C pointed to an accelerated processing of more strongly decomposed parts of the forest floor resulting in increased release of lignin‐derived molecules after clear‐cutting. The largest net fluxes of dissolved organic C and N were in the Oi horizon, yet dissolved organic matter sampled in the Oa horizon did not originate mainly from the Oi horizon. Largest gross fluxes in the Oa horizon (control 282 kg C ha?1) and increased aromaticity and complexity of the molecules with increasing depth suggested that dissolved organic matter was derived mainly from decomposition, transformation and leaching of more decomposed material of the forest floor. Our results imply that clear‐cutting releases additional dissolved organic matter which is sequestered in the mineral soil where it has greater resistance to microbial decay.  相似文献   

6.
Bioenergy production from renewable organic material is known to be a clean energy source and therefore its use is currently much promoted in many countries. Biogas by-products also called biogas residues (BGR) are rich in partially stable organic carbon and can be used as an organic fertilizer for crop production. However so far, many environmental issues relevant when BGR are applied to agricultural land (soil C sequestration, increased denitrification and nutrient leaching) still have to be studied. Therefore a field experiment was set up to investigate the degradation of BGR and its impact on the decomposition of native soil organic matter based on a natural abundance stable isotope approach. Maize, a C4 plant has been used as bioenergy crop, therefore the δ13C of total C in BGR was −16.0‰PDB and soil organic matter was mostly derived from C3 plant based detritus, SOM thus showed a δ13C of −28.4‰PDB. Immediately after BGR application, soil-emitted CO2 showed unexpectedly high δ13C of up to +23.6‰PDB, which has never been reported earlier. A subsequent laboratory scale experiment confirmed the positive δ13C of soil-emitted CO2 after BGR addition and showed that obviously, the added BGR led to a consumption of dissolved inorganic C in soils. Additionally, it was observed that the δ13C of CO2 driven from inorganic C of BGR (BGR-IC) by acid treatment was +35.6‰PDB. Therefore, we suggest that also under field conditions the transformation of BGR-IC into CO2 contributed largely to CO2 emissions in addition to the decomposition of organic matter, which affected both the amount and the carbon isotope signature of emitted CO2 in the initial period after BGR application. Positive δ13C of inorganic C contained in BGR was attributed to processes with strong fractionation of C isotopes during anaerobic fermentation in the biogas formation process.  相似文献   

7.
Water quality of Lake Okeechobee has been a major environmental concern for many years. Transport of dissolved organic matter (DOM) in runoff water from watershed is critical to the increased inputs of nutrients (N and P) and metals (Cu and Zn). In this study, 124 soil samples were collected with varying soil types, land uses, and soil depths in Lake Okeechobee watershed and analyzed for water-extractable C, N, P, and metals to examine the relationship between dissolved organic carbon (DOC) and water soluble nutrients (N and P) and metals in the soils. DOC in the soils was in 27.64?C400 mg kg?1 (69.30 mg kg?1 in average) and varied with soil types, land uses, and soil depth. The highest water-extractable DOC was found in soils collected in sugar cane and field crops (277 and 244 mg kg?1 in average, respectively). Water soluble concentrations of N and P were in the range of 6.46?C129 and 0.02?C60.79 mg kg?1, respectively. The ratios of water-extractable C/N and C/P in soils were in 0.68?C12.52 (3.23 in average) and 3.19?C2,329 (216 in average), and varied with land uses. The lowest water-extractable C/N was observed in the soils from dairy (1.66), resident (1.79), and coniferous forest (4.49), whereas the lowest water-extractable C/P was with the land uses of dairy (13.1) and citrus (33.7). Therefore, N and P in the soils under these land uses may have high availability and leaching potential. The concentrations of water soluble Co, Cr, Cu, Ni, and Zn were in the ranges of?<?method detection limit (MDL)?C0.33, <MDL?C0.53, 0.04?C2.42, <MDL?C0.71, and 0.09?C1.13 mg kg?1, with corresponding mean values of 0.02, 0.01, 0.50, 0.07, and 0.37 mg kg?1, respectively. The highest water soluble Co (0.10 mg kg?1), Cr (0.26 mg kg?1), Ni (0.31 mg kg?1), and Zn (0.80 mg kg?1) were observed in soils under the land use of sugar cane, whereas the highest Cu (1.50 mg kg?1) was with field crop. The concentration of DOC was positively correlated with total organic carbon (TOC) (P <0.01), water soluble N (P <0.01), electrical conductivity (EC, P <0.01), and water soluble Co, Cr, Ni, and Zn (P <0.01), and Cu (P <0.05), whereas water soluble N was positively correlated with water soluble P, Cu, and Zn (P <0.01) in soils. These results indicate that the transport of DOC from land to water bodies may correlate with the loss of macro-nutrients (N, P), micro-nutrients (Cu, Zn, and Ni), and contaminants (Cr and Co) as well.  相似文献   

8.
Isotopic fractionation of dissolved organic carbon percolating through the soil is often interpreted as due to microbial transformation. We investigated the potential effects of sorption on the δ13C of dissolved organic C in field and laboratory experiments. We sampled the organic C in soil water at two forested sites and measured sorption with intact mineral soil and individual minerals (dolomite, ferrihydrite, goethite, and quartz). The dissolved organic C was separated into hydrophilic and hydrophobic fractions using a resin approach. The δ13C values of bulk soils, alkaline‐extractable organic C, and dissolved organic C and its fractions were measured. Hydrophilic and hydrophobic fractions in forest floor seepage water were characterized by 13C‐NMR spectroscopy. At both sites, δ13C of dissolved organic C increased with increasing depth, suggesting that decomposition contributes to the loss of the dissolved organic C. However, there was an enrichment of hydrophilic organic C in the soil solution as the water moved down the soil. The δ13C values of hydrophilic fractions were less negative than those of hydrophobic fractions. The smaller δ13C in the hydrophobic fraction was due to the large contribution of compounds derived from lignin that are depleted in 13C. As the isotope composition of both fractions of dissolved organic C did not change throughout the profile, changes in δ13C of total organic C reflected changes in the relative proportions of its hydrophilic and hydrophobic fractions. The sorption experiments with minerals and soil cores gave similar results. When dissolved organic C came into contact with mineral material, the δ13C of that remaining in solution increased due to preferential sorption of the 13C‐depleted hydrophobic fractions. Moreover, the soils released hydrophilic organic C with large δ13C values, increasing the δ13C of organic C in effluents from soil compared with that in the inflow. Thus, selective sorption of organic C fractions changes δ13C in a way that mimics metabolic transformation and decomposition.  相似文献   

9.
Differences in the isotopic signature of organic matter between soil fractions are indicative of transformation and ageing processes. Here we show that with increasing microbial transformation measured by δ15N, there is a concomitant increase in carbon age as measured by 14C. The age of the soil's heavy fraction further increases with microbial utilization, indicating that stabilized OM ages yet continues to be reused.  相似文献   

10.
Microbial composition is known, on similar soil types, to vary based on differing organic matter inputs, or stand composition. Fine-textured luvisolic soils, which dominate the upland boreal forests of Western Canada, support a canopy cover of aspen (Populus tremuloides Michx.), white spruce (Picea glauca (Moench) Voss) or a mixture of the two. These soils then reflect different belowground biogeochemical processing of organic matter. Novel, anthropogenic soils formed from a combination of peat litter and fine textured mineral soil, are now also a part of the landscape in the western boreal. This study set out to determine if a simple labeled compound (13C glucose) was processed differently by soils from the two dominant stand types (aspen and spruce) and from an anthropogenic (newly reclaimed) site. Results indicate that while all three soils rapidly incorporated and respired the labeled carbon, each maintained a distinct microbial community structure (as evidenced by phospholipid fatty acid analysis) throughout the 300 hour experiment. Therefore soils with different microbial communities from varied organic matter inputs decompose organic carbon by different processes, even in the case of simple labile compounds.  相似文献   

11.
Two processes contribute to changes of the δ13C signature in soil pools: 13C fractionation per se and preferential microbial utilization of various substrates with different δ13C signature. These two processes were disentangled by simultaneously tracking δ13C in three pools - soil organic matter (SOM), microbial biomass, dissolved organic carbon (DOC) - and in CO2 efflux during incubation of 1) soil after C3-C4 vegetation change, and 2) the reference C3 soil.The study was done on the Ap horizon of a loamy Gleyic Cambisol developed under C3 vegetation. Miscanthus giganteus - a perennial C4 plant - was grown for 12 years, and the δ13C signature was used to distinguish between ‘old’ SOM (>12 years) and ‘recent’ Miscanthus-derived C (<12 years). The differences in δ13C signature of the three C pools and of CO2 in the reference C3 soil were less than 1‰, and only δ13C of microbial biomass was significantly different compared to other pools. Nontheless, the neglecting of isotopic fractionation can cause up to 10% of errors in calculations. In contrast to the reference soil, the δ13C of all pools in the soil after C3-C4 vegetation change was significantly different. Old C contributed only 20% to the microbial biomass but 60% to CO2. This indicates that most of the old C was decomposed by microorganisms catabolically, without being utilized for growth. Based on δ13C changes in DOC, CO2 and microbial biomass during 54 days of incubation in Miscanthus and reference soils, we concluded that the main process contributing to changes of the δ13C signature in soil pools was preferential utilization of recent versus old C (causing an up to 9.1‰ shift in δ13C values) and not 13C fractionation per se.Based on the δ13C changes in SOM, we showed that the estimated turnover time of old SOM increased by two years per year in 9 years after the vegetation change. The relative increase in the turnover rate of recent microbial C was 3 times faster than that of old C indicating preferential utilization of available recent C versus the old C.Combining long-term field observations with soil incubation reveals that the turnover time of C in microbial biomass was 200 times faster than in total SOM. Our study clearly showed that estimating the residence time of easily degradable microbial compounds and biomarkers should be done at time scales reflecting microbial turnover times (days) and not those of bulk SOM turnover (years and decades). This is necessary because the absence of C reutilization is a prerequisite for correct estimation of SOM turnover. We conclude that comparing the δ13C signature of linked pools helps calculate the relative turnover of old and recent pools.  相似文献   

12.
Land use practices alter the biomass and structure of soil microbial communities. However, the impact of land management intensity on soil microbial diversity (i.e. richness and evenness) and consequences for functioning is still poorly understood. Here, we addressed this question by coupling molecular characterization of microbial diversity with measurements of carbon (C) mineralization in soils obtained from three locations across Europe, each representing a gradient of land management intensity under different soil and environmental conditions. Bacterial and fungal diversity were characterized by high throughput sequencing of ribosomal genes. Carbon cycling activities (i.e., mineralization of autochthonous soil organic matter, mineralization of allochthonous plant residues) were measured by quantifying 12C- and 13C-CO2 release after soils had been amended, or not, with 13C-labelled wheat residues. Variation partitioning analysis was used to rank biological and physicochemical soil parameters according to their relative contribution to these activities. Across all three locations, microbial diversity was greatest at intermediate levels of land use intensity, indicating that optimal management of soil microbial diversity might not be achieved under the least intensive agriculture. Microbial richness was the best predictor of the C-cycling activities, with bacterial and fungal richness explaining 32.2 and 17% of the intensity of autochthonous soil organic matter mineralization; and fungal richness explaining 77% of the intensity of wheat residues mineralization. Altogether, our results provide evidence that there is scope for improvement in soil management to enhance microbial biodiversity and optimize C transformations mediated by microbial communities in soil.  相似文献   

13.
Microbial biomass carbon (MBC), a small fraction of soil organic matter, has a rapid turnover rate and is a reservoir of labile nutrients. The water-extractable carbon pools provide a fairly good estimate of labile C present in soil and can be easily quantified. Changes in soil MBC and water-extractable organic carbon pools were studied in a 14-year long-term experiment in plots of rice-wheat rotation irrigated with canal water (CW), sodic water (SW, 10-12.5 mmol c L-1 residual sodium carbonate), and SW amended with gypsum with or without application of organic amendments including farmyard manure (FYM), green manure (GM), and wheat straw (WS). Irrigation with SW increased soil exchangeable sodium percentage by more than 13 times compared to irrigation with CW. Sodic water irrigation significantly decreased hot water-extractable organic carbon (HWOC) from 330 to 286 mg kg-1 soil and cold water-extractable organic carbon (CWOC) from 53 to 22 mg kg-1 soil in the top 0-7.5 cm soil layer. In the lower soil layer (7.5-15 cm), reduction in HWOC was not significant. Application of gypsum alone resulted in a decrease in HWOC in the SW plots, whereas an increase was recorded in the SW plots with application of both gypsum and organic amendments in both the soil layers. Nevertheless, application of gypsum and organic amendments increased the mean CWOC as compared with application of gypsum alone. CWOC was significantly correlated with MBC but did not truly reflect the changes in MBC in the treatments with gypsum and organic amendments applied. For the treatments without organic amendments, HWOC was negatively correlated with MBC (r = 0.57*) in the 0-7.5 cm soil layer, whereas for the treatments with organic amendments, both were positively correlated. Irrigation with SW significantly reduced the rice yield by 3 t ha-1 and the yield of rice and wheat by 5 t ha-1 as compared to irrigation with canal water. Application of amendments significantly increased rice and wheat yields. Both the rice yield and the yield of rice and wheat were significantly correlated with MBC (r = 0.49**-0.56**, n = 60). HWOC did not exhibit any relation with the crop yields under the treatments without organic amendments; however, CWOC showed a positive but weak correlation with the crop yields. Therefore, we found that under sodic water irrigation, HWOC or CWOC in the soils was not related to MBC.  相似文献   

14.

Purpose

Soil carbon dynamics were studied at four different forest stands developed on bedrocks with contrasting geology in Slovenia: one plot on magmatic granodiorite bedrock (IG), two plots on carbonate bedrock in the karstic-dinaric area (CC and CD), and one situated on Pleistocene coalluvial terraces (FGS).

Materials and methods

Throughfall (TF) and soil water were collected monthly at each location from June to November during 2005–2007. In soil water, the following parameters were determined: T, pH, total alkalinity, concentrations of Ca2+ and Mg2+, dissolved organic carbon (DOC), and Cl? as well as δ13CDIC. On the other hand, in TF, only the Cl? content was measured. Soil and plant samples were also collected at forest stands, and stable isotope measurements were performed in soil and plant organic carbon and total nitrogen and in carbonate rocks. The obtained data were used to calculate the dissolved inorganic carbon (DIC) and DOC fluxes. Statistic analyses were carried out to compare sites of different lithologies, at different spatial and temporal scales.

Results and discussion

Decomposition of soil organic matter (SOM) controlled by the climate can explain the 13C and 15?N enrichment in SOM at CC, CD, and FGS, while the soil microbial biomass makes an important contribution to the SOM at IG. The loss of DOC at a soil depth of 5 cm was estimated at 1 mol m?2 year?1 and shows no significant differences among the study sites. The DOC fluxes were mainly controlled by physical factors, most notably sorption dynamics, and microbial–DOC relationships. The pH and pCO2 of the soil solution controlled the DIC fluxes according to carbonate equilibrium reactions. An increased exchange between DIC and atmospheric air was observed for samples from non-carbonate subsoils (IG and FGS). In addition, higher δ13CDIC values up to ?19.4?‰ in the shallow soil water were recorded during the summer as a consequence of isotopic fractionation induced by molecular diffusion of soil CO2. The δ13CDIC values also suggest that half of the DIC derives from soil CO2 indicating that 2 to 5 mol m?2 year?1 of carbon is lost in the form of dissolved inorganic carbon at CC and CD after carbonate dissolution.

Conclusions

Major difference in soil carbon dynamics between the four forest ecosystems is a result of the combined influence of bedrock geology, soil texture, and the sources of SOM. Water flux was a critical parameter in quantifying carbon depletion rates in dissolved organic and inorganic carbon forms.
  相似文献   

15.
Spatial patterns of soil δ13C were quantified in a subtropical C3 woodland in the Rio Grande Plains of southern Texas, USA that developed during the past 100 yrs on a lowland site that was once C4 grassland. A 50 × 30 m plot and two transects were established, and soil cores (0–15 cm, n = 207) were collected, spatially referenced, and analyzed for δ13C, soil organic carbon (SOC), and soil particle size distribution. Cross-variogram analysis indicated that SOC remaining from the past C4 grassland community co-varied with soil texture over a distance of 23.7 m. In contrast, newer SOC derived from C3 woody plants was spatially correlated with root biomass within a range of 7.1 m. Although mesquite trees initiate grassland-to-woodland succession and create well-defined islands of soil modification in adjoining upland areas at this site, direct gradient and proximity analyses accounting for the number, size, and distance of mesquite plants in the vicinity of soil sample points failed to reveal any relationship between mesquite tree abundance and soil properties. Variogram analysis further indicated soil δ13C, texture and organic carbon content were spatially autocorrelated over distances (ranges = 15.6, 16.2 and 18.7 m, respectively) far greater than that of individual tree canopy diameters in these lowland communities. Cross-variogram analysis also revealed that δ13C – SOC and δ13C-texture relationships were spatially structured at distances much greater than that of mesquite canopies (range = 17.6 and 16.5 m, respectively). These results suggest fundamental differences in the functional nature and consequences of shrub encroachment between upland and lowland landscapes and challenge us to identify the earth system processes and ecosystem structures that are driving carbon cycling at these contrasting scales. Improvements in our understanding how controls over soil carbon cycling change with spatial scale will enhance our ability to design vegetation and soil sampling schemes; and to more effectively use soil δ13C as a tool to infer vegetation and soil organic carbon dynamics in ecosystems where C3–C4 transitions and changes in structure and function are occurring.  相似文献   

16.
ABSTRACT

Amelioration of saline soil is a requisite in order to increase crop productivity. A soil incubation study was performed for 60 days using digestate, humic acid, calcium humate and their combinations to investigate the influence on physical, chemical, microbial and enzyme activities of saline soil. Overall, digestate combined with calcium humate followed by humic acid treatments have shown their potency in decreasing the soil pH, electrical conductivity (EC), and sodium ion (Na+) concentration, and increase in potassium ion (K +), calcium ion (Ca 2+), magnesium ion (Mg 2+), mean weight diameter (MWD), soil enzyme activities, microbial biomass carbon (MBC), MBC: microbial biomass nitrogen (MBN) and soil respiration than control. The digestate, humic acid individually and their amalgamation evidenced greater MBN among all the treatments. The digestate alone efficiently improved the soil properties than humic acid and calcium humate individual groups except for the MWD where it is pronounced more in the latter groups. The greater metabolic quotient (qCO2) was observed in control than organic matter amended treatments indicating the stress conditions. The increase in water-extractable organic matter (WEOM) with minimal aromaticity (specific ultraviolet absorbance at 254 nm-Suva 254) in integrated amendments comprising groups, laid the ground reason to improve the properties of saline soil. Therefore, this study concludes that the fusion of fresh and humified substrates could facilitate reclamation.  相似文献   

17.
The cycling of soil organic matter (SOM) by microorganisms is a critical component of the global carbon cycle but remains poorly understood. There is an emerging view that much of SOM, and especially the dissolved fraction (DOM), is composed of small molecules of plant and microbial origin resulting from lysed cells and released metabolites. Unfortunately, little is known about the small molecule composition of soils and how these molecules are cycled (by microbes or plants or by adsorption to mineral surfaces). The water-extractable organic matter (WEOM) fraction is of particular interest given that this is presumably the most biologically-accessible component of SOM. Here we describe the development of a simple soil metabolomics workflow and a novel spike recovery approach using 13C bacterial lysates to assess the types of metabolites remaining in the WEOM fraction. Soil samples were extracted with multiple mass spectrometry-compatible extraction buffers (water, 10 mM K2SO4 or NH4HCO3, 10–100% methanol or isopropanol/methanol/water [3:3:2 v/v/v]) with and without prior chloroform vapor fumigation. Profiling of derivatized extracts was performed using gas chromatography/mass spectrometry (GC/MS) with 55 metabolites identified by comparing fragmentation patterns and retention times with authentic standards. As expected, fumigation, which is thought to lyse microbial cells, significantly increased the range and abundance of metabolites relative to unfumigated samples. To assess the types of microbial metabolites from lysed bacterial cells that remain in the WEOM fraction, an extract was prepared from the soil bacterium Pseudomonas stutzerii RCH2 grown on 13C acetate. This approach produced highly labeled metabolites that were easily discriminated from the endogenous soil metabolites. Comparing the composition of the fresh bacterial extract with what was recovered following a 15 min incubation with soil revealed that only 27% of the metabolites showed >50% recovery in the WEOM. Many, especially cations (polyamines) and anions, showed <10% recovery. These represent metabolites that may be inaccessible to microbes in this environment and would be most likely to accumulate as SOM presumably due to binding with minerals and negatively-charged clay particles. This study presents a simple untargeted metabolomics workflow for extractable organic matter and an approach to estimate microbial metabolite availability in soils. These methods can be used to further our understanding of SOM and DOM composition and examine the link between metabolic pathways and microbial communities to terrestrial carbon cycling.  相似文献   

18.
Changes in land use can result in increased soil organic matter content, and decreases in Ca and pH which will affect the mobility of Cu in soil. We studied how the mobility and coagulation of dissolved organic matter and pH affected the mobility of Cu in contaminated sandy soil by batch and column experiments in the laboratory. The soil, with pH ranging from 3.8 to 5.7, had been polluted with Cu in the range 0.13–1.9 mmol kg?1 more than a decade ago. Calcium and Cu bound by dissolved organic matter (purified humic acid) was determined in the pH range 4–8; Cu2+ concentration ranged from 10?4 to 10?12M and Ca2+ concentration from 10?3 to 10?6M. Binding of Cu by dissolved organic matter as affected by Ca and pH could be predicted well with the non-ideal competitive adsorption (NICA) model. Coagulation of dissolved organic matter was affected by the amount of trivalent (Al3+) and divalent (Ca2+ and Cu2+) cations in solution. There was little effect of pH on coagulation between pH 4 and 6. The concentration of the divalent cations, Ca2+ and Cu2+, at which coagulation of dissolved organic matter appeared could be explained by differences in the binding of Ca and Cu by dissolved organic matter. Binding of Cu by dissolved organic matter as well as by solid organic matter, both affected by Ca and pH, could be described well with the NICA model. We investigated the coagulation and mobility of dissolved organic matter in column experiments and found that they enhanced Cu mobility. Three processes, Cu desorption by soil, dissolved organic matter coagulation and Cu complexation by dissolved organic matter, act simultaneously in the soil columns. All three with counteracting effects on Cu mobility are influenced by Ca and pH and could be adequately represented by the multicomponent NICA model.  相似文献   

19.
Sterilized soil is often used, for example in degradation studies, sorption experiments, microbiological tests and plant test systems, to distinguish between microbial processes and abiotic reactions. The most commonly used technique for sterilization is autoclaving of the soil. Another technique is irradiation with high‐level gamma radiation (γ‐radiation). One major drawback of sterilization procedures is the possible alteration of the structure of soil components, for example the organic matter. A change in the chemical structure of the soil organic matter can cause different reactions in the above‐mentioned experiments and hence interfere with the aim of clearly distinguishing between biotic and abiotic processes. Two soils (Gleyic Cambisol and Orthic Luvisol) were sterilized by two γ‐irradiation procedures (4 kGy hour?1 for 9 hours and 1.3 kGy hour?1 for 27 hours) and repeated autoclaving at 121°C. Gentle physical aggregate fractionation of the sterilized soils revealed a decrease in the aggregation of the soil, which was reflected in an increase of the clay fraction. Subsequent analysis of the aqueous phase revealed much more dissolved organic matter (DOM) in the γ‐sterilized and autoclaved soils than in the untreated soils. Ultraviolet (UV) and fluorescence spectra of the DOM showed a decrease in the aromaticity and polycondensation of the dissolved organic carbon (DOC). 13C cross‐polarization/magic‐angle spinning nuclear magnetic resonance (13C‐CP/MAS NMR) spectra of the unfractionated soils and their respective soil fractions before and after sterilization showed that the most important change occurred in the carbohydrate and N‐alkyl region, the main components of microorganisms. In general, the impact of the sterilization method was stronger for autoclaving. The γ‐sterilized soils and fractions displayed both fewer and smaller changes in the soil organic matter.  相似文献   

20.
Mao  X.  Barry  D.A.  Li  L.  Stagnitti  F.  Allinson  G.  Turoczy  N. 《Water, air, and soil pollution》2004,154(1-4):357-370
Afforestation of former agricultural land changes soil characteristics such as pH and organic matter content, which may affect heavy metal solubility in the soil. In this study the effects of different tree species on heavy metal solubility were investigated at four 34 years old adjacent stands of beech (Fagus sylvatica L.), grand fir (Abies grandis Lindl.), Norway spruce (Picea abies (L.) Karst.) and oak (Quercus robur L.) planted on former agricultural land at four different sites in Denmark. The sites differ in soil characteristics and represent two texture classes (loamy sand and sandy loam). Soil pH and soil organic matter content was measured in the 16 stands and soil solution was isolated by centrifugation from three depths at four different occasions. Dissolved organic carbon (DOC), pH in the soil solution and the soil solution concentrations (availability) of Cd, Cu, Ni, Pb and Zn were determined. Analysis of variance showed that the tree species affects soil pH and organic matter content in the topsoil, but not in the lower horizons. Norway spruce and grand fir acidify more than beech and oak, and the highest amount of accumulated soil organic matter is in the topsoil under Norway spruce. The effects of tree species on soil solution pH and DOC resemble the effect on soil pH and organic matter content. Grand fir enhances the solubility of Cd and Zn in the topsoil with the lower solubility found under beech and oak and Norway spruce enhances the solubility of Cu, Ni and Pb in the top horizons. The lowest solubility of Ni and Pb is found under beech and oak, whereas the lowest Cu concentrations in the soil solution are found under grand fir. After 34 years of afforestation no effects of tree species on the concentrations of heavy metals in the soil solution from the C-horizons were found. The tree species effect on the concentration of Cd, Cu and Ni in the soil solution depends on the soil characteristics with the higher concentrations found in sandy loam soils, whereas no effect of site on the solution concentration was found for Pb and Zn. It was not possible to find a clear correlation between the soil solution concentrations of heavy metals, pH and DOC concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号