首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 357 毫秒
1.
为了进一步明确大豆抗感品种对根腐尖镰孢的抗病机制,通过透射电镜和形态观察分析了尖镰孢(M38)侵染及产生的毒素对抗感大豆品种的影响。研究表明大豆幼苗胚根经粗毒素处理后,抗病品种‘东农56’幼苗胚根生长没有显著差别,但显著抑制了感病品种‘黑农53’胚根的伸长和侧根的生长;尖镰孢毒素高浓度和低浓度(V粗毒素∶V无菌水=1∶0和1∶15)对抗感品种的致萎能力无显著差异,高浓度处理平均萎蔫指数为100,低浓度处理为17.9~18.1左右;但中等浓度(V粗毒素∶V无菌水=1∶1,1∶5,1∶10)对于感病品种的致萎作用更大;同时,发现尖镰孢侵染感病大豆品种根内侵染量要明显多于抗病品种,且感病品种组织中菌丝的直径明显大于抗病品种,都出现很明显的质壁分离和细胞壁加厚的现象。  相似文献   

2.
 本文对枯萎病菌侵入黄瓜不同抗性品种的途径,以及黄瓜受侵染根部维管组织的变化进行了观察。分生孢子在幼根表皮上萌发产生菌丝,通过胞间层侵入表皮细胞,之后菌丝继续向内部生长,穿过皮层组织进入导管。受侵染的导管内相继出现壁覆盖物、侵填体及褐色物。抗病品种的壁覆盖物比感病品种的厚:侵填体由受侵染导管旁边的薄壁细胞产生,一个细胞可产生多个侵填体,并在侵填体中观察到细胞核的存在,感病品种中的侵填体发育不充分,抗病品种中的侵填体能完全堵塞导管;谒色物在感病、抗病品种中均能完全堵塞导管,对菌丝的侵入构成了较强的机械障碍。  相似文献   

3.
为探究小豆应答锈菌侵染的生理机制,以不同小豆抗性品种与豇豆单胞锈菌Uromyces vignae互作为研究对象,采用紫外分光光度法和实时荧光定量PCR技术分析锈菌侵染后不同抗性品种中防御酶活性及防卫反应基因表达的变化特征。结果表明,接种豇豆单胞锈菌后小豆抗病品种叶片内过氧化氢酶(catalase,CAT)、超氧化物歧化酶(superoxide dismutase,SOD)、过氧化物酶(peroxidase,POD)和多酚氧化酶(polyphenol oxidase,PPO)活性均比感病品种显著提高;接种192 h后,小豆抗病品种中CAT和SOD活性最高,分别为16.93 nmol·g-1·s-1和950.89 U/g,较对照提高了496.13%和89.61%,小豆感病品种中CAT和SOD活性分别在接种192 h和120 h后达到峰值,分别为10.54 nmol·g-1·s-1和884.51 U/g,较对照增加了256.08%和55.50%,增加幅度小于抗病品种;接种12 h后,小豆抗病品种和感病品种...  相似文献   

4.
为了解云南主栽核桃品种对细菌性黑斑病的抗性,采用离体接种的方法分别接种核桃黄单胞杆菌(Xanthomonas arboricola pv. juglandis)和成团泛菌(Pantoea agglomerans),对接种叶片的病斑面积进行系统聚类分析,进而鉴定31个核桃品种对2种细菌性黑斑病病原菌的抗病性。结果表明,接种核桃黄单胞杆菌后,以平方欧式距离2对聚类结果进行分割,将试验品种分为4类,分别有27个抗病品种、2个中抗品种、1个中感品种和1个感病品种;接种成团泛菌后,以平方欧式距离5对聚类结果分割,将试验品种分为4类,分别有25个抗病品种、4个中抗品种、1个中感品种和1个感病品种。  相似文献   

5.
枯萎病菌对不同抗性黄瓜品种几种酶活性的影响   总被引:5,自引:1,他引:4  
用枯萎病菌接种不同抗性黄瓜品种,研究不同抗性黄瓜品种的过氧化物酶(POD)、多酚氧化酶(PPO)和几丁质酶的活性变化。结果表明,接种后抗感品种POD、PPO和几丁质酶活性基本都呈现先升后降再升(再降)的趋势。抗感品种均在接种后12 h时出现第1次POD活性峰值,抗病品种中农13号、津优3号分别在接种后60、72 h、感病品种在84 h出现第2次POD活性峰值;接种后24 h时抗感品种均达到第1次PPO活性峰值,抗病品种在48 h、感病品种在60 h时达到第2次PPO活性峰值;接种后抗病品种在48 h时达到第1次几丁质酶活性峰值,72 h时达到第2次峰值,而感病品种只在60 h时出现1次几丁质酶活性峰值。抗感品种的POD、PPO、几丁质酶活性的2次峰值都显著或极显著地高于各自的对照,在接种后的早期阶段,感病品种的POD、几丁质酶活性的第1次峰值都显著或极显著地高于抗病品种,PPO活性的第1次峰值极显著地低于抗病品种。  相似文献   

6.
测定了具有不同抗性水平的5个豇豆Vigna sesquipdalis Wight品种在受锈菌Uromyces vignae Barcl侵染前和侵染后的若干阶段中的多酚氧化酶(PPO)和过氧化物酶(POD)活性,并分析其与抗性的关系.结果表明,在接种后24h内,免疫和抗病品种的PPO比活性及其变化率均高于感病品种,且前者PPO比活性变化率高峰出现早,后者出现迟.在接种后,各品种的POD比活性及其变化率均上升,但中抗和感病品种的高峰出现早,免疫和高抗品种出现晚.此外,中抗和感病品种的POD比活性及其变化率在接种12h左右出现高峰后立即下降,而高抗品种的则持续上升至24h左右出现高峰,免疫品种的POD比活性也在24h左右出现高峰,但其POD比活性变化率则持续到48h左右达到高峰,且免疫和抗病品种的峰值明显大于感病品种.  相似文献   

7.
用枯萎病菌接种不同抗性黄瓜品种,研究不同抗性黄瓜品种的过氧化物酶(POD)、多酚氧化酶(PPO)和几丁质酶的活性变化。结果表明,接种后抗感品种POD、PPO和几丁质酶活性基本都呈现先升后降再升(再降)的趋势。抗感品种均在接种后12h时出现第1次POD活性峰值,抗病品种中农13号、津优3号分别在接种后60、72h、感病品种在84h出现第2次POD活性峰值;接种后24h时抗感品种均达到第1次PPO活性峰值,抗病品种在48h、感病品种在60h时达到第2次PPO活性峰值;接种后抗病品种在48h时达到第1次几丁质酶活性峰值,72h时达到第2次峰值,而感病品种只在60h时出现1次几丁质酶活性峰值。抗感品种的POD、PPO、几丁质酶活性的2次培值都显著或极显著地高于各自的对照,在接种后的早期阶段,感病品种的POD、几丁质酶活性的第1次峰值都显著或极显著地高于抗病品种,PPO活性的第1次峰值极显著地低于抗病品种。  相似文献   

8.
玉米灰斑病抗性机制中活性氧代谢的作用   总被引:6,自引:2,他引:6       下载免费PDF全文
研究了玉米灰斑病菌侵染四个抗病和感病的玉米品种时,叶片内部活性氧代谢酶及细胞过氧化产物含量的动力学变化。结果表明,抗、感病品种的SOD、CAT及POD酶活性在病茵侵染后都变化显著,抗病品种各酶活性变化幅度比感病品种大。叶片内过氧化产物MDA含量则相反,抗病品种沈试29在接种第13天时叶片MDA含量只为18.46nmol/g,而感病品种铁单9为23.14nmol/g,抗病品种比感病品种增加幅度小。说明活性氧代谢在植物抗病机制中起着重要作用,抗病品种对活性氧代谢的酶调节能力强,病菌侵染后细胞过氧化程度低,在痛菌侵染时活性氧清除酶活性最大增加值与发病程度呈显著正相关。  相似文献   

9.
向日葵与锈菌互作过程中活性氧的积累   总被引:1,自引:2,他引:1  
为了探讨向日葵品种与锈菌互作中活性氧的产生和积累与向日葵抗锈病性的关系,采用分光光度计法及联苯胺蓝(DAB)、氮兰四唑(NBT)染色法对过氧化氢(H2O2)及超氧阴离子自由基(O2-)诱导积累的过程进行了检测.结果表明:接种后抗、感病品种均出现H2O2和O2-双峰,侵染早期积累明显,最高峰出现在16 h,在抗病品种中活性氧产生和积累明显高于感病品种;在抗病品种中侵染位点活性氧的产生及积累较明显,接种后16h,侵染位点周围的染色范围较大,染色较深,H2O2及O2-的染色比例均达到最高,分别为65.5%和41%;而在感病品种的侵染位点没有检测到明显的活性氧积累.  相似文献   

10.
棉花枯萎病菌接种及粗毒素处理后棉苗维管束病理特征   总被引:8,自引:1,他引:8  
 利用遗传背景一致而抗病性不同的岱16变异品系和抗病品种中12,研究了接种棉花枯萎病菌(Fusarium oxysporum f.sp.vasinfectum)及用枯萎病菌粗毒素处理后,棉苗维管束的病理变化。研究结果表明,接种枯萎病菌后,病株茎部导管及薄壁细胞中有枯萎菌丝存在。发病严重的感病品种原岱16有菌丝的导管数最多,抗病品种早熟岱16抗最少。所有品种中均出现胶状物或侵填体堵塞导管,这种现象在抗病品种中更为明显。病菌粗毒素处理后,棉苗茎及叶柄导管内也出现侵填体或胶状物堵塞导管,抗病品种茎部导管堵塞快。  相似文献   

11.
采用离体叶片菌丝体接种法和活体叶片菌丝体接种法对19 份黄瓜品种( 系) 进行了黄瓜菌核病抗性筛选。结果表明:黄瓜品种C1 、A15 、甘丰2 号、中农2 号的抗病性较强。中农7 号、828 等品种具一定的抗病性。其余品种( 系) 大多抗病性较差,其中津春3 号、山东密刺较感病。  相似文献   

12.
分别提取黄瓜枯萎病感病品种津研4号和抗病品种中农10号的根分泌物,感病品种根分泌物甲醇提取液能够刺激枯萎病菌的菌丝生长,而抗病品种根分泌物甲醇提取液则抑制病原菌生长。利用LC-MS/MS技术分别对感病品种和抗病品种根分泌物中的差异物质进行分析鉴定。与感病品种津研4号相比,抗病品种中农10号根分泌物中含有7,8-苯并黄酮(7,8-BF),含量为0.02μg/株。50μg/mL的7,8-BF能够显著抑制黄瓜枯萎病菌菌丝生长和孢子萌发,而100μg/mL的7,8-BF能显著抑制抗感品种侧根形成,但是抗病品种的耐受力高于感病品种。用7,8-BF处理黄瓜种子,枯萎病侵染程度显著降低。当7,8-苯并黄酮浓度为50μg/mL时,感病品种病情指数从71.7降为30.8,达到中抗水平。  相似文献   

13.
Pathogen development and host responses in wheat spikes of resistant and susceptible cultivars infected by Fusarium culmorum causing Fusarium head blight (FHB), were investigated by means of electron microscopy as well as immunogold labelling techniques. The studies revealed similarities in the infection process and the initial spreading of the pathogen in wheat spikes between resistant and susceptible cultivars. However, the pathogen’s development was obviously more slow in the resistant cultivars as in comparison to a susceptible one. The structural defence reactions such as the formation of thick layered appositions and large papillae were essentially more pronounced in the infected host tissues of the resistant cultivars, than in the susceptible one. β -1,3-glucan was detected in the appositions and papillae. Furthermore, immunogold labelling of lignin demonstrated that there were no differences in the lignin contents of the wheat spikes between susceptible and resistant cultivars regarding the uninoculated healthy tissue, but densities of lignin in host cell walls of the infected wheat spikes differed distinctly between resistant and susceptible cultivars. The lignin content in the cell walls of the infected tissues of the susceptible wheat cultivar increased slightly, while the lignin accumulated intensely in the host cell walls of the infected wheat spikes of the resistant cultivars. These findings indicate that lignin accumulation in the infected wheat spikes may play an important role in resistance to the spreading of the pathogen in the host tissues. Immunogold labelling of the Fusarium toxin DON in the infected lemma showed the same labelling patterns in the host tissues of resistant and susceptible cultivars. However, there were distinct differences in the toxin concentration between the tissues of the susceptible and resistant cultivars. At the early stage of infection, the labelling densities for DON in resistant cultivars were significantly lower than those in the susceptible one. The present study indicates that the FHB resistant cultivars are able to develop active defence reactions during infection and spreading of the pathogen in the host tissues. The lower accumulation of the toxin DON in the tissues of the infected spikes of resistant cultivars which results from the host’s defence mechanisms may allow more intensive defence responses to the pathogen by the host.  相似文献   

14.
不同葡萄品种对霜霉病的抗性   总被引:3,自引:0,他引:3  
葡萄霜霉病是葡萄生产上重要的病害之一,通过对辽宁省不同葡萄品种进行室内离体叶片接种和田间自然发病情况调查,以期为葡萄抗性品种的选育和葡萄霜霉病的防治提供科学依据。结果表明,在供试品种中,没有对霜霉病完全免疫的品种,室内离体叶片接种和田间调查结果基本一致,不同品种间霜霉病的抗性存在差异。供试的65个品种中,室内离体叶片接种评价高抗品种3个,抗病品种23个,感病品种24个,高感品种15个;田间自然发病调查评价高抗品种1个,抗病品种19个,感病品种35个,高感品种10个。欧美杂交品种(系)相对欧亚杂交品种(系)较抗病。  相似文献   

15.
The growth of a coffee orange rust fungus (Hemileia vastatrix Berk and Br.) isolate (race II) and the sequence of responses it induced in leaves of resistant Coffea arabica L. and C. congensis Froehner as well as on a susceptible C. arabica were investigated cytologically and biochemically. The percentages of germinated urediospores and of appressoria formed over stomata as well as the fungal growth inside leaf tissues were similar in resistant and susceptible leaves until the 3rd day after the inoculation. In the susceptible leaves, at the majority of the infection sites (70%) the fungus pursued its growth without apparent inhibition while in the resistant leaves the fungus ceased its growth with higher frequency (34% in C. arabica and 54% in C. congensis) after the formation of at least one haustorium. The first signs of incompatibility, detected 2 days after the inoculation, were cytologically expressed by hypersensitive host cell death (HR), host cell wall autofluorescence and haustoria encasement with callose and β-1,4-glucans. Biochemically, two peaks of phenylalanine ammonia-lyase (PAL) activity were detected by 2 and 5 days after the inoculation. The 1st peak coincided with the early accumulation of phenolic compounds and with the beginning of cell death. The 2nd peak could be related to later accumulation of phenols and the lignification of the host cell walls. About 5–7 days after the inoculation, ultrastructural observations revealed the accumulation of a material partially crystallized in the intercellular spaces around the senescent hyphae, next to dead host cells and in close association with the middle lamella that initially labelled for pectins. It also contained polysaccharides and phenolic-like compounds. Cellulose, hemicellulose, extensins, hydroxyproline-rich glycoproteins and proteins were not detected. The hypertrophy of the host cells in the infection area were also observed around 12 days after the inoculation corresponding macroscopically to the reaction flt.In susceptible plants, cell death was also observed 3 days after the inoculation but only in a reduced percentage of infection sites in which the fungus aborted at an early stage. A late haustorium encasement and stimulation of PAL activity were also observed but these delayed host responses did not prevent fungal growth and sporulation.The intercellular material, only observed in the resistant plants, is here reported for the first time and although its role is unknown it might be the result of plant cell death.  相似文献   

16.
The response of a susceptible coffee cultivar (Caturra) to infection by the root-knot nematode Meloidogyne exigua was compared histologically with that of cv. Iapar 59 possessing the recently identified Mex-1 resistance gene. The reproductive behaviour of the nematode was also compared in the two cultivars. Penetration and development in resistant plants were reduced in comparison with susceptible plants. Several cell features, including dark-stained cytoplasm and altered organelle structure, were observed in the resistant cultivar, indicating a hypersensitive-like (HR) response of the infested host cells. Features of giant cells were sometimes found beside necrotic-like areas, but the corresponding feeding sites were frequently associated with nematodes displaying abnormal shape. Six weeks after inoculation, root systems of cv. Caturra contained significantly more nematodes than those of cv. Iapar 59 (mean values 1574 and 41, respectively). The susceptible cultivar presented a minimum of 11 galls per plant, compared with only one or two galls per plant in the resistant cultivar. The findings are discussed in the context of plant–pathogen interactions.  相似文献   

17.
Cotyledons of one resistant and three susceptible rape lines/cultivars were inoculated with zoospores of Albugo Candida race 7. Samples of whole cotyledons were examined by differential interference contrast microscopy. The time course of the infection process was followed histologically. Germination of zoospore cysts occurred 2-3 h after inoculation. Infection was initiated with germ-tubes penetrating through stomata. Haustorium formation was first observed in the palisade mesophyll cells adjacent to the substomatal chambers 8 h after inoculation.
Only after the establishment of the first haustorium did compatible and incompatible interactions begin to differentiate. In the resistant cultivar, most primary hyphae produced single haustoria. Necrosis of the invaded host cell was first observed 12 h after inoculation followed by cessation of fungal growth. The death of host cells was largely restricted to the penetration site; the adjacent non-penetrated cells remained apparently unaffected. In the susceptible hosts, necrosis of infected cells occurred only infrequently, and hyphal growth continued unabated, resulting in mycelial ramification into the mesophyll. Numerous haustoria were produced.
Histological studies showed that the earliest event distinguishing a compatible from an incompatible interaction occurred after formation of the first haustorium and that resistance was not manifested until the host mesophyll cell had come into contact with the first haustorium. The distinction between compatibility and incompatibility was substantiated by quantitative analysis of white rust development on both resistant and susceptible lines/cultivars.  相似文献   

18.
Oh E  Hansen EM 《Phytopathology》2007,97(6):684-693
ABSTRACT Port-Orford-cedar (POC) root disease, caused by Phytophthora lateralis, continues to kill POC in landscape plantings and natural forests in western North America. POC trees resistant to P. lateralis have been identified and propagated. Cytological observations of P. lateralis in susceptible and resistant roots and stems were made with light and transmission electron microscopy to identify resistance mechanisms. No differences in infection pathway and initial colonization were observed between susceptible and resistant roots, although there were differences in the rate and extent of development. Germ tubes formed appressoria, and penetration hyphae grew either between or directly through epidermal cell walls; inter- and intracellular hyphae colonized the root cortex. In susceptible roots, hyphae penetrated into the vascular system within 48 h of inoculation. In contrast, hyphae in roots of resistant seedlings grew more slowly in cortical cells and were not observed to penetrate to the vascular tissues. In resistant roots, infection was marked by general thickening of cortical cell walls, wall appositions around penetrating hyphae, collapse of cortical cells, and accumulation of osmophillic granules around hyphae. In susceptible stems, hyphae grew inter- and intracellularly in all cells of the secondary phloem except fiber cells, but were concentrated in sieve and parenchyma cells in the functional phloem. The pattern of penetration and colonization of hyphae was similar in the resistant stems, except that hyphae were found in the fiber cells of the xylem. In resistant stems, there were fewer hyphae in the functional phloem, and cytological changes such as damaged nuclei and disintegrated cytoplasm were evident. Structural changes in resistant stems included collapsed cells, wall thickening, secretory bodies, apposition of electron dense materials, and crystals in cell walls.  相似文献   

19.
Conidial germination, appressorial formation. penetration of epidermal walls, formation of intracellular vesicles and growth of intracellular hyphae in epidermal cells occurred within 12 h of inoculation. Hyphae then grew slowly between mesophyll cells for the next 12 h. Some papillae formed beneath appressoria and most infected epidermal cells retained stain by 24 h after inoculation, indicating major changes in cellular physiology. Slight differences between cultivars in some of these events were not related to resistance.
On the second day. intercellular hyphae emerged more extensively from the infection sites into the mesophyll of the susceptible cultivar Banks, and formed significantly larger mycelia than in the resistant cultivar BH1146 by 3-5 days from inoculation. Rapid intercellular growth then continued in the susceptible cultivar but not in the resistant cultivar. Necrotic lesions expanded faster in the susceptible cultivar from day 3. By day 10. most lesions in this cultivar were large and light brown with a conspicuous chlorotic margin but those in the resistant cultivar were small and dark brown with inconspicuous chlorosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号