首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of biocide use on nontarget organisms, such as arbuscular mycorrhizal (AM) fungi, are of interest to agriculture, since inhibition of beneficial organisms may counteract benefits derived from pest and disease control. Benomyl, pentachloronitrobenzene (PCNB) and captan were tested for their effects on the germination and early hyphal growth of the AM fungiGlomus etunicatum (Becker & Gerd.),Glomus mosseae (Nicol. & Gerd.). Gerd. and Trappe andGigaspora rosea (Nicol & Schenck) in a silty-clay loam soil placed in petri plates. Application of fungicides at 20 mg active ingredient (a.i) kg–1 soil inhibited spore germination by all three AM-fungal isolates incubated on unsterilized soil for 2 weeks. However, fungicides applied at 10 mg a.i. kg–1 soil had variable effects on AM-fungal isolates. Fungicide effects on germination and hyphal growth of G.etunicatum were modified by soil pasteurization and CO2 concentration in petri plates and also by placing spores below the soil surface followed by fungicide drenches. Effects of fungicides on mycorrhiza formation and sporulation of AM fungi, and the resulting host-plant response, were evaluated in the same soil in associated pea (Pisum sativum L.) plants. Fungicides applied at 20 mg a.i. kg–1 soil did not affect the root length colonized byG. etunicatum, but both benomyl and PCNB reduced sporulation by this fungus. Benomyl and PCNB reduced the root length colonized byG. rosea at 48 and 82 days after transplanting. PCNB also reducedG. mosseae-colonized root length at 48 and 82 days, but benomyl only affected root length colonized byG. mosseae at the earlier time point. Only PCNB reduced sporulation byG. mosseae, consistent with its effect on root length colonized by this fungus. captan reduced the root length colonized by G. rosea at 48 days, but not at 82 days, and reduced colonization byG. mosseae at 82 days, but not at 48 days. Captan did not affect sporulation by any of the fungi.G. rosea spore production was highly variable, but benomyl appeared to reduce sporulation by this fungus. Overall,G. etunicatum was the most tolerant to fungicides in association with pea plants in this soil, andG. rosea the most sensitive. Benomyl and PCNB were overall more toxic to these fungi than captan. Interactions of AM fungi and fungicides were highly variable and biological responses depended on fungus-fungicide combinations and on environmental conditions.  相似文献   

2.
The effects of three commonly used fungicides on the colonization and sporulation by a mixture of three arbuscular mycorrhizal (AM) fungi consisting of Glomus etunicatum (Becker & Gerd.), Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe, and Gigaspora rosea (Nicol. & Schenck) in symbiosis with pea plants and the resulting response of the host-plant were examined. Benomyl, PCNB, and captan were applied as soil drenches at a rate of 20 mg active ingredient kg-1 soil 2 weeks after transplanting pea seedlings in a silty clay-loam soil containing the mixed inocula of AM fungi (AM plants). Effects of fungicides were compared to untreated plants that were inoculated with fungi (AM control). The effect of mycorrhizal inoculation on plant growth was also examined by including nonmycorrhizal, non-fungicide-treated plants (non-AM control). Fungicides or inoculation with AM fungi had only a small effect on the final shoot weights of pea plants, but had greater effects on root length and seed yield. AM control plants had higher seed yields and lower root lengths than the corresponding non-AM plants, and the fungicide-treated AM plants had intermediate yields and root lengths. Seed N and P contents were likewise highest in AM control plants, lowest in non-AM plants, and intermediate in fungicide-treated AM plants. All three fungicides depressed the proportion (%) of root length colonized by AM fungi, but these differences did not translate to reductions in the total root length that was colonized, since roots were longer in the fungicide-treated AM plants. Pea plants apparently compensated for the reduction in AM-fungal metabolism due to fungicides by increasing root growth. Fungicides affected the population of the three fungi as determined by sporulation at the final harvest. Captan significantly reduced the number, relative abundance, and relative volume of G. rosea spores in the final population relative to the controls. The relative volume of G. etunicatum spores was greater in all the fungicide-treated soils, while G. mosseae relative volumes were only greater in the captan-treated soil. These findings show that fungicides can alter the species composition of an AM-fungal community. The results also show that AM fungi can increase seed yield without enhancing the vegetative shoot growth of host plants.  相似文献   

3.
Effects of inoculation with three different arbuscular mycorrhizal (AM) fungi (Glomus etunicatum, Glomus constrictum, and Glomus mosseae) on arsenic (As) accumulation by maize were investigated by using soil spiked with As at rates of 0, 25, 50, and 100 mg kg?1. The root colonization rates by the three fungi were significantly different (G. mosseae > G. etunicatum > G. constrictum) and decreased markedly with increasing As concentration in the soil. Inoculation with G. etunicatum or G. mosseae increased maize biomass and phosphorus (P) accumulation (G. mosseae > G. etunicatum) and reduced As accumulation in shoots (G. mosseae ≈ G. etunicatum), whereas inoculation with G. constrictum had little effect on these parameters. Inoculation with G. mosseae produced greater biomass and P uptake and less shoot As accumulation, and therefore it may be a promising approach to reduce As translocation from contaminated soils to plants.  相似文献   

4.
The effect of the soil yeast, Rhodotorula mucilaginosa LBA, on Glomus mosseae (BEG n°12) and Gigaspora rosea (BEG n°9) was studied in vitro and in greenhouse trials. Hyphal length of G. mosseae and G. rosea spores increased significantly in the presence of R. mucilaginosa. Exudates from R. mucilaginosa stimulated hyphal growth of G. mosseae and G. rosea spores. Increase in hyphal length of G. mosseae coincided with an increase in R. mucilaginosa exudates. No stimulation of G. rosea hyphal growth was detected when 0.3 and 0.5 ml per petri dish of yeast exudates was applied. Percentage root length colonization by G. mosseae in soybean (Glycine max L. Merill) and by G. rosea in red clover (Trifolium pratense L. cv. Huia) was increased only when the soil yeast was inoculated before G. mosseae or G. rosea was introduced. Beneficial effects of R. mucilaginosa on arbuscular mycorrhizal (AM) colonization were found when the soil yeast was inoculated either as a thin agar slice or as a volume of 5 and 10 ml of an aqueous solution. R. mucilaginosa exudates (20 ml per pots) applied to soil increased significantly the percentage of AM colonization of soybean and red clover.  相似文献   

5.
Nutrient composition and yield of soybean [Glycine max (L.) Merr] seeds are heritable traits affected by environmental factors. This study determined the effects of arbuscular‐mycorrhizal (AM) fungi on seed protein, lipid, and phosphorus (P) composition and yield in soybean grown under a high nitrogen (N) regime. Plants were grown in pot cultures without AM fungi in P‐fertilized (+P) or unfertilized (‐P) soil, or in ‐P soil inoculated with one of the AM fungi Glomus mosseae (Nicol. & Gerd.) Gerd, and Trappe (Gm), Glomus etunicatum Becker and Gerd.(Ge), or Gigaspora rosea Nicol. and Schenck (Gr). Seed yields of+AM plants, as a group, were halfway between those of the +P and ‐P plants. Seed size was highest in Gm plants. Differences in protein concentrations between Ge and Gr and the other treatments were highly significant. Seed P and protein concentrations were not significantly correlated (p=0.162), but a highly significant (r =‐0.949) negative correlation between seed P and lipid concentrations was observed. Phosphorus concentration was highest and that of lipids lowest in +AM plants. Seed yield and nutrient composition were independent of the intensity of root colonization. The seed protein/lipid ratio was highly correlated with seed P concentration and was significantly higher for +AM plants, as a group, than for both +P and ‐P ‐AM plants. Differences in seed dry weight, size, seed/ stem ratio, P content, and protein concentration among +AM plants showed mycorrhiza‐specific host responses. These responses suggest that AM fungi can modify soybean seed development and chemical composition.  相似文献   

6.
The influence of mycelium of two arbuscular mycorrhizal (AM) fungi, Glomus intraradices and Glomus mosseae, on other soil microorganisms, was examined in root-free soil with and without organic substrate amendment in terms of cellulose. The AM fungi were grown in symbiosis with cucumber in a compartmented growth system, which allowed AM fungal external mycelium to grow into root-free compartments. The fungicide Benomyl was applied to the root-free compartments to create an alternative non-mycorrhizal control treatment. Whole cell biomarker fatty acids were employed to quantify different groups of soil microorganisms including the two AM fungi. Abundance of most microbial groups were reduced by external mycelium of both AM fungi, though differential effects on the microbial community composition were observed between the two AM fungi as revealed from principal component analysis. Inhibition of other soil microorganisms was more pronounced in root-free soil with mycelium of G. mosseae than with mycelium of G. intraradices. In general, cellulose increased the amount of biomarker fatty acids of most groups of soil microorganisms, but cellulose did not affect the influence of AM fungi on other soil microorganisms. Benomyl suppressed growth of the external mycelium of the two AM fungi and had limited non-target effects on other microbial groups. In conclusion, our results show differential effects of external mycelium of AM fungi on other soil microbial communities, though both AM fungi included in the study overall inhibited most microbial groups as examined using whole cell biomarker fatty acids.  相似文献   

7.
The effect of different concentrations (0.5, 2 and 8 μM) of apigenin and its glycosidated form 5,7,4′-hydroxy flavone glycoside on arbuscular mycorrhizal (AM) fungal spore germination, hyphal growth, hyphal branching, the formation of entry points and root colonization of Gigaspora. rosea, Gi. margarita, Glomus mosseae and G. intraradices was tested. The lowest apigenin concentration (0.5 μM) nearly doubled hyphal branching, the formation of entry points and root colonization of all four tested fungi, whereas higher concentrations (2 and 8 μM) nearly doubled the hyphal growth of Gi. margarita, G. mosseae and G. intraradices. In none of the treatments with the apigenin-glycoside any effect on AM fungi could be observed. Our data show that apigenin exhibits an AM fungal genus and even species activity and we provide strong evidence that glycosidation results in a loss of its activity towards AM fungi.  相似文献   

8.
ABSTRACT

A pot experiment investigated the response of two maize inbred lines with contrasting root morphology and phosphorus (P) efficiency to inoculation with Glomus mosseae or Glomus etunicatum compared with non-mycorrhizal controls. Soil phosphorus was supplied at rates of 10, 50, and 100 mg P kg ?1 soil. Root length, specific root length, and specific phosphorus uptake of maize line 178 (P-efficient) were significantly higher than of line Hc (P-inefficient). Percentage of root length colonized showed the opposite trend regardless of soil P supply level. The two maize lines did not differ significantly in growth response to mycorrhizal colonization. Root colonization rate decreased with increasing soil phosphorus supply. The beneficial effect of the two AM fungi on plant growth and P uptake was greatest at low soil P level and the responses were negative at high P supply. Mycorrhizal responsiveness also decreased with increasing P supply and differed between the two mycorrhizal fungal isolates.  相似文献   

9.
Previous greenhouse and field studies have shown arbuscular mycorrhizal (AM) plants usually have greater P uptake and growth when raised in undisturbed soil compared to soil disturbed between plantings, such as by tillage. We report here for the first time that AM fungi able to stimulate shoot P uptake in experimental comparisons to non-mycorrhizal plants differ in their ability to bring about similar responses in undisturbed soil compared to disturbed soil. This outcome indicates a difference in functional character between the two stimulation processes. Three isolates of AM fungi were tested for growth promotion of maize (Zea mays L.) in pots in a soil disturbance experiment that included non-mycorrhizal controls. All three fungi colonized roots well and promoted shoot P uptake compared to non-inoculated controls, but only Glomus mosseae was able to stimulate growth in undisturbed soil compared to disturbed soil. This effect was seen when Glomus mosseae was alone or in combination with Gigaspora margarita. However, the presence of Glomus aggregatum in combination with Glomus mosseae prevented any stimulation, presumably due to domination by Glomus aggregatum. The ability of AM fungi to be beneficial to plants in comparison to non-mycorrhizal situations likely relates to the spread of mycelium in the soil and the capacity for nutrient transfer to the root. The ability of an AM fungus to promote growth in undisturbed soil appears to be related to these features and, in addition, a capacity for persistence and retention of functional capacity of the extraradical mycelium from one plant generation to the next.  相似文献   

10.
The application of Pb inhibited the development of mycelia of the saprobe fungi Fusarium concolor and Trichoderma koningii and the hyphal length of the arbuscular mycorrhizal fungi (AM) Glomus mosseae and G. deserticola in vitro. The application to soil of 1500 mg kg?1 of Pb decreases the dry weight, total N, P, Mg and Fe concentration and chlorophyll content of the shoot of E. globulus no inoculated with AM fungi. However, G. deserticola increased the dry weight, total nutrient concentration and chlorophyll content of the shoot, and the percentage of AM root length colonization and the succinate dehydrogenase activity of AM mycelia of E. globulus in presence of 1500 mg kg?1 of Pb, and these increases were higher when G. deserticola was inoculated together with T. koningii. The application to soil of 3000 mg kg?1 of Pb decreased the shoot dry weight and AM colonization of E. globulus in all treatments tested. Pb was accumulated in the stem more than in the leaves of E. globulus. In presence of 1500 mg kg?1 of Pb the highest accumulation of this metal in the stem took place when E. globulus was colonized with G. deserticola. In conclusion, the possibility to increase Lead accumulation in stem is very attractive for phytoextraction function, the saprobe fungi, AM and their interaction may have a potential role in elevating phytoextraction efficiency and stimulate plant growth under adverse conditions such as lead contaminated soil.  相似文献   

11.
The effect of three arbuscular mycorrhizal (AM) fungi on phosphorus (P) nutrient activation and acquisition by maize from spatially heterogeneous sand was investigated using dual-mesh packages enriched with different P concentrations and compared with non-mycorrhizal cotrols. As would be expected the AM fungi significantly enhanced leaf photosynthetic rate and the biomass and P concentrations in shoots and roots. All three fungi (Glomus intraradices, Glomus mosseae and Glomus etunicatum) displayed the capacity to dissolve inorganic P and promoted P nutrient availability in the packages (P patches). G. etunicatum showed the largest effect comparing with Glomus intraradices and Glomus mosseae, particularly in packages with high concentrations of P. Possible mechanisms involved include the acidification of the P patches by the AM fungi, promotion of the dissolution of the P, and more marked effects of the three fungal isolates with increasing enrichment of P in the patches. Inoculation with G. etunicatum resulted in greater acidification compared to the other two fungi. We conclude that AM fungi can promote P availability by acidifying the soil and consequently exploiting the P in nutrient patches and by facilitating the growth and development of the host plants.  相似文献   

12.
A field experiment was carried out to compare the effectiveness of inoculation with three arbuscular mycorrhizal (AM) fungi, namely Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge) and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe, and the addition of Aspergillus niger‐treated dry olive cake (DOC) in the presence of rock phosphate, in increasing root nitrate reductase (NR) and acid phosphatase activities, mycorrhizal colonization, plant growth and nutrient uptake in Dorycnium pentaphyllum L. seedlings afforested in a semiarid degraded soil. Three months after planting, both the addition of fermented DOC and the mycorrhizal inoculation treatments had increased root NR activity significantly, particularly the inoculation with G. deserticola (by 75 per cent with respect to non‐inoculated plants), but they had no effect on root acid phosphatase. Mycorrhizal inoculation treatments with G. deserticola or G. mosseae on their own were even more effective than the addition of fermented DOC alone in improving the growth and (NPK) foliar nutrients of D. pentaphyllum plants. The combined treatment involving the application of microbially‐treated agrowastes and mycorrhizal inoculation with AM fungi, particularly with G. mosseae, can be proposed as a successful revegetation strategy for D. pentaphyllum in P‐deficient soils under semiarid Mediterranean conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The effect of inoculation with the saprophytic fungi Alternaria alternata or Fusarium equiseti on maize (Zea mays) and lettuce (Lactuca sativa) with or without arbuscular mycorrhizal (AM) colonization by Glomus mosseae was studied in a greenhouse trial. Plant dry weights of non-AM-inoculated maize and lettuce were unaffected by the presence of A. alternata and F. equiseti. In contrast, A. alternata and F. equiseti decreased plant dry weights and mycorrhization when inoculated to the rhizosphere before G. mosseae. The saprophytic fungi inoculated 2 weeks after G. mosseae did not affect the percentage of root length colonized by the AM endophyte, but did affect its metabolic activity assessed as succinate dehydrogenase activity. Although F. equiseti inoculated at the same time as G. mosseae did not affect mycorrhization of maize roots, its effect on AM colonization of lettuce roots was similar to that with A. alternata. In the rhizosphere of both plants, the population of saprophytic fungi decreased significantly, but was not affected by the presence of G. mosseae. Our results suggest that there may have been a direct effect of the saprophytic fungi on the mycorrhizal fungi in the extramatrical phase of the latter, and when the AM fungus was established in the root the AM fungus was less affected by the saprophytic fungi. Received: 16 January 1996  相似文献   

14.
A preliminary investigation was conducted on the arbuscular mycorrhizal (AM) status of the dominant and common wild forage plants in typical steppe of eastern Inner Mongolia, a major semi-arid grassland region in China. Fifty-four wild forage plant species were collected and examined, and 27 of these were colonized by AM fungi. Some plants belonging to families that are presumed to lack mycorrhizas (Cyperaceae, Caryophyllaceae and Chenopodiaceae) were also found to be mycorrhizal. Higher proportions of arbuscular mycorrhizal plants were found in perennial (56.1%) and monocotyledonous (64.7%) forage species. However, neither percentage of root length colonized nor spore density varied significantly between the two life forms or cotyledon types. Twenty-seven species belonging to 7 genera of AM fungi were identified in total according to the morphological characteristics of the spores from field soil and trap cultures, and the results indicate that Glomus was the dominant AM genus and Glomus geosporum (Nicolson & Gerdemann) Walker and Glomus mosseae (Nicolson & Gerdemann) Gerdemann & Trappe were the dominant species in field soil and trap cultures, respectively. Glomus intraradices Schenck & Smith, Glomus etunicatum Becher & Gerdemann, Glomus claroideum Schenk & Smith emend Walker & Vestberg, Glomus clarum Nicolson & Schenck and Scutellospora callospora (Nicolson & Gerdemann) Walker & Sanders also occurred with high frequencies.  相似文献   

15.
A mesocosm experiment was conducted to examine the effect of an arbuscular mycorrhizal (AM) fungus (Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe) and a plant growth-promoting rhizobacterium (PGPR) (Pseudomonas mendocina Palleroni), alone or in combination, on the structural stability of the rhizosphere soil of Lactuca sativa L. grown under two levels of salinity. The plants inoculated with P. mendocina had significantly greater shoot biomass than the control plants at both salinity levels, whereas the mycorrhizal inoculation was only effective in increasing shoot biomass at the moderate salinity level. The aggregate stability of soils inoculated with the PGPR and/or G. mosseae significantly decreased with increasing saline stress (about 29% lower than those of soils under non-saline conditions). Only the inoculated soils showed higher concentrations of sodium (Na) under severe saline stress. The severe salinity stress decreased the glomalin-related soil protein (GRSP) concentration, but the highest values of GRSP were recorded in the inoculated soils. Our findings suggest that the use of AM fungi and/or a PGPR for alleviating salinity stress in lettuce plants could be limited by their detrimental effect on soil structural stability.  相似文献   

16.
The potential of interactions between saprophytic and arbuscular mycorrhizal (AM) fungi to improve Eucalyptus globulus grown in soil contaminated with Zn were investigated. The presence of 100 mg kg −1 Zn decreased the shoot and root dry weight of E. globulus colonized with Glomus deserticola less than in plants not colonized with AM. Zn also decreased the extent of root length colonization by AM and the AM fungus metabolic activity, measured as succinate dehydrogenase (SDH) activity of the fungal mycelium inside the E. globulus root. The saprophytic fungi Trametes versicolor and Coriolopsis rigida increased the shoot dry weight and the tolerance of E. globulus to Zn when these plants were AM-colonized. Both saprophytic fungi increased the percentage of AM root length colonization and elevated G. deserticola SDH activity in the presence of all Zn concentrations applied to the soil. In the presence of 500 and 1000 mg kg−1 Zn, there were higher metal concentrations in roots and shoots of AM than in non-AM plants; furthermore, both saprophytic fungi increased Zn uptake by E. globulus colonized by G. deserticola. The higher root to shoot metal ratio observed in mycorrhizal E. globulus plants indicates that G. deserticola enhanced Zn uptake and accumulation in the root system, playing a filtering/sequestering role in the presence of Zn. However, saprophytic fungi did not increase the root to shoot Zn ratio in mycorrhizal E. globulus plants. The effect of the saprophytic fungi on the tolerance and the accumulation of Zn in E. globulus was mediated by its effect on the colonization and metabolic activity of the AM fungi.  相似文献   

17.
Increased phosphate (P) uptake in plants by arbuscular mycorrhizal (AM) fungi is thought to depend mainly on the extension of external hyphae into soil. On the other hand, it is known that the hyphae of some kinds of ectomycorrhizal fungi release organic acids into soil and that they dissolve the insoluble inorganic P. This study collected hyphal exudates of AM fungi within compartmentalized pot culture and clarified their ability to solubilize insoluble inorganic P. Sterilized Andisol was packed in pots that were separated into root and hyphal compartments with a nylon net of 30 μm pore size. Seedlings of Allium cepa inoculated with AM fungi, Gigaspora margarita, or Glomus etunicatum were grown. Control pots were not inoculated. Mullite ceramic tubes were buried in the soil of each compartment and soil solution was collected. The anionic fraction of the soil solution was incubated with iron phosphate (4 mg FePO4 in 1 mL of 0.4 acetate buffer). Solubilized P was measured. The AM colonization of plants inoculated with G. margarita and G. etunicatum was 86% and 54%, respectively. Adhesion of external hyphae was observed on the surface of the mullite ceramic tubes buried in soil of the hyphal compartment. Colonization of both fungi increased shoot P uptake and growth. Soil solution collected from the hyphal compartments of both fungi solubilized more P than did that from uninoculated plants. It is suggested that hyphal exudates can contribute to increased P uptake of colonized plants.  相似文献   

18.
The external hypha of arbuscular mycorrhizal (AM) fungi, extending from roots out into soil, is an important structure in the uptake of phosphate from the depletion zone around each root. In this paper, we analysed some phospholipid fatty acids (PLFAs) derived from external hyphae of four AM fungi (Glomus etunicatum, Glomus clarum, Gigaspora margarita and Gigaspora rosea) to find fatty acids which may be useful as specific markers for identifying and quantify the external hyphae of Gigaspora species. Leek (Allium porrum L.) seedlings inoculated with each AM fungus were grown in river sand. Sand samples were collected and four PLFAs (16:1ω5, 18:1ω9, 20:1ω9 and 20:4) in the sand were analysed. In addition, the hyphal biomass in the sand was determined by the direct microscopic method. PLFAs 18:1ω9 and 20:4 were found in all the AM-inoculated and non-inoculated sand samples. PLFA 16:1ω5 was detected in the sand inoculated with G. etunicatum, G. clarum and Gi. rosea. PLFA 20:1ω9 was detected only in the sand inoculated with Gi. rosea. PLFAs 16:1ω5 and 20:1ω9 were not found in the sand inoculated with Gi. margarita. The amount of PLFA 20:1ω9 was closely correlated with the amount of biomass of external hyphae of Gi. rosea (r=0.937, P<0.001), whereas no correlation was observed for PLFA 16:1ω5. The 20:1ω9 content of Gi. rosea was approximately 6.56 nmol mg−1 hyphal biomass. We suggest that PLFA 20:1ω9 can be used as a specific marker for identifying and quantifying the external hyphae of Gi. rosea, at least in controlled experimental systems.  相似文献   

19.
《Pedobiologia》2014,57(4-6):223-233
Mycorrhizal fungi and earthworms can individually or interactively influence plant growth and heavy metal uptake. The influence of earthworms and arbuscular mycorrhizal (AM) fungi either alone or in combination on maize (Zea mays L.) growth and cadmium (Cd) uptake was investigated in a calcareous soil artificially spiked with Cd. Soils were contaminated with Cd (10 and 20 mg Cd kg−1), inoculated or un-inoculated with the epigeic earthworm Lumbricus rubellus and two AM fungal species (Rhizophagus irregularis and Funneliformis mosseae) for two months of growth under greenhouse conditions. Generally, earthworms alone increased both shoot P uptake and biomass but decreased shoot Cd concentration and root Cd uptake. AM fungi individually often increased total maize P uptake, declined shoot Cd concentration, and consequently produced higher total biomass. However, R. irregularis enhanced shoot Cd uptake at low Cd level and root Cd uptake at high Cd level. In plants inoculated with F. mosseae species, earthworms increased shoot biomass and Cd uptake, decreased root biomass and Cd uptake at all Cd levels, and increased shoot Cd concentration at low Cd level. In plants colonized by R. irregularis species, however, earthworm addition decreased maize biomass only at high Cd level and root Cd concentration and total maize Cd uptake at both Cd levels. Earthworm activity decreased Cd transfer from the soil to maize roots at low Cd level, but this was counterbalanced in the presence of F. mosseae. Mycorrhizal symbiosis significantly reduced the transfer of Cd from roots to shoots, independence of earthworm effect. Overall, it is concluded that L. rubellus and AM fungi, in particular F. mosseae isolate, improved maize tolerance to Cd toxicity both individually and interactively by increasing plant growth and P nutrition, and restricting Cd transfer to the aboveground biomass. Consequently, the single and interactive effects of the two soil organisms might potentially be important not only in protecting maize plants against Cd toxicity, but also in Cd phytostabilization in soils polluted by this highly toxic metal.  相似文献   

20.
《Applied soil ecology》2006,33(3):350-365
The aim of this paper was to investigate the effects of soil conditions and distance from a host plant on the ability of hyphae of arbuscular mycorrhizal (AM) fungi to grow and colonise a new host. Two glasshouse experiments were conducted using compartmented pots. The first investigated the effects of distance between a colonised and uncolonised host plant (Trifolium subterraneum L.) and average pore size of the growth substrate (100 μm, 38 μm) on the ability of two AM fungi, G. intraradices and G. mosseae, to colonise a new host plant. The second experiment determined if the pore size of the substrate (100 μm, 38 μm) affected the growth of AM fungi in the absence of a new host. In Experiment 1, both G. mosseae and G. intraradices grew successfully through the two sand substrates and colonised new host plants. Both fungi reached and colonised new hosts fastest when hosts were separated by the shortest distance (2.5 cm), with largest pore size substrate (100 μm). G. mosseae produced more external hyphae per unit of colonised root and colonised new host plants more rapidly than G. intraradices. However, receiver plants colonised by G. mosseae exhibited a negative mycorrhizal growth response following colonisation. Experiment 2 showed that G. mosseae grew further from its host than G. intraradices. The results support the theory that some AM fungal species may produce large amounts of external hyphae primarily to increase the probability of locating and colonising a new host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号