首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Microbial biomass C and N respond rapidly to changes in tillage and soil management. The ratio of biomass C to total organic C and the ratio of mineral N flush to total N were determined in the surface layer (0–5 cm) of low-clay (8–10%), fine sandy loam, Podzolic soils subjected to a range of reduced tillage (direct drilling, chisel ploughing, shallow tillage) experiments of 3–5 years' duration. Organic matter dynamics in the tillage experiments were compared to long-term conditions in several grassland sites established on the same soil type for 10–40 years. Microbial biomass C levels in the grassland soils, reduced tillage, and mouldboard ploughing treatments were 561, 250, and 155 g g-1 soil, respectively. In all the systems, microbial biomass C was related to organic C (r=0.86), while the mineral N flush was related to total N (r=0.84). The average proportion of organic C in the biomass of the reduced tillage soils (1.2) was higher than in the ploughed soils (0.8) but similar to that in the grassland soils (1.3). Reduced tillage increased the average ratio of mineral N flush to total soil N to 1.9, compared to 1.3 in the ploughed soils. The same ratio was 1.8 in the grassland soils. Regression analysis of microbial biomass C and percent organic C in the microbial biomass showed a steeper slope for the tillage soils than the grassland sites, indicating that reduced tillage increased the microbial biomass level per unit soil organic C. The proportion of organic matter in the microbial biomass suggests a shift in organic matter equilibrium in the reduced tillage soils towards a rapid, tillage-induced, accumulation of organic matter in the surface layer.  相似文献   

2.
A field study was undertaken to determine the effects of different plant species on soil microbial biomass and N transformations in a well drained silty clay loam (Typic Dystrochrept) and a poorly drained clay loam (Typic Humaquept). The crop treatments were faba bean (Vicia faba L.), alfalfa (Medicago sativa L.), timothy (Phleum pratense L.), bromegrass (Bromus inermis L.), reed canarygrass (Phalaris arundinacea L.), and wheat (Triticum aestivum L.). Measurements of microbial biomass C, denitrification capacity, and nitrification capacity were performed periodically in the top 2–10 cm of soil. On most sampling dates, all three parameters were higher under perennial than under annual species. The nitrification capacity was positively affected by the level of N applied to each species (r=0.65** for the silty clay loam and 0.84*** for the clay loam) and not directly by the plant. The differences found in microbial biomass C were significantly correlated with the water-soluble organic C present under each plant species (r=0.74*** for the silty clay loam and 0.90*** for the clay loam), suggesting differences in C deposition in the soil among plant species. In the silty clay loam, the denitrification capacity was positively related to the amount of organic C found under each plant species, while in the clay loam, it was dependent on the amount of N applied to each species. There was less denitrification activity per unit biomass under legume species than under graminease, suggesting that, depending on their composition, root-derived materials may be used differently by soil microbes.  相似文献   

3.
To determine whether there is a relationship between the composition of soil organic matter and the activity of the soil microbial biomass, the composition of the organic matter in 12 typical arable soils in Northwest Germany was investigated by wet chemical analysis and CPMAS cross polarization magic angle spinning 13C-NMR spectroscopy. The data were correlated with the microbial biomass as estimated by substrate-induced respiration. A strong correlation between the microbial biomass and alkylic C compounds was observed (r=-0.960***). Recalcitrant substances were enriched in this fraction, which were classified as humic acids according to the wet chemical procedure. The microbial decomposition of these humic acids is probably retarded, due to their chemical structure and/or physical bonding, when the soil microbial biomass activity is limited.  相似文献   

4.
The aim of this work was to assess and compare the influence of Eisenia foetida Savigny earthworms on C mineralization rate, labile C fractions (water-soluble C and water-soluble carbohydrates), microbial biomass C, and enzyme activities (dehydrogenase, urease, phosphatase and ß-glucosidase) in three soils of varying texture treated with a composted organic residue and cropped with Avena sativa L. Mineralization decreased with the addition of earthworms to the sandy and clay-loam soils, especially in sandy soil (by about 4 µg CO 2-C g -1 day -1). There were no significant effects on the amount of CO 2 evolved from clay soil due to the addition of E. foetida. The addition of E. foetida to sandy soil significantly decreased microbial biomass C and increased microbial metabolic quotient the qCO 2 (CO 2-C to biomass C ratio). The addition of E. foetida did not affect the microbial biomass or the qCO 2 of the clay-loam and clay soils.  相似文献   

5.
Soil microbial biomass and community structures are commonly used as indicators for soil quality and fertility. A investigation was performed to study the effects of long-term natural restoration, cropping, and bare fallow managements on the soil microbial biomass and bacterial community structures in depths of 0--10, 20--30, and 40--50 cm in a black soil (Mollisol). Microbial biomass was estimated from chloroform fumigation-extraction, and bacterial community structures were determined by analysis of 16S rDNA using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Experimental results showed that microbial biomass significantly declined with soil depth in the managements of restoration and cropping, but not in the bare fallow. DGGE profiles indicated that the band number in top 0--10 cm soils was less than that in depth of 20--30 or 40--50 cm. These suggested that the microbial population was high but the bacterial community structure was simple in the topsoil. Cluster and principle component analysis based on DGGE banding patterns showed that the bacterial community structure was affected by soil depth more primarily than by managements, and the succession of bacterial community as increase of soil depth has a similar tendency in the three managements. Fourteen predominating DGGE bands were excised and sequenced, in which 6 bands were identified as the taxa of Verrucomicrobia, 2 bands as Actinobacteria, 2 bands as α-Proteobacteria, and the other 4 bands as δ-Proteobacteria, Acidobacteria, Nitrospira, and unclassified bacteria. In addition, the sequences of 11 DGGE bands were closely related to uncultured bacteria. Thus, the bacterial community structure in black soil was stable, and the predominating bacterial groups were uncultured.  相似文献   

6.
Soil C balances were calculated in a field experiment started in 1956. Treatments include a fallow and soils receiving different N fertilizers or organic amendments. By assuming the absence of a priming effect, the degree of mineralization of crop residues and organic amendments was calculated. Crop residue mineralization was not affected by a more than 50% decrease in the size of the microbial biomass in soil fertilized with (NH4)2SO4, which had caused the pH of this soil to drop from 6.6 to 4.4. More C had accumulated per unit C input in peat-and sewage sludge-amended soils than in any of the other soils, suggesting that peat and sewage sludge were more resistant to microbial attack. Recalcitrance of substrate C was an adequate explanation for the low ratio of biomass C to soil C in the peat-amended soils, but not in the sewage sludge-amended soil. There was a close linear relationship (r=0.94) between the content of microbial biomass C in the soil measured in 1990 and cumulative C losses from the soil since 1956. Compared to the relationship between soil biomass C and soil organic C concentrations, the linear relationship between microbial C and cumulative C losses suggested that the significantly reduced biomass in the sewage sludge-amended soil was at least partially due to the presence of toxic substances (presumably elevated heavy metal concentrations) in this soil and was probably not affected by the somewhat low pH (5.3) in this soil.  相似文献   

7.
《Pedobiologia》2014,57(3):161-169
C mineralization and aggregate stability directly depend upon organic matter and clay content, and both processes are influenced by the activity of microorganisms and soil fauna. However, quantitative data are scarce. To achieve a gradient in C and clay content, a topsoil was mixed with a subsoil. Single soils and the soil mixture were amended with 1.0 mg maize litter C g soil−1 with and without endogeic earthworms (Aporrectodea caliginosa). The differently treated soils were incubated for 49 days at 15 °C and 40% water holding capacity. Cumulative C mineralization, microbial biomass, ergosterol content and aggregate fractions were investigated and litter derived C in bulk soil and aggregates were determined using isotope analyses. Results from the soil mixture were compared with the calculated mean values of the two single soils. Mixing of soil horizons differing in carbon and clay content stimulated C mineralization of added maize residues as well as of soil organic matter. Mixing also increased contents of macro-aggregate C and decreased contents of micro-aggregate C. Although A. caliginosa had a stimulating effect on C mineralization in all soils, decomposition of added litter by A. caliginosa was higher in the subsoil, whereas A. caliginosa decreased litter decomposition in the soil mixture and the topsoil. Litter derived C in macro-aggregates was higher with A. caliginosa than with litter only. In the C poor subsoil amended with litter, A. caliginosa stimulated the microbial community as indicated by the increase in microbial biomass. Furthermore, the decrease of ergosterol in the earthworm treated soils showed the influence of A. caliginosa on the microbial community, by reducing saprotrophic fungi. Overall, our data suggest both a decrease of saprotrophic fungi by selective grazing, burrowing and casting activity as well as a stimulation of the microbial community by A. caliginosa.  相似文献   

8.
Many soil properties influence earthworm populations and activity. To determine which properties are of significance, a broad collection of soils was investigated. Samples from these different soils were kept bare at one site in large plots (3 Mg soil per plot) to liminate crop and weather interference and to isolate the dominating mechanisms of earthworm effects. Earthworm density, biomass, and tunnelling activity were assessed after 5 years of bare fallow. All earthworm parameters varied strongly. Earthworms increased soil respiration by their tunnelling activity, and in turn increased microbial activity and propagated the loss of organic C. Earthworm abundance ranged from 12 to 274 m-2 and was about 10 times greater than on cropped soils. The range in abundance was mainly caused by variations in the numbers of juveniles. The average soil moisture content was the only soil property among the many properties investigated that was consistently correlated with earthworm abundance and biomass. Even after 5 years of bare fallow with almost no addition of fresh plant biomass and with little water loss by plant transpiration, the earthworm population was controlled by water stress and not by food stress. We therefore conclude that high water consumption by productive crops may degrade the habitat for geophagous earthworms.  相似文献   

9.
Short-term effects of tillage systems on active soil microbial biomass   总被引:5,自引:0,他引:5  
 Conservation tillage, and especially no-tillage, induce changes in the distribution of organic pools in the soil profile. In long-term field experiments, marked stratification of the total soil microbial biomass and its activity have been observed as consequence of the application of no-tillage to previously tilled soils. Our objective was to study the evolution of the total and active soil microbial biomass and mineralized C in vitro during the first crop after the introduction of no-tillage to an agricultural soil. The experiment was performed on a Typic Hapludoll from the Argentinean Pampa. Remaining plant residues, total and active microbial biomass and mineralized C were determined at 0–5 cm and 5–15 cm depths, at three sampling times: wheat tilling, silking and maturity. The introduction of no-tillage produced an accumulation of plant residues in the soil surface layer (0–5 cm), showing stratification with depth at all sampling dates. Active microbial biomass and C mineralization were higher under no-tillage than under conventional tillage in the top 5 cm of the profile. The total soil microbial biomass did not differ between treatments. The active soil biomass was highly and positive correlated with plant residues (r 2=0.617;P<0.01) and with mineralized C (r 2=0.732;P<0.01). Consequently, the active microbial biomass and mineralized C reflected immediately the changes in residue management, whereas the total microbial biomass seemed not to be an early indicator of the introduction of a new form of soil management in our experiment. Received: 23 February 1999  相似文献   

10.
Endogeic earthworms play an important role in mobilisation and stabilisation of carbon and nitrogen in forest and arable soils. Soil organic matter is the major food resource for endogeic earthworms, but little is known about the size and origin of the organic matter pool on which the earthworms actually live. We measured changes in body mass of juvenile endogeic earthworms, Octolasion tyrtaeum (Savigny), in soils with different C and N contents resulting from different fertiliser treatments. The soil was taken from a long-term experiment (Statischer Düngungsversuch, Bad Lauchstädt, Germany). The treatments included (1) non-fertilised soil, (2) NPK fertilised soil, (3) farmyard manure fertilised soil and (4) NPK + farmyard manure fertilised soil. The soil was incubated in microcosms with and without one juvenile O. tyrtaeum for 80 days.Earthworm biomass decreased in non-fertilised soil by 48.6%, in NPK soil by 9.4%, but increased in farmyard manure soil by 19.7% and 42.8% (soil with additional NPK application). In farmyard manure treatments the biomass of bigger individuals decreased, but in smaller individuals it increased. In NPK fertilised soil without farmyard manure only small O. tyrtaeum increased in body mass, whereas in the non-fertilised soil all individuals decreased in body mass. Generally, soil respiration correlated positively with soil carbon content. Earthworms significantly increased soil respiration and nitrogen leaching and this was most pronounced in farmyard manure treatments. Microbial activity was generally higher in farmyard manure soil indicating that farmyard manure increases labile organic matter pools in soil. Also, biomass of earthworms and microorganisms was increased in farmyard manure soil. The presence of earthworms reduced microbial biomass, suggesting that earthworms feed on microorganisms or/and that earthworms and soil microorganisms competed for similar organic matter pools in soil. The results demonstrate that NPK fertilisation only is insufficient to sustain O. tyrtaeum, whereas long-term fertilisation with farmyard manure enables survival of endogeic species due to an increased pool of utilisable soil organic matter in arable soil.  相似文献   

11.
Effect of freeze-thaw events on mineralization of soil nitrogen   总被引:15,自引:0,他引:15  
Summary In humid regions of the United States there is considerable interest in the use of late spring (April–June) soil NO 3 concentrations to estimate fertilizer N requirements. However, little information is available on the environmental factors that influence soil NO 3 concentrations in late winter/early spring. The influence of freeze-thaw treatments on N mineralization was studied on several central Iowa soils. The soils were subjected to temperatures of-20°C or 5°C for 1 week followed by 0–20 days of incubation at various temperatures. The release of soluble ninhydrin-reactive N, the N mineralization rate, and net N mineralization (mineral N flush) were observed. The freeze-thaw treatment resulted in a significant increase in the N mineralization rate and mineral N flush. The N mineralization rate in the freeze-thaw treated soils remained higher than in non-frozen soils for 3–6 days when thawed soils were incubated at 25°C and for up to 20 days in thawed soils incubated at 5°C. The freeze-thaw treatments resulted in a significant release of ninhydrin-reactive N. These values were closely correlated with the mineral N flush (r 2=0.84). The release of ninhydrin-reactive N was more closely correlated with biomass N (r 2=0.80) than total N (r 2=0.65). Our results suggest that freeze-thaw events in soil disrupt microbial tissues in a similar way to drying and re-wetting or chloroform fumigation. Thus the level of mineral N released was directly related to the soil microbial biomass. We conclude that net N mineralization following a spring thaw may provide a significant portion of the total NO 3 present in the soil profile.  相似文献   

12.
We measured microbial biomass C and soil organic C in soils from one grassland and two arable sites at depths of between 0 and 90 cm. The microbial biomass C content decreased from a maximum of 1147 (0–10 cm layer) to 24 g g-1 soil (70–90 cm layer) at the grassland site, from 178 (acidic site) and 264 g g-1 soil (neutral site) at 10–20 cm to values of between 13 and 12 g g-1 soil (70–90 cm layer) at the two arable sites. No significant depth gradient was observed within the plough layer (0–30 cm depth) for biomass C and soil organic C contents. In general, the microbial biomass C to soil organic C ratio decreased with depth from a maximum of between 1.4 and 2.6% to a minimum of between 0.5 and 0.7% at 70–90 cm in the three soils. Over a 24-week incubation period at 25°C, we examined the survival of microbial biomass in our three soils at depths of between 0 and 90 cm without external substrate. At the end of the incubation experiment, the contents of microbial biomass C at 0–30 cm were significantly lower than the initial values. At depths of between 30 and 90 cm, the microbial biomass C content showed no significant decline in any of the four soils and remained constant up to the end of the experiment. On average, 5.8% of soil organic C was mineralized at 0–30 cm in the three soils and 4.8% at 30–90 cm. Generally, the metabolic quotient qCO2 values increased with depth and were especially large at 70–90 cm in depth.  相似文献   

13.
 Microwave irradiation was evaluated as a non-toxic alternate to chloroform fumigation for routine measurement of soil microbial biomass C. Microwave energy was applied to moist soil to disrupt microbial cells. The flush of C released was then measured after extraction or incubation. Microwave irradiation at 800 J g–1 soil was optimal because this level resulted in an almost instantaneous rise in soil temperature (≥80  °C), an abrupt reduction in microbial activity, maximal release of biomass C, and minimal solubilization of humic substances. Both incubation-CO2 titration and extraction-colorimetry methods were used on separate 20-g subsamples to compare the labile C in the microwave-treated and untreated soil samples. The incubation-titration method was also used to measure C in chloroform-fumigated soil samples. Averaged across soils, the chloroform fumigation yielded 123.3±5.1 mg CO2-C kg–1. Microwave irradiation yielded 93.6±3.9 mg CO2-C kg–1 soil determined by incubation and 52.4±2.4 mg C kg–1 soil determined by extraction, accounting for 76% and 42% of the net flush of C measured by the chloroform fumigation. Microwave-stimulated net flushes of C were correlated closely (r 2=0.974 for incubation or 0.908 for extraction) with microbial biomass C measured by the chloroform fumigation. Little correlation was found with the total soil organic C (r 2=0.241 for incubation or for 0.166 extraction). Mean efficiency factors for incubation (K MI) or extraction (K ME) were used to calculate microbial biomass C from net flushes of C between microwaved and unmicrowaved soils. Values of K MI and K ME were not affected by soil pH, bulk density or clay contents. Extraction of microwaved soil by 0.5M K2SO4 proved to be a simple, fast, precise, reliable, and safe method to measure soil microbial biomass C. Received: 12 September 1997  相似文献   

14.
长期施肥对红壤性水稻土微生物生物量与活性的影响   总被引:2,自引:3,他引:2  
吴晓晨  李忠佩  张桃林  车玉萍 《土壤》2009,41(4):594-599
土壤微生物及其活性是指示土壤增肥过程和土壤环境变化的灵敏指标.本文研究了红壤荒地开垦为水田后不同施肥制度定位施肥 16 年后水稻土的微生物生物量与活性特征,结果表明:经 16 年水稻耕植,不同施肥措施下土壤的微生物生物量和活性还处于较低水平.施肥制度显著影响了水稻土的微生物生物量 C 和基质诱导呼吸,但对基础呼吸的影响还不明显.只施用 N、K 肥对提高土壤微生物生物量和活性没有显著效果,在不施肥或施用化肥的基础上配合有机循环可以显著提高土壤微生物的生物量、代谢活性和微生物呼吸的温度敏感性,N、P、K 肥配合有机循环的施肥制度对提高土壤微生物生物量和代谢活性的作用最好.  相似文献   

15.
Microorganisms play a critical role in nutrient transformation, soil health and for sustaining the productivity of soils. Effects of long-term cropping, fertilization, manuring and their integration on microbial community were studied in soil samples from five long-term fertilizer experiments under various rainfed production systems in the semi-arid tropics (SAT) of India. Microbial population counts were analyzed by dilution plating and were in turn compared with different parameters such as soil treatments, soil type, soil microbial biomass C, soil organic C, rainfall and soil pH. The counts were high in treatments where combinations of organic and inorganic fertilizers were applied compared to control. Vertisols showed larger organic carbon levels than Alfisols. Fungal population was higher in acidic soils and in treatments under continuous inorganic fertilization treatments whereas a high number of bacteria were found in integrated use of organic and inorganic fertilizers. At most of the locations soil organic C and microbial biomass C showed significant positive (p ≤ 0.05) correlation with microbial populations. Thus, results suggest that even under arid and semi-arid tropical conditions, regular addition of nutrients in an integrated manner could improve soil organic carbon and microbial population counts. For each production system, better carbon sequestration management practices were identified.  相似文献   

16.
In agricultural ecosystems that have had consistent cropping histories, standard microbial methods may be used to evaluate past and present practices. Our objective was to evaluate several microbial methods that best indicate cropping histories and soil quality on long-term plots. We selected soil microbial carbon (C), phospholipid analyses, direct counts of total fungal and bacterial biomass, and soil enzymes (phosphatases) to measure direct and indirect microbial activity on the Sanborn Field and Tucker Prairie. The Sanborn Field has been under various cropping and management practices since 1888 and the Tucker Prairie is an uncultivated site. Seven different plots were chosen on the Sanborn Field and random samples were taken in the summit area on the Tucker Prairie, which represented a reference site. Soil microbial biomass C, phospholipids, and enzyme activity were reflective of the cropping and management histories observed on the Sanborn Field. Enzymatic activity was highly correlated to soil organic matter. The direct counts of fungal and bacterial biomass showed that fungal populations dominated these soils, which may be attributed to soil pH. Soil microbial biomass C and enzyme assays seemed to be better potential indicators of cropping histories than the other methods tested in the long-term plots.This paper has been assigned by the Missouri Agricultural Experiment Station to Journal Series no. 12043  相似文献   

17.
Microbiological and biochemical investigations of chestnut soils and solonetzes were conducted in the dry steppe of the southern Privolzhskaya and northern Ergeni uplands. The living biomass of the microbial communities in the soils was estimated based on the content of phospholipids in the soils. Significant correlations were revealed between the contents of phospholipids and the main soil properties (the contents of humus, r = 0.66, P = 0.999; clay, r = −0.41, P = 0.95; physical clay, r = −0.57, P = 0.99; and pH, r = −0.59, P = 0.99). The content of phospholipids varied from 69 to 192 nmol/g of soil in the A1 horizons; with depth it decreased down to 36–135 in the B1 horizon and to 26–79 nmol/g of soil in the B2 horizon. The microbial biomass in the solonetzes was lower by 5 to 38% than that in the chestnut soils. A trend of the decreasing of the microbial biomass in the soils from the north to the south was revealed. Based on the content of phospholipids, the number of living microbial cells was assessed; the weighed averages of their number varied from 0.7–3.2 × 1010 to 7.5–13.6 × 1010.  相似文献   

18.
Short-term response of soil C mineralization following drying/rewetting has been proposed as an indicator of soil microbial activity. Houston Black clay was amended with four rates of arginine to vary microbial responses and keep other soil properties constant. The evolution of CO2 during 1 and 3 days following rewetting of dried soil was highly related to CO2 evolution during 10 days following chloroform fumigation (r2 = 0.92 and 0.93, respectively) which is a widely used method for soil microbial biomass C, which disrupts cellular membranes. This study suggest that the release of CO2 following rewetting of dried soil with no amendments other than heat and water can be highly indicative of soil microbial activity and possibly be used as a quantitative measurement of soil biological quality in Houston Black soils.  相似文献   

19.
The major objectives of this study were to determine the influence of grazing on the soil microbial biomass and activity in semiarid grassland and shrubland areas and to quantify the canopy effect (the differences in soil microbial biomass and activities between soils under plant canopies and soils in the open between plants). We also quantified changes in microbial biomass and activity during seasonal transition from dry to moist conditions. Chronosequences of sites withdrawn from grazing for 0, 11, and 16 years were sampled in a grassland (Bouteloua spp.) area and a shrubland (Atriplex canescens) area on and near the Sevilleta National Wildlife Reguge in central New Mexico, USA. Samples were obtained from beneath the canopies of plants (Yucca glauca in the grassland and A. canescens in the shrubland) and from open soils; they were collected three times during the spring and summer of a single growing season. Organic C, soil microbial biomass C, and basal respiration rates (collectively called the soil C triangle) were measured. We also calculated the microbial: organic C ratio and the metabolic quotient (ratio of respiration to microbial C) as measures of soil organic C stability and turnover. Although we had hypothesized that individual values of the soil C triangle would increase and that the ratios would decrease with time since grazing, differences in microbial parameters between sites located along the chronosequences were generally not significant. Grazing did not have a consistion effect on organic C, microbial C, and basal respiration in our chronosequences. The microbial: organic C ratio and the metabolic quotient generally increased with time since grazing on the shrubland chronosequence. The microbial: organic C ratio decreased with time since grazing and the metabolic quotient increased with time since grazing on the grassland chronosequence. The canopy effect was observed at all sites in nearly all parameters including organic C, microbial C, basal respiration, the microbial: organic C ratio, and the metabolic quotient which were predominantly higher in soils under the canopies of plants than in the open at all sites. Microbial biomass and activity did not increase during the experiment, even though the availability of moisture increased dramatically. The canopy effects were approximately equal on the shrubland and grassland sites. The microbial: organic C ratios and the metabolic quotients were generally higher in the shrubland soils than in the grassland soils.  相似文献   

20.
Abstract

There is a large number of hill people in northern Thailand, who practices shifting cultivation. In order to analyze the soil ecological problems involved in the transition from traditional shifting cultivation to more intensive upland farming, the authors carried out comparative studies on the dynamics of organic matter and its related properties in soils both in the traditional shifting cultivation systems adopted by Karen people and more intensive upland farming practiced by Thai and Hmong people in the area. The contents of organic matter and available N in the surface 10 cm layers of soil from the fields continuously cultivated were lower than those in soils under prolonged fallow (more than 10 y) or natural forest. Based on the rate of soil respiration, the amount of organic matter decomposed within 1 y was estimated to reach nearly 10% of that stored in the upper 50 cm layers of the soil profile in the upland crop fields. These results indicate that the organic matter-related resources markedly decreased under continuous cropping. The contents of C, N, and P in the microbial biomass of the surface 10 cm layers of soil ranged from 0.37 to 2.09 mg C g?l soil, from 22.7 to 188 µg N g?l soil, and from 6.1 to 65.7 µg P g?l soil, respectively. Since the contents of microbial C, N, and P in the surface soils were generally higher under prolonged fallow and natural forests than in the fields continuously cultivated, the microbial activity and/or the amounts of C, N, and P available for biological activity seemed to have declined under continuous upland farming. The incubation experiment to assess the N mineralization pattern showed two remarkable characteristics: 1) there was an initial time lag until active mineralization of N occurred in the soils from young fallow forest and 2) the soil burning effect was observed after burning in the fields under prolonged fallow. The active process of nitrification after N mineralization was always associated with a sharp fall in soil pH, suggesting that soil acidification was promoted and basic cations were lost from the soils. In conclusion, rapid deterioration of the soil organic matter-related properties in cropping fields can be considered to be one of the ecological reasons why upland fields must be returned to fallow again a few years after forest reclamation in traditional shifting cultivation systems. Therefore, in alternative farming systems with more intensive land use, it is essential to apply organic materials into soils to decrease the rate of soil degradation, or to improve the soil fertility, in avoiding soil acidification along with nitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号