首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arctic permafrost soils contain large stocks of organic carbon (OC). Extensive cryogenic processes in these soils cause subduction of a significant part of OC-rich topsoil down into mineral soil through the process of cryoturbation. Currently, one-fourth of total permafrost OC is stored in subducted organic horizons. Predicted climate change is believed to reduce the amount of OC in permafrost soils as rising temperatures will increase decomposition of OC by soil microorganisms. To estimate the sensitivity of OC decomposition to soil temperature and oxygen levels we performed a 4-month incubation experiment in which we manipulated temperature (4–20 °C) and oxygen level of topsoil organic, subducted organic and mineral soil horizons. Carbon loss (CLOSS) was monitored and its potential biotic and abiotic drivers, including concentrations of available nutrients, microbial activity, biomass and stoichiometry, and extracellular oxidative and hydrolytic enzyme pools, were measured. We found that independently of the incubation temperature, CLOSS from subducted organic and mineral soil horizons was one to two orders of magnitude lower than in the organic topsoil horizon, both under aerobic and anaerobic conditions. This corresponds to the microbial biomass being lower by one to two orders of magnitude. We argue that enzymatic degradation of autochthonous subducted OC does not provide sufficient amounts of carbon and nutrients to sustain greater microbial biomass. The resident microbial biomass relies on allochthonous fluxes of nutrients, enzymes and carbon from the OC-rich topsoil. This results in a “negative priming effect”, which protects autochthonous subducted OC from decomposition at present. The vulnerability of subducted organic carbon in cryoturbated arctic soils under future climate conditions will largely depend on the amount of allochthonous carbon and nutrient fluxes from the topsoil.  相似文献   

2.
Most of the carbon (C) in terrestrial ecosystems is stored in the mineral soil layers. Thus, the response of the mineral soil to potential increases in temperature is crucial for the prediction of the impact of climate change on terrestrial ecosystems. Samples from three mineral soil layers were collected from eight mature forest sites in the European network CARBOEUROFLUX and were incubated at four temperatures (4, 10, 20 and 30°C) for c. 270 days. Carbon mineralization rates were related to soil and site characteristics. Soil water holding capacity, C content, nitrogen (N) content and organic matter all decreased with soil depth at all sites, with significantly larger amounts of organic matter, C and N in the top 0–5 cm of mineral soil than in the deeper layers. The conifer forest soils had significantly lower pH, higher C/N ratios and carbon contents in the top 5 cm than the broadleaf forest soils. Carbon mineralization rates decreased with soil depth and time at all sites but increased with temperature, with the highest rates measured at 30°C for all sites. Between 50 and 70% of the total C respired after 270 days of incubation came from the top 5 cm. The percentage C loss was small in all cases, ranging from 1 to 10%. A two‐compartment model was fitted to all data to derive the labile/active and slow/recalcitrant fractions, as well as their decomposition constants. Although the labile fraction was small in all cases, we found significantly larger amounts of labile C in the broadleaf forest soils than in the conifer forest soils. No statistically significant differences were found in the temperature sensitivity parameter Q10 among sites, soil layers or between conifer and broadleaf soils. The average Q10 for all soils was 2.98 (± 0.10). We found that despite large differences among sites, C mineralization can be successfully predicted as a combined function of site leaf area index, mean annual temperature and content of labile carbon in the soil (R2 = 0.93).  相似文献   

3.
Small changes in C cycling in boreal forests can change the sign of their C balance, so it is important to gain an understanding of the factors controlling small exports like water-soluble organic carbon (WSOC) fluxes from the soils in these systems. To examine this, we estimated WSOC fluxes based on measured concentrations along four replicate gradients in upland black spruce (Picea mariana [Mill.] BSP) productivity and soil temperature in interior Alaska and compared them to concurrent rates of soil CO2 efflux. Concentrations of WSOC in organic and mineral horizons ranged from 4.9 to 22.7 g C m−2 and from 1.4 to 8.4 g C m−2, respectively. Annual WSOC fluxes (4.5-12.0 g C m−2 y−1) increased with annual soil CO2 effluxes (365-739 g C m−2 y−1) across all sites (R2=0.55, p=0.02), with higher fluxes occurring in warmer, more productive stands. Although annual WSOC flux was relatively small compared to total soil CO2 efflux across all sites (<3%), its relative contribution was highest in warmer, more productive stands which harbored less soil organic carbon. The proportions of relatively bioavailable organic fractions (hydrophilic organic matter and low molecular weight acids) were highest in WSOC in colder, low-productivity stands whereas the more degraded products of microbial activity (fulvic acids) were highest in warmer, more productive stands. These data suggest that WSOC mineralization may be a mechanism for increased soil C loss if the climate warms and therefore should be accounted for in order to accurately determine the sensitivity of boreal soil organic C balance to climate change.  相似文献   

4.
Boreal forest soils have the potential to sequester large amounts of carbon by accumulating charcoal from fire. Some suggest that sequestration rates could be large enough to account for some of the missing sink in the global CO2 budget, but further data on soil charcoal pools are necessary to adequately develop boreal carbon budgets under a changing climate and fire regime. The primary objective of this study was to determine the amount of charred wood in surface mineral soil horizons (Ah) of the Boreal Transition of Saskatchewan, a fire-prone grassland forest ecotone region of western Canada. A second objective was to use the charcoal data to infer vegetation dynamics and the development of these Ah horizons as a function of parent material type, i.e. glacio-fluvial, glacio-lacustrine and glacial till. The latter objective served to provide information in regards to future vegetation shifts and ecosystem C budgets of Boreal Plain ecosystems under climatic warming. The carbon fraction measured as charcoal is an important component of organic matter in Ah horizons of Chernozemic soils in Saskatchewan and differs from the classical model of humus fractions in Chernozems which suggests that it is a system created from microbial degradation of root litter only. The carbon sequestered as charcoal within the whole ecoregion was estimated at 36.1 Tg, which is the lower limit of the global annual rate of charcoal accumulation in terrestrial environments estimated from experimental fires. Charcoal pools were consistently lower in the fluvial soils relative to the lacustrine and till soils. We suggest a model where dry conditions and low water availability prevailing under the coarser fluvial soils during the Holocene favoured the dominance of low productivity herbaceous vegetation that led to a high ash to charcoal production ratio from fire and to the development of relatively thick Ah horizons through below ground additions of organic matter from root decay. We propose that the more available water in lacustrine and till soils favoured the growth of trembling aspen which, through less frequent/intense fires relative to grasslands and incomplete burning of the woody material, led to high charcoal accumulation rates in soil. The development of thick Ah horizons in lacustrine soils likely occurred during a warm and dry period of the early Holocene (i.e. the hypsithermal) when herbaceous vegetation invaded forested land or during dry spells in the mid to late Holocene (e.g. the Medieval Warm Period) when opening of forest canopies occurred, thus augmenting light transmission to the forest floor and favouring the growth of herbaceous vegetation in the understory. Such events did not create deep Ah horizons in the tills soils as a consistent rock impediment near the surface limited the penetration of understory roots at greater depth. These results suggest that fluvial sites my be the first shifting to herbaceous vegetation in the future due to climatic warming, followed by till sites and then lacustrine sites.  相似文献   

5.
The processes of the organic matter (OM) mineralization in forest soils developed under temperate continental (Moscow oblast, Russia), Mediterranean (the central and western parts of Spain), and tropical monsoon (southern Vietnam) climates were studied under laboratory conditions. The potential and specific rates of the OM mineralization (PR min and PR min/Corg, respectively), the ecophysiological parameters of the microbial communities status (Cmic, qCO2, and Cmic/Corg), and the sensitivity of the rate of the OM mineralization to the rise in temperature were evaluated by the temperature coefficients (Q 10) determined in the humus horizons (0–10 cm, without forest litter). The average values of PR min for the climatic zones decreased in the following order: Mediterranean (57.1 ± 10.6 mg C/kg per day) > temperate continental (23.8 ± 7.1 mg C/kg per day) > tropical monsoon (10.4 ± 1.6 mg C/kg per day). The lowest resistance of the soil OM to mineralization as evaluated by the PR min/Corg values was found in the Albeluvisol and Phaeozem of the temperate continental climate and in the Acrisol of the Mediterranean climate. The highest Q 10 coefficients were attributed to the OM mineralization in the forest soils of the temperate continental climate. This allowed us to conclude that the observed and expected climate changes with an increase in the mean annual air temperature should lead to the maximum intensification of the OM mineralization processes in the forest soils of northern regions.  相似文献   

6.
Soil organic matter (SOM) in arctic and boreal soils is the largest terrestrial reservoir of carbon. Increased SOM mineralisation under increased temperature has the potential to induce a massive release of CO2. Precise parameterisation of the response of arctic soils to increased temperatures is therefore crucial for correctly simulating our future climate. Here, we investigated the temperature response of SOM mineralisation in eight arctic soil profiles of Norway, Svalbard and Russia. Samples were collected at two depths from both mineral and organic soils, which were affected or not by permafrost and were incubated for 91 days at 4, 8, 12, and 16 °C. Temperature response was investigated through two parameters derived from a simple exponential model: the intensity of mineralisation, α, and the temperature sensitivity, Q10. For each sample, SOM quality was investigated by 13C-NMR, whereas bacterial and fungal community structure was characterised by T-RFLP and ARISA fingerprints, respectively. When estimated from the whole incubation period, α proved to be higher in deep permafrost samples than in shallow active layer ones due to the presence transient flushes of mineralisation in deep permafrost affected soils. At the end of the incubation period, after mineralization flushes had passed, neither α nor Q10 (averaging 1.28 ± 0.07) seemed to be affected by soil type (organic vs mineral soil), site, depth or permafrost. SOM composition and microbial community structure on the contrary where affected by site and soil type. Our results suggest that deep samples of permafrost affected soil contain a small pool of fast cycling carbon, which is quickly depleted after thawing. Once the mineralization flush had passed, the temperature response of permafrost affected soil proved to be relatively homogenous among sample types, suggesting that the use of a single temperature sensitivity parameter in land surface models for SOM decomposition in permafrost-affected soils is justified.  相似文献   

7.
No consensus exists regarding soil organic carbon (SOC) lability and the temperature sensitivity of its decomposition. This lack of clear understanding limits the accuracy in predicting the long-term impacts of climate change on soil carbon (C) storage. In this study, we determined the temperature responses of labile and recalcitrant organic carbon (LOC vs. ROC) by comparing the time required to decompose a given amount of C at different incubation temperatures along an elevational gradient in the Wuyi Mountains in southeastern China. Results showed that the temperature sensitivity increased with increasing SOC recalcitrance (Q10-labile = 1.39 ± 0.04 vs. Q10-recalcitrant = 3.94 ± 0.30). Q10-labile and Q10-recalcitrant values significantly increased with increasing soil depth. The effect of elevational vegetation change was significant for Q10-recalcitrant but not for Q10-labile, though they increased along the elevational gradient. The response of ROC pools to changes in temperature would accelerate the soil-stored C losses in the Wuyi Mountains. Kinetic theory suggested that SOC decomposition was both temperature- and quality-dependent due to an increased temperature. This would promote more CO2 release from recalcitrant soil organic matter (SOM) in cold regions, resulting in a greater positive feedback to global climate change than previously expected. Moreover, the response of ROC to changes in temperature will determine the magnitude of the positive feedback due to its large storage in soils.  相似文献   

8.
Limitations to the respiratory activity of heterotrophic soil microorganisms exert important controls of CO2 efflux from soils. In the northeastern US, ecosystem nutrient status varies across the landscape and changes with forest succession following disturbance, likely impacting soil microbial processes regulating the transformation and emission of carbon (C). We tested whether nitrogen (N) or phosphorus (P) limit the mineralization of soil organic C (SOC) or that of added C sources in the Oe horizon of successional and mature northern hardwood forests in three locations in central New Hampshire, USA. Added N reduced mineralization of C from SOC and from added leaf litter and cellulose. Added P did not affect mineralization from SOC; however, it did enhance mineralization of litter- and cellulose- C in organic horizons from all forest locations. Added N increased microbial biomass N and K2SO4-extractable DON pools, but added P had no effect. Microbial biomass C increased with litter addition but did not respond to either nutrient. The direction of responses to added nutrients was consistent among sites and between forest ages. We conclude that in these organic horizons limitation by N promotes mineralization of C from SOC, whereas limitation by P constrains mineralization of C from new organic inputs. We also suggest that N suppresses respiration in these organic horizons either by relieving the N limitation of microbial biomass synthesis, or by slowing turnover of C through the microbial pool; concurrent measures of microbial growth and turnover are needed to resolve this question.  相似文献   

9.
The dominant pools of C and N in the terrestrial biosphere are in soils, and understanding what factors control the rates at which these pools cycle is essential in understanding soil CO2 production and N availability. Many previous studies have examined large scale patterns in decomposition of C and N in plant litter and organic soils, but few have done so in mineral soils, and fewer have looked beyond ecosystem specific, regional, or gradient-specific drivers. In this study, we examined the rates of microbial respiration and net N mineralization in 84 distinct mineral soils in static laboratory incubations. We examined patterns in C and N pool sizes, microbial biomass, and process rates by vegetation type (grassland, shrubland, coniferous forest, and deciduous/broadleaf forest). We also modeled microbial respiration and net N mineralization in relation to soil and site characteristics using structural equation modeling to identify potential process drivers across soils. While we did not explicitly investigate the influence of soil organic matter quality, microbial community composition, or clay mineralogy on microbial process rates in this study, our models allow us to put boundaries on the unique explanatory power these characteristics could potentially provide in predicting respiration and net N mineralization. Mean annual temperature and precipitation, soil C concentration, microbial biomass, and clay content predicted 78% of the variance in microbial respiration, with 61% explained by microbial biomass alone. For net N mineralization, only 33% of the variance was explained, with mean annual precipitation, soil C and N concentration, and clay content as the potential drivers. We suggest that the high R2 for respiration suggests that soil organic matter quality, microbial community composition, and clay mineralogy explain at most 22% of the variance in respiration, while they could explain up to 67% of the variance in net N mineralization.  相似文献   

10.
In temperate forest soils, N net mineralization has been extensively investigated during the growing season, whereas N cycling during winter was barely addressed. Here, we quantified net ammonification and nitrification during the dormant season by in situ and laboratory incubations in soils of a temperate European beech and a Norway spruce forest. Further, we compared temperature dependency of N net mineralization in in situ field incubations with those from laboratory incubations at controlled temperatures. From November to April, in situ N net mineralization of the organic and upper mineral horizons amounted to 10.9 kg N (ha · 6 months)–1 in the spruce soil and to 44.3 kg N (ha · 6 months)–1 in the beech soil, representing 65% (beech) and 26% (spruce) of the annual above ground litterfall. N net mineralization was largest in the Oi/Oe horizon and lowest in the A and EA horizons. Net nitrification in the beech soil [1.5 kg N (ha · 6 months)–1] was less than in the spruce soil [5.9 kg N (ha · 6 months)–1]. In the range of soil temperatures observed in the field (0–8°C), the temperature dependency of N net mineralization was generally high for both soils and more pronounced in the laboratory incubations than in the in situ incubations. We suggest that homogenization of laboratory samples increased substrate availability and, thus, enhanced the temperature response of N net mineralization. In temperate forest soils, N net mineralization during the dormant season contributes substantially to the annual N cycling, especially in deciduous sites with large amounts of litterfall immediately before the dormant season. High Q10 values of N net mineralization at low temperatures suggest a huge effect of future increasing winter temperature on the N cycle in temperate forests.  相似文献   

11.
Parent material greatly influences pedogenesis and soil nutrient availability and consequently we hypothesized that it would significantly affect the amount of organic solutes in soil, many of which have been implicated in rhizosphere processes linked to plant nutrient uptake. Consequently, we investigated the influence of two contrasting parent materials in which calcite was present or absent (alkaline and non-alkaline soils) on the concentrations of dissolved organic carbon (DOC), low-molecular weight organic acids (LMWOA) and glucose in soil solution. Both soils were under Norway spruce. The dynamics of LMWOAs in soil were also investigated using 14C-labelled citrate and oxalate. Some of the mineral horizons of the alkaline soils showed significantly higher concentrations of DOC, phenolics, and fumarate in soil solution and also a higher basal respiration. No major differences were seen in organic solute status in the organic horizons of the two soil types. LMWOAs were present at low concentrations in soil solution (< 1 to 25 µM). Their mineralization rate significantly decreased with soil depth, however, overall neither their concentration or half-life in soil was markedly affected by parent material. The alkaline soils had significantly higher CO2-to-soil organic C (SOC) ratios, and consequently SOC in the alkaline soils did not seem more chemically stable against mineralization. Considering possible DOC and CO2 efflux rates it was suggested that the equal or larger SOC stocks in alkaline mineral soils were most likely linked to a higher net primary productivity. In conclusion, our study found that parent material exerted only a small effect on the concentration and dynamics of organic solutes in soil solution. This suggests that in comparison to other factors (e.g. vegetation cover, climate etc) parent material may not be a major regulator of the organic solute pool in soil.  相似文献   

12.
The influence of temperature (T) and water potential (ψ) on the denitrification potential, C and N mineralization and nitrification were studied in organic and mineral horizons of an acid spruce forest soil. The amount of N2O emitted from organic soil was 10 times larger than from the mineral one. The maximum of N2O emission was in both soils at the highest water potential 0 MPa and at 20°C. CO2 production in the organic soil was 2 times higher than in mineral soil. Net ammonification in organic soil was negative for most of the T‒ψ variations, while in mineral soil it was positive. Net nitrification in organic soil was negative only at the maximum water potential and temperature (0 MPa, 28°C). The highest rate was between 0 and −0.3 MPa and between 20 and 28°C. In mineral soil NO3 accumulated at all T‒ψ variations with a maximum at 20oC and −0.3 MPa. We concluded that in organic soil the immobilization of NH4+ is the dominant process in the N‒cycling. Nevertheless, decreasing of total N mineralized at 0 MPa and 20—28oC can be explained by denitrification.  相似文献   

13.

Purpose

Understanding organic carbon mineralization and its temperature response in subtropical paddy soils is important for the regional carbon balance. There is a growing interest in factors controlling soil organic carbon (SOC) mineralization because of the potential for climate change. This study aims to test the hypothesis that soil clay content impedes SOC mineralization in subtropical paddy soils.

Materials and methods

A 160-day laboratory incubation at temperatures from 10 to 30 °C and 90% water content was conducted to examine the dynamics of SOC mineralization and its temperature response in three subtropical paddy soils with different clay contents (sandy loam, clay loam, and silty clay soils). A three-pool SOC model (active, slow, and resistant) was used to fit SOC mineralization.

Results and discussion

Total CO2 evolved during incubation following the order of clay loam > silty clay > sandy loam. The temperature response coefficients (Q 10) were 1.92?±?0.39, 2.36?±?0.22, and 2.10?±?0.70, respectively, for the sandy loam soil, clay loam soil, and silty clay soil. But the soil clay content followed the order of silty clay > clay loam > sandy loam. The sandy loam soil neither released larger amounts of CO2 nor showed higher temperature sensitivity, as expected, even though it contains lower soil clay content among the three soils. It seems that soil clay content did not have a dominant effect which results in the difference in SOC mineralization and its temperature response in the selected three paddy soils. However, dissolved organic carbon (DOC; representing substrate availability) had a great effect. The size of the active C pool ranged from 0.11 to 3.55% of initial SOC, and it increased with increasing temperature. The silty clay soil had the smallest active C pool (1.40%) and the largest Q 10 value (6.33) in the active C pool as compared with the other two soils. The mineralizable SOC protected in the silty clay soil, therefore, had even greater temperature sensitivity than the other two soils that had less SOC stabilization.

Conclusions

Our study suggests that SOC mineralization and its temperature response in subtropical paddy soils were probably not dominantly controlled by soil clay content, but the substrate availability (represented as DOC) and the specific stabilization mechanisms of SOC may have great effects.  相似文献   

14.
The dynamics of the CO2 emission from sandy soils in the course of the postagrogenic succession in the southern taiga zone were studied. We measured total emission from the soil surface and, separately, respiration from the litter and mineral soil horizons during the warm (snowless) seasons of 2010 and 2011 on differently aged fallow plots: 0 years (cropland) and 7, 23, 55, 100, and 170 years. It was demonstrated that changes in the CO2 emission in the course of the succession have a nonlinear pattern: the emission sharply increases in the first decade, then somewhat decreases, and then gradually increases again up to the maximum values. This is explained by the dependence of the rate of the emission on the soil carbon pools (humus + litter + underground phytomass) that are also subjected to nonlinear changes. Initially, the emission is mainly due to mineralization of labile organic substances added to the plowed soils in the form of organic fertilizers. Then, in parallel with a gradual increase in the pools of litter and underground phytomass, the total pool of soil organic carbon increases, and its role in the emission becomes more pronounced. The seasonal dynamics of the soil respiration are mainly controlled by the soil temperature; the soil moistening plays an important role only during the initial meadow stage of the succession.  相似文献   

15.
Controversial conclusions from different studies suggest that the decomposition of old soil organic matter (SOM) is either more, less, or equally temperature sensitive compared to the younger SOM. Based on chemical kinetic theory, the decomposition of more recalcitrant materials should be more temperature sensitive, unless environmental factors limit decomposition. Here, we show results for boreal upland forest soils supporting this hypothesis. We detected differences in the temperature sensitivity 1) between soil layers varying in their decomposition stage and SOM quality, and 2) inside the layers during a 495 day laboratory incubation. Temperature sensitivity increased with increasing soil depth and decreasing SOM quality. In the organic layers, temperature sensitivity of decomposition increased during the early part of a 495 day laboratory incubation, after respiration rate and SOM quality had notably decreased. This indicates that decomposition of recalcitrant compounds was more temperature sensitive than that of the labile ones. Our results imply that Q10 values for total heterotrophic soil respiration determined from short-term laboratory incubations can either underestimate or overestimate the temperature sensitivity of SOM decomposition, depending on soil layer, initial labile carbon content and temperature range used for the measurements. Using Q10 values that ignore these factors in global climate models provides erroneous estimates on the effects of climate change on soil carbon storage.  相似文献   

16.
《Applied soil ecology》1999,11(2-3):127-134
About 30% of the carbon in terrestrial ecosystems is stored in northern wetlands and boreal forest regions. Prevailing cold and wet soil conditions have largely been responsible for this carbon accumulation. It has been suggested that a warmer and drier climate in these regions might increase the decomposition rate and, hence, release more CO2 to the atmosphere than at present. This study reports on the spatial variability and temperature dependence of the potential carbon release after incubating highly organic soils from the European Arctic and Siberia at different temperatures. We found that the decay potential, measured as CO2 production in laboratory experiments, differed strongly within and among sites, particularly at higher soil temperatures. Furthermore, both the decay potential and its temperature response decreased significantly with depth in the soil, presumably because the older soils at deeper layers contained higher proportions of recalcitrant carbon than the younger soil organic matter at the surface. These results have implications for global models of potential feedbacks on climate change inferred from changes in the carbon balance of northern wetlands and tundra. Firstly, because the decay potential of the organic matter varies locally as well as regionally, predictions of how the tundra carbon balance may change will be unreliable if these are based on measurements at a few sites only. Secondly, any increase in CO2 production may be transitional as both the carbon flux and its temperature sensitivity decrease when the most easily degradable organic material near the soil surface has decomposed. Consequently, it is crucial to account for transient responses and regional differences in the models of potential feedbacks on climate change from changed carbon cycling in northern terrestrial ecosystems.  相似文献   

17.
The 14C age of soil organic matter is known to increase with soil depth. Therefore, the aim of this study was to examine the stabilization of carbon compounds in the entire soil profile using particle size fractionation to distinguish SOM pools with different turnover rates. Samples were taken from a Dystric Cambisol and a Haplic Podzol under forest, which are representative soil types under humid climate conditions. The conceptual approach included the analyses of particle size fractions of all mineral soil horizons for elemental composition and chemical structure of the organic matter by 13C cross-polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy. The contribution of phenols and hydroxyalkanoic acids, which represent recalcitrant plant litter compounds, was analyzed after CuO oxidation.In the Dystric Cambisol, the highest carbon concentration as well as the highest percentage of total organic carbon are found in the <6.3 μm fractions of the B and C horizons. In the Haplic Podzol, carbon distribution among the particle size fractions of the Bh and Bvs horizons is influenced by the adsorption of dissolved organic matter. A relationship between the carbon enrichment in fractions <6.3 μm and the 14C activity of the bulk soil indicates that stabilization of SOM occurs in fine particle size fractions of both soils. 13C CPMAS NMR spectroscopy shows that a high concentration of alkyl carbon is present in the fine particle size fractions of the B horizons of the Dystric Cambisol. Decreasing contribution of O-alkyl and aromatic carbon with particle size as well as soil depth indicates that these compounds are not stabilized in the Dystric Cambisol. These results are in accordance with data obtained by wet chemical analyses showing that cutin/suberin-derived hydroxyalkanoic acids are preserved in the fine particle size fractions of the B horizons. The organic matter composition in particle size fractions of the top- and subsoil horizons of the Haplic Podzol shows that this soil is acting like a chromatographic system preserving insoluble alkyl carbon in the fine particle size fractions of the A horizon. Small molecules, most probably organic acids, dominate in the fine particle size fractions of the C horizons, where they are stabilized in clay-sized fractions most likely due to the interaction with the mineral phase. The characterization of lignin-derived phenols indicated, in accordance with the NMR measurements, that these compounds are not stabilized in the mineral soil horizons.  相似文献   

18.
Because carbon dioxide (CO2) concentration is rising, increases in plant biomass and productivity of terrestrial ecosystems are expected. However, phosphorus (P) unavailability may disable any potential enhanced growth of plants in forest ecosystems. In response to P scarcity under elevated CO2, trees may mine deeper the soil to take up more nutrients. In this scope, the ability of deep horizons of forest soils to supply available P to the trees has to be evaluated. The main objective of the present study was to quantify the relative contribution of topsoil horizons and deep horizons to P availability through processes governed by the activity of soil micro-organisms. Since soil properties vary with soil depth, one can therefore assume that the role of microbial processes governing P availability differs between soil layers. More specifically, our initial hypothesis was that deeper soil horizons could substantially contribute to total plant available P in forested ecosystems and that such contribution of deep horizons differs among sites (due to contrasting soil properties). To test this hypothesis, we quantified microbial P and mineralization of P in ‘dead’ soil organic matter to a depth of 120 cm in forest soils contrasting in soil organic matter, soil moisture and aluminum (Al) and iron (Fe) oxides. We also quantified microbiological activity and acid phosphomonoesterase activity. Results showed that the role of microbial processes generally decreases with increasing soil depth. However, the relative contribution of surface (litter and 0–30 cm) and deep (30–120 cm) soil layers to the stocks of available P through microbial processes (51–62 kg P ha?1) are affected by several soil properties, and the contribution of deep soil layers to these stocks vary between sites (from 29 to 59%). This shows that subsoils should be taken into account when studying the microbial processes governing P availability in forest ecosystems. For the studied soils, microbial P and mineralization of P in ‘dead’ soil organic matter particularly depended on soil organic matter content, soil moisture and, to a minor extent, Al oxides. High Al oxide contents in some sites or in deep soil layers probably result in the stabilization of soil organic compounds thus reducing microbiological activity and mineralization rates. The mineralization process in the litter also appeared to be P-limited and depended on the C:P ratio of soil organic matter. Thus, this study highlighted the effects of soil depth and soil properties on the microbial processes governing P availability in the forest spodosols.  相似文献   

19.
The aim of this study was to compare the turnover time of labile soil carbon (C), in relation to temperature and soil texture, in several forest ecosystems that are representative of large areas of North America. Carbon and nitrogen (N) stocks, and C:N ratios, were measured in the forest floor, mineral soil, and two mineral soil fractions (particulate and mineral-associated organic matter, POM and MOM, respectively) at five AmeriFlux sites along a latitudinal gradient in the eastern United States. Sampling at four sites was replicated over two consecutive years. With one exception, forest floor and mineral soil C stocks increased from warm, southern sites (with fine-textured soils) to cool, northern sites (with more coarse-textured soils). The exception was a northern site, with less than 10% silt-clay content, that had a soil organic C stock similar to the southern sites. A two-compartment model was used to calculate the turnover time of labile soil organic C (MRTU) and the annual transfer of labile C to stable C (k2) at each site. Moving from south to north, MRTU increased from approximately 5 to 14 years. Carbon-13 enrichment factors (ε), that described the rate of change in δ13C through the soil profile, were associated with soil C turnover times. Consistent with its role in stabilization of soil organic C, silt-clay content was positively correlated (r = 0.91; P  0.001) with parameter k2. Latitudinal differences in the storage and turnover of soil C were related to mean annual temperature (MAT, °C), but soil texture superseded temperature when there was too little silt and clay to stabilize labile soil C and protect it from decomposition. Each site had a relatively high proportion of labile soil C (nearly 50% to a depth of 20 cm). Depending on unknown temperature sensitivities, large labile pools of forest soil C are at risk of decomposition in a warming climate, and losses could be disproportionately higher from coarse textured forest soils.  相似文献   

20.
The diurnal fluctuation in soil temperature may influence soil organic carbon (SOC) mineralization, but there is no consensus on SOC mineralization response to the cyclical fluctuation in soil temperature. A 56-d incubation experiment was conducted to investigate the effects of constant and variable temperatures on SOC mineralization. Three soils were collected from the karst region in western Guizhou Province, southwestern China, including a limestone soil under forest, a limestone soil under crops and a yellow soil under crops. According to the World Reference Base (WRB) classification, the two limestone soils were classified as Haplic Luvisols and the yellow soil as a Dystric Luvisol. These soils were incubated at three constant temperatures (15, 20 and 25 oC) and cyclically fluctuating temperatures (diurnal cycle between 15 and 25 oC). The results showed that the 56-d cumulative SOC mineralized (C56) at the fluctuating temperatures was between those at constant 15 and 25 oC, suggesting that the cumulative SOC mineralization was restricted by temperature range. The SOC mineralization responses to the fluctuating temperatures were different among the three soils, especially in contrast to those at constant 20 oC. Compared with constant 20 oC, significant (P < 0.05) decreases and increases in C56 value were found in the limestone soil under forest and yellow soil under crops at the fluctuating temperatures, respectively. At the fluctuating temperatures, the forest soil with lower temperature coefficient Q10 (the relative change in SOC mineralization rate as a result of increasing the temperature by 10 oC) had a significantly (P < 0.05) lower SOC mineralization intensity than the two cropland soils. These indicated that differences in temperature pattern (constant or fluctuating) could significantly influence SOC mineralization, and SOC mineralization responses to the fluctuating temperatures might be affected by soil characteristics. Moreover, the warmer temperatures might improve the ability of soil microbes to decompose the recalcitrant SOC fraction, and cyclical fluctuations in temperature could influence SOC mineralization through changing the labile SOC pool size and the mineralization rate of the recalcitrant SOC in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号