首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
水稻灌浆过程中籽粒铁、锰、铜、锌、镁、钙的积累动态   总被引:3,自引:2,他引:1  
本文通过田间试验,研究了糙米中Fe、Zn、Cu、Mn、Mg、Ca含量和积累量的动态变化及其与籽粒蛋白质含量的关系,结果表明:在开花后,水稻籽粒中Fe、Zn、Cu、Mn、Mg、Ca的含量迅速降低,开花10天后降速变缓,20天后趋于稳定;就花后矿质元素含量的变化幅度而言,6种矿质元素中以Ca的变幅最大,Mg的变幅最小,供试品种中籼型品种滇屯502的变幅明显大于粳型品种合系39;水稻花后籽粒中Fe、Zn、Cu、Mn、Mg、Ca含量的变化趋势与蛋白质含量的变化趋势基本一致,蛋白质含量与6种矿质元素含量呈极显著正相关关系;水稻花后籽粒中Fe、Zn、Cu、Mn、Mg的积累动态符合logistic方程,其积累的快增期和实际增长期较籽粒干物质积累的快增期和实际增长期早而短。  相似文献   

2.
源—库变化对小麦籽粒性状和干物质积累的影响   总被引:5,自引:0,他引:5  
以不同历史时期的小麦品种为材料,研究了源—库变化对小麦籽粒性状和干物质积累的影响表明:穗粒重、千粒重、最大籽粒体积、皱缩指数、单茎生物量和草重有明显的品种间差异.剪叶减源,使穗粒重、最大籽粒体积、千粒重和生物量下降。剪除部分小穗减库,使剩余籽粒的最大体积和千粒重明显增加。新老品种的开花期单茎生物量相同,对减少库的反应基本一致。近期品种开花后单茎干物质积累较多,对源的减少较敏感.要在现有品种基础上提高产量潜力,不但要增加库,而且要增加源  相似文献   

3.
潘洁  姜东  曹卫星  孙传范 《作物学报》2005,31(4):431-437
通过系统分析2个品种与2个施氮水平的试验资料,确立了小麦穗籽粒数、单粒重、单粒蛋白质含量与蛋白质产量的小穗位和粒位效应。结果表明,不同小穗位结实籽粒数、小穗重,不同粒位粒重、单粒蛋白质含量与蛋白质产量均呈现二次曲线分布。2个品种穗部籽粒的分布存在显著差异,多粒型品种在不同施氮水平下每小穗结实粒数、单粒  相似文献   

4.
辽优1052及其亲本灌浆特性与源库关系的比较   总被引:1,自引:0,他引:1  
对直立大穗型杂交稻辽优1052及其母本105B和父本C52做减源和减库处理,研究大穗型水稻品种籽粒灌浆特点。结果表明:三品种均为源限制型,都存在着两段灌浆现象。同一品种强弱势粒间灌浆过程差异较大。母本105B最终粒重较小,且强弱势粒间粒重差异较小;而杂交稻辽优1052及父本C52强弱势粒粒重差异较大。说明大穗小粒型品种源库矛盾较小。对于源限制型品种,减源能明显的缓和源库矛盾,尤其对最终粒重的提高有一定作用;而减库能加剧源库矛盾,使最终粒重降低。  相似文献   

5.
澳洲坚果果仁中4种关键微量元素的FAAS法测定   总被引:5,自引:2,他引:3  
为探明澳洲坚果果仁中Fe、Mn、Cu、Zn 4种关键微量元素的含量及其测定方法,运用火焰原子吸收分光光度法(FAAS),采用干灰化、混酸消解、微波消解3种不同样品消解方式,对4个澳洲坚果品种果仁中Fe、Mn、Cu、Zn的含量进行了测定。结果表明:Fe、Cu经3种不同消化方式处理后的含量测定结果无显著差异;而Mn、Zn经微波消解处理后的测定值虽然略高于干灰化和混酸消解2种方式,但未达到显著水平;澳洲坚果果仁中4种微量元素的含量为Mn>Fe>Zn>Cu,其中Mn元素含量在品种间的变异较大;在4个供试品种中,‘云澳51号’的Fe含量为最高,而‘云澳58号’的Mn、Cu、Zn 3种微量元素含量均为最高。3种样品消解方式均可用于澳洲坚果果仁微量元素含量的FAAS法测定。  相似文献   

6.
水稻子粒锰、铁、锌、铜含量的QTL定位分析   总被引:2,自引:1,他引:1  
利用粳型红香黏品种红香1号与早熟长粒优质粳稻品系松98-131杂交后代F2∶3家系群140个株系,探讨了水稻子粒锰(Mn)、铁(Fe)、锌(Zn)和铜(Cu)含量的遗传变异和相关关系;并对子粒Mn、Fe、Zn和Cu含量进行了QTL定位分析。结果表明,子粒Mn、Fe、Zn、Cu4种矿质元素含量均呈现接近正态的连续分布;除Mn与Fe含量相关不显著外,其他元素间含量都呈显著或极显著正相关。构建了含78个SSR标记的遗传连锁图谱,共检测到与水稻子粒Mn、Fe、Zn、Cu4种矿质元素含量相关的11个QTL,分别位于第2、3、4、5、7、9和12染色体上。其中与Mn含量相关的QTL2个;与Fe含量相关的QTL2个;与Zn含量相关的QTL4个;与Cu含量相关的QTL3个。  相似文献   

7.
采用电感耦合等离子体质谱法(ICP—MS)对辽宁省和陕西省富士苹果中Fe、Cu、Mn、Zn、Ni五种微量元素的含量进行了测定分析。结果显示.富士苹果中五种人体必需微量元素的平均含量由高到低依次为:Fe〉Zn〉Mn〉Ni〉Cu;辽宁样品的Fe、Mn和Ni含量高于陕西样品,而Cu和Zn含量低于后者。辽宁和陕西两省样品中的Fe、Mn、Zn三种元素含量差异显著(P〈0.05),Cu和Ni含量无显著差异:两省苹果样品中的Fe和Zn含量呈极显著正相关。本研究结果可为我国苹果的进一步开发和利用提供科学依据。  相似文献   

8.
云南旱地小麦不同穗型品种减源缩库与穗部性状的关系   总被引:5,自引:0,他引:5  
通过剪叶、剪穗处理探讨云南三种穗型的旱地小麦品种的源库关系,结果认为:平地小麦在齐穗后不同剪叶、剪穗处理,其穗部性状变化明显。大穗型品种云麦39不同的剪叶处理其每穗重量和单粒重下降幅度较大,而小穗型品种云麦42和中穗型品种97591与云麦39相比每穗重量和单粒重下降幅度较小;不同剪叶处理的每穗饱粒重也下降,下降的程度依次是云麦39>97591>云麦42。大穗型品种的每穗饱粒数下降明显,而小穗型和中穗型品种的下降较少。对于不同的剪穗处理,大穗型品种的单粒重增加幅度较大,而小穗型品种增加幅度较小,中穗型品种的甚至减少。对于不同穗型品种的穗部性状源库结构调整的反应不同表明:其灌浆过程或光合器官间的相互补偿能力不同,这种不同使不同穗型品种对各种环境的适应性有差异,栽培管理应该有所区别。  相似文献   

9.
小麦籽粒体积及其充实度的研究   总被引:4,自引:0,他引:4  
严六零  郭文善 《作物学报》1995,21(5):637-640
以往的研究表明,小麦籽粒颖壳不象水稻谷壳对籽粒有明显的限制,其伸张性较大。Millet等、于振文等用回形针硬质塑料吸管限制籽粒容积的方法,表明籽粒容积是制约粒重的因素之一。Blade等报道有些栽培小麦粒重受籽粒大小的限制。本试验通过去小穗、去叶片改变源库的比率,以及穗部涂激素等方法,研究小麦籽粒体积和充实度的变化规律及其与粒重的关系,为扩大籽粒库容、挖掘粒重潜力提供理论依据。  相似文献   

10.
不同小麦品种粒重和蛋白质含量的穗粒位效应分析   总被引:2,自引:0,他引:2  
小麦籽粒的发育存在时空差异,不同穗粒位的粒重和蛋白质产量也存在差异,剖析粒重和籽粒蛋白质含量的穗粒位效应,有助于深入了解小麦产量和品质的形成机制。于2009—2010和2010—2011小麦生长季进行大田试验,选用3种类型4个品种,分析了不同穗粒位的粒重、蛋白质积累和蛋白质含量的动态变化。结果表明,粒重和蛋白质积累量的穗粒位间变异大于年份(环境)间变异和基因型间变异;蛋白质含量的年份间变异大于基因型间变异和穗粒位间变异,而成熟期穗粒位间变异最大。大粒品种易受环境影响,小粒品种比较稳定。优质面包小麦品种开花后各时期的籽粒蛋白质含量普遍高于中筋小麦,但不同时期、不同年份差异较大。开花后各时期,强势粒的粒重、蛋白质积累量和蛋白质含量显著大于弱势粒,中部籽粒显著大于上部和下部籽粒;随着灌浆进程穗中部与下部籽粒的差异变小,至开花后36 d时,中部和下部籽粒的蛋白质含量无显著差异。随籽粒灌浆进程,不同品种各穗粒位的粒重和蛋白质积累均呈"慢–快–慢"的"S"型曲线变化,蛋白质含量均呈"高–低–高"的"V"型曲线变化,灌浆后期,中部和下部强势粒以及下部弱势粒的蛋白质含量增长速度明显快于其他穗粒位籽粒。粒重最大生长速率出现在开花后18~21 d,快速增重时期为开花后12~26 d;籽粒蛋白质最大积累速率出现在开花后21~24 d,快速积累时期为开花后13~32 d。根据本研究结果,我们认为高产优质小麦品种的特征是籽粒不宜过大,小花位粒数不宜过多,且中、下部籽粒较多,开花后13~26 d灌浆速率快。  相似文献   

11.
籼型黑米稻粒形性状与其中某些矿质元素含量的遗传相关性   总被引:11,自引:0,他引:11  
采用禾谷类作物种子数量性状遗传模型, 分析籼型黑米稻品种双列杂交F1和F2种子粒形性状与其中矿质元素Fe、 Zn、 Mn和P含量间的多种遗传相关性. 结果表明, 籼型黑米粒重、粒长、粒宽、粒长/粒宽与其中Fe、 Zn、 Mn和P含量除存在明显的表现型相关和基因型相关外, 尚存在较明显的种子直接加性相关、直接显性相关、细胞质相关、  相似文献   

12.
施氮量对豫北冬小麦产量及子粒主要矿质元素含量的影响   总被引:1,自引:1,他引:0  
以兰考矮早8、豫麦49-198和平安8号为材料,设置5个氮素水平(0、120、180、240、360kg/hm 2),研究不同施氮量对豫北冬小麦子粒产量及其N、P、K、Ca、Mg、Fe、Mn、Cu、Zn、B等矿质元素含量的影响。结果表明:子粒中N与B(r=0.879)、N与Mg(r=0.858)、Mg与Zn(r=0.871)、Mg与B(r=0.877)含量间相关系数较高。施氮显著提高了子粒N、Ca、Fe、Cu、Zn、B含量,K、Mg含量受施氮量影响较小,但P和Mn含量明显下降。兰考矮早8子粒中各种矿质元素(除B外)含量明显高于平安8号,豫麦49-198介于二者之间。施氮在提高小麦子粒产量的同时降低了P/Ca、P/Mg、P/Fe和P/Zn的值,增强了Ca、Mg、Fe、Zn的生物有效性。此外,研究发现施氮量达到180kg/hm 2后,继续增施氮肥小麦产量难以提升。可见,合理的氮肥管理可以提高豫北地区冬小麦产量及子粒中微量元素的含量;过量施氮不仅难以提高子粒产量,还会降低子粒P和Mn的含量。  相似文献   

13.
Decreased micronutrient concentration in cereal grains caused by excessive application of phosphorus (P) fertilizer may contribute to reduce their nutritional quality. To help correct this problem in maize grain, a 3-year field experiment was conducted to determine how P application rate affects micronutrient partitioning in maize shoots and other plant organs and micronutrient bioavailability in grain. Phosphorus application significantly decreased shoot zinc (Zn) and copper (Cu) concentrations at all growth stages but had no effects on shoot iron (Fe) and manganese (Mn) concentrations. As the P application rate increased, shoot Zn and Cu contents decreased, and shoot Fe and Mn contents increased. The ratios of pre-anthesis to post-anthesis mineral contents were not affected by P application rate except Zn. P application increased the percentage of Zn that was allocated to grain and decreased the percentage that was allocated to other tissues, but had no effects on the allocation of other micronutrients among tissues. The bioavailability of Zn, Cu, Fe, and Mn in grain decreased as P application rate increased. Overall, taking account of grain yield and nutrients concentration, P fertilizer rates should range from 12.5 to 25.0 kg P ha−1 under the local condition. It can be concluded that not only grain yields, but also nutritional quality, should be considered in assessing optimal P rates in maize.  相似文献   

14.
P. Chhuneja    H. S. Dhaliwal    N. S. Bains    K. Singh 《Plant Breeding》2006,125(5):529-531
Micronutrient malnutrition affects a very large proportion of the world's population. For combating micronutrient malnutrition, biofortification through genetic manipulation has been proposed as an alternative to traditional fortification for increasing the bioavailable nutrient content of food crops. Wheat, being a staple food for a large section of the world's population, is targeted for increasing the Fe and Zn content in the grains. The cultivated germplasm of wheat does not have sufficient variability for grain Fe and Zn content but the wild species of wheat do show wider variation for grain micronutrient density. The analysis of Aegilops kotschyi and A. tauschii for Fe and Zn content in the grains using an atomic absorption spectrophotometer (AAS) indicated that the S and D genome species accumulate significantly higher iron and zinc in the grains than the cultivated wheats. One of the CIMMYT synthetics also had significantly higher Fe and Zn in the grains as compared with the cultivated wheats. Aegilops kotschyi as a promising source for Fe and Zn, is reported for the first time. A systematic programme to identify and utilize the additional sources for high Fe and Zn has been initiated.  相似文献   

15.
Element concentration in wheat grains is an important objective of plant breeding programs. For this purpose, synthetic hexaploid lines (Triticum durum ×Aegilops tauschii) have been identified as potential sources of high element concentration in grains. However, it is not known if these lines reach higher element concentrations in grains as the consequence of a dilution effect due to lower grain yield. In addition, most of the studies carried out with these lines did not evaluate above-ground element uptake. The objective of this study was to improve understanding of grain element concentrations as a function of grain yield, element uptake and biomass and element partitioning to grains in synthetic and conventional cultivars of wheat. One experiment with two standard sowing dates was carried out under field conditions. Biomass, grain yield, and macronutrient(Ca, Mg, K, P and S) and micronutrient (Cu,Fe, Mn and Zn) concentrations in grains and vegetative tissues were measured in two cultivars and one synthetic (chosen from ten lines). The synthetic showed higher element concentration in grains, e.g. between 25 and 30% for Fe, Mn and Zn across sowing dates, than cultivars while grain yield was similar or lower, depending on the sowing date. On the contrary, the synthetic showed lower concentration of Cain grains. This line showed also higher uptake of Fe, Mn, K and P than cultivars. The superior grain element concentration of the synthetic line was not only due to a dilution effect but also to a higher uptake efficiency. Therefore, synthetics would bea valuable source of germplasm for increasing element grain concentration, at least in this case for Fe, Mn, K and P. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
小麦主要亲缘种籽粒的Fe、Zn、Cu、Mn含量及其聚类分析   总被引:7,自引:0,他引:7  
郝志  田纪春  姜小苓 《作物学报》2007,33(11):1834-1839
以19份小麦亲缘种及普通小麦中国春为材料,测定比较了籽粒的Fe、Zn、Cu、Mn含量,并进行了聚类分析。结果表明,Fe、Zn、Cu、Mn含量平均值分别为50.94、34.89、6.96和33.21 μg g-1,其改良潜力分别为121.94%、40.46%、41.17%和73.03%。根据Fe、Zn、Cu、Mn含量将供试材料均分为高、中、低3类,其中塔城高拉山小麦Fe含量高达124.32 μg g-1,为富Fe材料。富Zn材料有野生一粒小麦、野生二粒小麦等6个品种(系),均值为49.91 μg g-1。富Cu材料有分枝小麦和小黑麦(8X),均值为8.66 μg g-1。富Mn材料为斯卑尔脱小麦,含量高达63.85 μg g-1。不同倍性染色体倍性材料间,Fe、Zn和Mn含量均以四倍体小麦最高,Cu含量以八倍体小麦最高。不同染色体组间,AABB染色体组材料的Fe、Zn和Mn含量最高,其次是AA染色体组材料,Cu以AABBDDRR染色体组最高。这些结果可为小麦营养品质育种的亲本选择和有利基因的发掘和利用提供参考依据。  相似文献   

17.
黑龙江省不同类型土壤微量元素含量及对稻米品质的影响   总被引:5,自引:0,他引:5  
采用单因素方法研究黑龙江省不同类型土壤铜、锰、铁、锌微量元素含量与稻米子粒铜、锰、铁、锌微量元素的关系及其对稻米品质的影响。结果表明,不同类型土壤铜含量顺序为白浆土>黑土>草甸土>盐碱土,锰和铁的含量顺序与铜一致,锌的含量则是黑土>白浆土>草甸土>盐碱土。土壤中的铜、锰、铁、锌含量与水稻子粒中各微量元素含量达极显著正相关;水稻子粒中铜、锰、铁、锌含量高,稻米整精米率、长宽比和食味评分降低,蛋白质含量和垩白粒率升高;各微量元素对于稻米出糙率和直链淀粉含量的影响不一致,子粒中铜、锰、铁含量高,稻米出糙率高,锌含量与稻米出糙率则相反,各微量元素对于稻米的出糙率影响不大,铜和锌含量低,锰和铁含量高,稻米的直链淀粉含量高,子粒中各微量元素与稻米品质指标的关系间接反映出各类土壤微量元素含量与稻米品质指标的关系。  相似文献   

18.
采用防雨池栽方法研究了不同灌溉条件下两种栽培类型燕麦白燕7号皮燕麦(Avena sativa L.)和内农大莜一号裸燕麦(Avena nuda L.)籽粒植酸、总磷、蛋白质、钙、镁、钾、锌、铁、铜、锰含量变化特征。随灌水次数和灌水量的增加,内农大莜一号裸燕麦籽粒总磷和铜含量呈线性变化,籽粒产量、植酸、钙、镁、钾、锌、锰含量变化呈二次函数;白燕7号皮燕麦籽粒(去壳)锌和铁含量呈线性变化,植酸、总磷、粗蛋白、钙、镁含量呈二次函数变化。  相似文献   

19.
The introduction of new hybrids and integrated crop-soil management has been causing maize grain yield to increase. However, less attention has been paid on the nutrient concentration of the grain; this aspect is of great importance to supplying calories and nutrients in the diets of both humans and animals worldwide. Increasing the retranslocation of nutrients from vegetative organs to grain can effectively increase the nutrient concentration of grain and general nutrient use efficiency. The present study involved monitoring the dynamic change of macro- and micronutrients in different organs of maize during the grain filling stage. In addition, the mobility of different elements and their contribution to grain nutrient content were evaluated in a 2-year experiment under low (LN, no N supplied) and high N (HN, 180 kg N ha−1) supply. Under HN supply, the net remobilization efficiency (RE) of the vegetative organs as a whole (calculated as nutrient remobilization amount divided by nutrient content at silking) of N, P, K, Mn, and Zn were 44%, 60%, 13%, 15%, and 25%, respectively. The other nutrients (Mg, Ca, Fe, Cu, and B) showed a net accumulation in the vegetative organs as a whole during the grain filling stage. Among the different organs, N, P, and Zn were remobilized more from the leaves (RE of 44%, 51% and 43%, respectively) and the stalks (including leaf sheaths and tassels) (RE of 48%, 71% and 43%, respectively). K was mainly remobilized from the leaves with RE of 51%. Mg, Ca, Fe, Mn, and Cu were mostly remobilized from the stalks with the RE of 23%, 9%, 10%, 42%, and 28%, respectively. However, most of the remobilized Mg, Ca, Fe, Mn, Cu, and Zn were translocated to the husk and cob, which seemingly served as the buffer sink for these nutrients. The REs of all the nutrients except for P, K, and Zn were vulnerable to variations in conditions annually and were reduced when the grain yield and harvest index were lower in 2014 compared with 2013. Under LN stress, the RE was reduced in P and Zn in 2013, increased in Cu and unchanged in other nutrients. The concentration of these nutrients in the grain was either unchanged (P, K, Ca, Zn, and B) or decreased (N, Mg, Fe, Mn, and Cu). It is concluded that grain N, P, K, Mn, and Zn, but not Mg, Ca, Fe, Cu, and B concentration, can be improved by increasing their remobilization from vegetative organs. However, enhancing the senescence of maize plant via LN stress seems unable to increase grain mineral nutrient concentration. Genetic improvement aiming to increase nutrient remobilization should take into account the organ-specific remobilization pattern of the target nutrient.  相似文献   

20.
Nineteen wild emmer wheat [Triticum turgidum ssp. dicoccoides (Körn.) Thell.] genotypes were evaluated for the grain concentrations of phosphorous (P), potassium (K), sulfur (S), magnesium (Mg), calcium (Ca), zinc (Zn), manganese (Mn), iron (Fe) and cooper (Cu) under five different environments in Turkey and Israel. Each mineral nutrient has been investigated for the (1) genotype by environment (G × E) interactions, (2) genotype stability, (3) correlation among minerals and (4) mineral stability. Among the macronutrients analyzed, grain concentrations of Ca (range 338–2,034 mg kg?1) and S (range 0.18–0.43%) showed the largest variation. In the case of micronutrients, the largest variation was observed in the grain Mn concentration (range 13–87 mg kg?1). Grain concentrations of Fe and Zn also showed important variation (range 27–86 and 39–115 mg kg?1, respectively). Accessions with higher nutrient concentrations (especially Zn and Fe) had also greater grain weight, suggesting that higher grain Zn and Fe concentrations are not necessarily related to small grain size or weight. Analysis of variance showed that environment was the most important source of variation for K, S, Ca, Fe, Mn and Zn, explaining between 44 and 78% of the total variation and G × E explained between 20 and 40% of the total variation in all the minerals, except for S and Zn where its effect accounted for less than 16%. Genotype was the most important source of variation for Cu (explaining 38% of the total variation). However, genotype effect was also important for Mg, Mn, Zn and S. Sulfur and Zn showed the largest heritability values (77 and 72%, respectively). Iron exhibited low heritability and high ratio value between the G × E and genotype variance components \( \left( {\sigma_{\text{GE}}^{2} /\sigma_{G}^{2} } \right) \), suggesting that specific adaptation for this mineral could be positively exploited. The wild emmer germplasm tested in the current study revealed some outstanding accessions (such as MM 5/4 and 24-39) in terms of grain Zn and Fe concentrations and environmental stability that can be used as potential donors to enhance grain micronutrient concentrations in wheats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号