首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Color change of city refuse during composting process was investigated according to the methods of measurement for color of materials based on the CIE 1931 Standard Colorimetric System. Stimulus value Y (the degree of lightness) and chromaticity coordinates (x, y) were determined with Color Analyzer by measuring relative spectral reflectance. Stimulus value Y of city refuse decreased during composting process, but chromaticity coordinates (x, y) scarcely changed.

Color of various composts, which were produced from city refuse, straw, hog fecal wastes, tree bark, and tree bark mixed with activated sludge, were also investigated by measuring relative spectral reflectance. The shapes of the reflection spectra of city refuse were different from those of the other composts. Colors of the various composts were similar to each other when specified according to their three attributes: value, hue, and chroma (Munsell renotation).

While city refuse was rotting and maturing, stimulus value Yand C/N ratio equally decreased. A positive correlation was found between stimulus value Y and C/N ratio. It was concluded that stimulus value Y can be used as a criterion for determining the degree of maturity of city refuse compost.

The correlation between stimulus value Y and C/N ratio of various composts was also investigated. According to the position on the two coordinates having stimulus value Y and C/N ratio as axe s, various composts were classified into three groups: (i) city refuse compost group, (ii) straw compost group, and (iii) tree bark compost group.  相似文献   

2.
Samples from conventional and environmentally controlled (EC) composts taken at various stages of composting and mushroom (Agaricus bisporus) growth were analyzed for changes in 80 percent ethanol and water extracts, monosaccharides in acid hydrolysates of polysaccharides, lignin concentrations and lignin structural features. The relative lignin content of all composts as measured by the acetyl bromide procedure increased, both during composting and mushroom growth. On the assumption that the absolute amount of lignin remains unaltered during composting and mushroom growth, the relative changes to the polysaccharide concentrations were calculated. Thus, during composting, 70, 53 and 58 percent of the initial wall polysaccharides for conventional, “cold” and “hot” EC, respectively, were consumed by compost microorganisms. During spawn running and fruiting, about 15 percent of wall polysaccharides were utilized from all types of composts. Thus, considerable amounts (17–31 percent) of polysaccharide remained at the end of mushroom production. During composting, there were changes in the degree of condensation and in the extent of oxidation of the lignins in all cases, but the rate and extent of these changes was dependent on the different composting regimes. During mushroom growth, further changes occurred, again with different patterns for the different compost types.  相似文献   

3.
Washington State University produces a manure-based compost of high pH (>8) and low N content (1 percent) by windrow composting campus wastes. Annual production at the four-acre facility is 18-20,000 cubic yards. In the interest of producing compost of higher N content and lower pH, ten experimental piles were constructed to investigate the effects of different feedstocks on the composting process, end quality and agronomic performance. Biosolids and manure were compared at two rates of bedding both with and without coal ash. Compost temperature and inorganic N content during 96 days of active composting are reported along with end product nutrient analysis and metal concentration. The composts behaved differently based on the N feedstock and level of bedding in the mix. Compost quality was influenced by the characteristics of the feedstocks. Applying the composts to an eroded hilltop (50 Mg/ha) increased winter wheat yield, but there were no differences among the ten composts.  相似文献   

4.
Assessment of compost maturity is important for successful use of composts in agricultural and horticultural production. We assessed the “maturity” of four different sawdust-based composts. We composted sawdust with either cannery waste (CW), duck manure (DM), dairy (heifer) manure (HM) or potato culls (PC) for approximately one year. Windrows were turned weekly for the first 60 days of composting, covered for four winter months and then turned monthly for six more months. We measured compost microbial respiration (CO2 loss), total C and N, C:N ratio, water soluble NO3-N and NH4-N, dissolved organic carbon (DOC), pH and electrical conductivity at selected dates over 370 days. Compost effects on ryegrass biomass and N uptake were evaluated in a greenhouse study. We related compost variables to ryegrass growth and N uptake using regression analysis. All composts maintained high respiration rates during the first 60 days of composting. Ammonium-N concentrations declined within the first 60 days of composting, while NO3-N concentrations did not increase until 200+ days. After 250+ days, DM and PC composts produced significantly more ryegrass biomass than either CW or HM composts. Total C, microbial respiration and water-extractable NO3-N were good predictors of compost stability/maturity, or compost resistance to change, while dissolved organic carbon, C:N ratio and EC were not. The compost NO3-N/CO2-C ratio was calculated as a parameter reflecting the increase in net N mineralization and the decrease in respiration rate. At ratio values >8 mg NO3-N/mg CO2-C/day, ryegrass growth and N uptake were at their maximum for three of the four composts, suggesting the ratio has potential as a useful index of compost maturity.  相似文献   

5.
Composts produced from animal manures and shredded paper were characterized in terms of their carbon (C) and nitrogen (N) forms and C mineralization. Total, water-soluble, acid-hydrolyzable and non-hydrolyzable C and N contents were determined on composts sampled on days 0, 11, 18, 26, 33, 40 and 59 after composting was initiated. Water-soluble and acid-hydrolyzable C and N decreased during composting, whereas non-hydrolyzable C remained relatively constant, and non-hydrolyzable N greatly increased during composting. The water-soluble forms of N were characterized by a decrease of ammomium (NH4 +-N) at the beginning of composting, followed by an increase of nitrate (NO3 -N) towards the end of composting. The mineralization of C in composted materials was generally higher at the beginning than at the end of composting, whereas no differences were observed for mineralization of C in non-hydrolyzable materials. The addition of N inhibited C mineralization in composts except in samples collected on days 40 and 59, while C mineralization was strongly stimulated by adding N to the non-hydrolyzable materials. The data suggest that the N forms in the non-hydrolyzable materials were chemically similar and not readily available to microbes, indicating that the C/N ratios often used to assess the biodegradability of organic matter and to develop compost formulations should be based on biologically available N and C and not on total N and C. Received: 12 May 1997  相似文献   

6.
Seafood processing generates a substantial volume of wastes. This study examined the feasibility of converting the fish waste into useful fertilizer by composting. Groundfish waste and chitin sludge generated from the production of chitin were composted with red alder or a mixture of western hemlock and Douglas-fir sawdust to produce four composts: alder with groundfish waste (AGF); hemlock/fir with groundfish waste (HGF); alder with chitin sludge (ACS); and hemlock/fir with chitin sludge (HCS). The resulting AGF had a higher total N and a lower C:N ratio than the other three composts. A large portion of the total N in the AGF, HGF, and HCS composts was in inorganic forms (NH4+-N and NO3?-N), as opposed to only two percent in the ACS compost. Alder sawdust is more quickly decomposed, which favored N retention and limited nitrification during the composting period. It was less favorable than the hemlock/Douglas fir sawdust for composting with chitin sludge. Corn growth on soil amended with compost was dependent upon both compost type and rate. Nitrogen and P availabilities in all composts except the ACS were high and compost addition enhanced corn yields, tissue N and P concentrations, and N and P up-take. Neither the total N concentration nor the C:N ratio of the composts was an effective measure of compost N availability in the soil. Because soil inorganic N test levels correlated well with the corn biomass, tissue N and N uptake, they should be an effective measure of the overall compost effects on soil N availability and corn growth response. Phosphorus concentration, which increased linearly with increasing compost rates, was related to soil P availability from compost additions and correlated well with corn biomass, tissue P concentration and P uptake under uniform treatments of N and K fertilizers. Composting groundfish waste with alder or hemlock/Douglas-fir sawdust can produce composts with sufficient amounts of available N and P to promote plant growth and is considered to be a viable approach for recycling and utilizing groundfish waste.  相似文献   

7.
Abstract

Municipal solid waste composts are often inadequately stabilized for agricultural purposes. In addition, compost quality may be even more reduced by loss of nitrogen (N) during the composting process. We have utilized a compost with a high content of soluble sugars (11 mg g‐1, DM, indicating immaturity) and a low ? concentration (0.95%, DM). The compost had a low level of heavy metals. Results obtained in a germination bioassay conducted with cress, ryegrass and sunflower in a compost‐sand mixture reflected the immaturity of the compost. Such composts should be fortified with ? (in a complete fertilizer, when possible), at the same time avoiding an intimate contact with the soil (e.g., plowing down). When the compost (and raw wastes and wastes at the 4th week of composting) was mixed with a soil at a heavy rate (2.5 % w:w), ryegrass seedling emergence in pots was not affected, but the plantlets’ fresh weight in the compost treatment was significantly lower than that in the control (soil) and lower than that in the raw wastes, probably due to the lower ? concentration. As expected, plantlet fresh weight was notably increased by the combination of compost and wastes with a complete fertilizer. The application of compost in combination with a complete fertilizer or urea did not affect either dry matter production or nutrient uptake of ryegrass, despite the combination's being applied just at sowing (in pots). Results obtained in these experiments indicate that combining immature composts with urea [supplemented with phosphorus (P) and potassium (K), when possible] at a ratio of about 50:1 (about 200 kg urea per 101 compost) could be sufficient to prevent negative results in crop establishment. Such practices could contribute to overcoming the limited fertilizing capacity of the composts.  相似文献   

8.
Shredded straw of Miscanthus ogiformis Honda ‘Giganteus’ was composted with addition of water or aqueous solutions with 3, 10, 30 or 100% pig slurry. After 3, 6, 9, 12 and 15 months of composting the composts were tested as pot plant growth substrates for Hedera helix L. in comparison with enriched and nonenriched peat substrates. During the first week of composting temperatures rose to higher levels with stronger pig slurry solution except for the compost made with 100% pig slurry solution which suffered from oxygen depletion. Plants grown in compost substrates made with M. ogiformis and 10 or 30% pig slurry solution produced the same shoot lengths and dry matter as plants grown in enriched or nonenriched peat substrates. Plants in compost substrates made with water or 3% pig slurry solution produced slightly shorter shoots and less dry matter. Many plants in the compost substrate made with 100% pig slurry solution failed to grow, and for the remaining plants in that treatment, shoot and dry matter production was very low at all five ages of compost. Nutrient concentrations were suboptimal for compost substrates made with water or 3% pig slurry solution, near optimal with 10% pig slurry solution, above recommended concentrations with 30% pig slurry solution and supraoptimal with 100% pig slurry solution. The pig slurry concentration had little effect on water retention in 6 months old compost substrates while in older compost substrates increasing pig slurry concentration increased the water retention capacity. In six month old compost substrates water retention was lower than in peat substrates while in 12 months old composts the water retention was greater in the compost substrates than in the peat substrates. Total porosity was above 92% and similar for all substrates. Air volume was greater in compost substrates than in peat substrates. It is concluded that compost substrates made of Miscanthus ogiformis straw and diluted pig slurry can be used successfully as a substitute for peat substrates. An aqueous solution of 10 to 30% pig slurry solution added as nitrogen source before composting is optimal. Three months of composting is sufficient for optimal plant growth.  相似文献   

9.
Because of proposed bans on the landfilling and incineration of leaves, grass and brush, large-scale composting is fast becoming the primary disposal option for yard trimmings in many states. Few systematic studies have been done to compare the effects of turning regime, feedstock mix ratio, or windrow vs. pile configuration on composting and the characteristics of finished compost. In this study, various ratios of leaves, grass and brush were mixed and composted in two series of windrows; and one set of static piles. One windrow series (#1) was turned seven times every four weeks, while the other windrow series (#2), and the piles, were turned once every four weeks. The effects of the different treatments were examined by measuring compost temperature, oxygen concentration, pH, organic matter and moisture content, volatile fatty acid content, bulk density, stability, humification and seed germination indices, total and available nutrient levels, and particle size distribution. Results showed that turning frequency had little impact on oxygen concentrations, VFA content and temperatures during the composting of yard trimmings in windrows, however, in piles temperatures were substantially higher and oxygen concentrations fluctuated greatly. The composts from all the treatments were stable, (oxygen uptake rates < 0.1 mg O2/g OM/hr) after 60 days of composting regardless of the turning frequency, mix ratio or configuration. The bulk density inereased much more rapidly in frequently turned windrows than in the other treatments and particle sizes were smaller in these windrows. In most respects however, the final composts (day 136) were remarkably similar and none inhibited Cress seed germination or root elongation. The pH of all the composts, and the soluble salts and nitrate levels in composts made with high levels of grass, exceeded guidelines for greenhouse growth media.  相似文献   

10.
The decomposition of organic matter of source-separated biowaste during composting was followed during 18 months. Compost samples were fractionated into three parts: (i) hot water soluble extract (HWE) (ii) bitumen fraction and (iii) humic substances (humic acids (HA) and fulvic acids (FA)). Original compost samples and the HA and FA fractions were hydrolyzed with sulfuric acid for hexoses and pentoses. Quantitative spectrophotometric and qualitative GC/MS analyses of monosaccharides as trimethylsilyl ethers of the corresponding alditols were carried out.

During composting, the amount of HA in the organic matter of the compost increased, the amounts of HWE and bitumen decreased and the amount of the FA fraction changed only a little. Carbohydrates were found to be important constituents of biowaste composts and their HA and FA fractions. Elemental analysis (C, N and H) of compost and HA samples showed an increase in the C:H ratio and in unsaturation of compounds during composting. The decrease in the C:N ratio was marginal.

The amounts of hexoses and pentoses in original compost samples and the HA and FA fractions decreased during composting. The sugar alcohols erythritol, xylitol, L-arabitol, ribitol, L-rhamnitol, L-fucitol, D-mannitol, D-glucitol and galactitol were identified in both the HA and FA fractions. 2-Deoxy-D-erythro-pentitol was identified in one HA fraction and inositol in two FA fractions. An analysis of gas chromatographic data for relative abundances showed that, in every sample except one and in every stage of composting D-glucitol was the main sugar alcohol. In general, the relative amount of D-glucitol decreased during composting, while the relative amounts of all other sugar alcohols increased.

As chemical indicators of compost maturity, carbohydrates would appear to be a important group of compounds. Most informative as a general indicator would be the ratio of the amount of HA to the amount of organic matter in the total compost samples.

According to our studies, the carbohydrates in composts are covalently bound to the structures of FA and HA. Carbohydrate determination clearly deserves more attention in the structural elucidation of FA and HA.  相似文献   

11.
水分含量对水葫芦渣堆肥进程及温室气体排放的影响   总被引:2,自引:0,他引:2  
水葫芦经挤压处理后,容积减小、干物质含量提高,利于堆肥生产,但目前缺乏相关堆肥条件的研究。本文通过水稻秸秆与水葫芦渣以不同比例混合来调节堆体水分,探讨在65%、70%、75%、80%水分条件下堆肥效果及环境影响,以获得堆肥的最优水分条件。本试验为静态堆肥,动态监测堆体温度、pH值、碳氮养分和温室气体。结果表明,水分对堆体pH、胡敏酸(堆肥7 d)、富里酸无显著影响,对温度、水溶性碳、胡敏酸(堆肥50 d)、凯氏氮、硝态氮、铵态氮影响显著。其中75%水分处理升温能力最佳,堆肥6 d即达最高堆温(53.4℃);50 d时其凯氏氮、硝态氮、铵态氮显著高于65%和70%的水分处理(P<0.05);75%水分处理堆肥50 d与7 d相比,凯氏氮降低最多(21.1%),硝态氮增加最多(434%),铵态氮降低幅度最小(14.1%)。水分对CH4的产生无显著影响;但高水分促进CO2和N2O排放,75%水分处理的CO2排放能量最高,是其他处理的1.9~2.5倍,80%水分处理的N2O排放通量最高,是其他处理的3.9~23.1倍。综合考虑,水稻秸秆与水葫芦渣混合堆肥,堆体水分为75%较为适宜,能兼顾堆肥效率、品质和环境效益。  相似文献   

12.
Composting has become an increasingly popular manure management method for dairy farmers. However, the design of composting systems for farmers has been hindered by the limited amount of information on the quantities and volumes of compost produced relative to farm size and manure generated, and the impact of amendments on water, dry matter, volume and nitrogen losses during the composting process. Amendment type can affect the free air space, decomposition rate, temperature, C:N ratio and oxygen levels during composting. Amendments also initially increase the amount of material that must be handled. A better understanding of amendment effects should help farmers optimize, and potentially reduce costs associated with composting. In this study, freestall dairy manure (83% moisture) was amended with either hardwood sawdust or straw and composted for 110-155 days in turned windrows in four replicated trials that began on different dates. Initial C:N ratios of the windrows ranged from 25:1 to 50:1 due to variations in the source and N-content of the manure. Results showed that starting windrow volume for straw amended composts was 2.1 to 2.6 times greater than for sawdust amendment. Straw amended composts had low initial bulk densities with high free air space values of 75-93%. This led to lower temperatures and near ambient interstitial oxygen concentrations during composting. While all sawdust-amended composts self-heated to temperatures >55°C within 10 days, maintained these levels for more than 60 days and met EPA and USDA pathogen reduction guidelines, only two of the four straw amended windrows reached 55°C and none met the guidelines. In addition, sawdust amendment resulted in much lower windrow oxygen concentrations (< 5%) during the first 60 days. Both types of compost were stable after 100 days as indicated by CO2 evolution rates <0.5 mg CO2-C/g VS/d. Both types of amendments also led to extensive manure volume and weight reductions even after the weight of the added amendments were considered. However, moisture management proved critical in attaining reductions in manure weight during composting. Straw amendment resulted in greater volume decreases than sawdust amendment due to greater changes in bulk density and free air space. Through composting, farmers can reduce the volume and weights of material to be hauled by 50 to 80% based on equivalent nitrogen values of the stabilized compost as compared to unamended, uncomposted dairy manure. The initial total manure nitrogen lost during composting ranged from 7% to 38%. P and K losses were from 14 to 39% and from 1 to 38%, respectively. There was a significant negative correlation between C:N ratio and nitrogen loss (R2=0.78) and carbon loss (R2=0.86) during composting. An initial C:N ratio of greater than 40 is recommended to minimize nitrogen loss during dairy manure composting with sawdust or straw amendments.  相似文献   

13.
《Applied soil ecology》1999,11(1):17-28
The objective of this work was to evaluate the effects of turning and moisture addition during windrow composting on the N fertilizer values of dairy waste composts. Composted-dairy wastes were sampled from windrow piles, which received four treatments in a 2×2 factorial of turning (turning vs. no turning) and moisture addition (watering vs. no watering) at two stages of maturity (mature vs. immature). Composts were characterized for their chemical properties. An 84-day laboratory incubation of soils with addition of the composts at two levels was conducted to evaluate the inorganic N accumulation patterns from the variously treated composts. Chemical analyses of variously treated composts did not differ between compost treatments or maturity. In contrast, the inorganic N accumulation patterns differed between soils that received immature versus mature turned composted-dairy wastes. The results suggested that turning was a more important factor than moisture addition affecting the composting process. There was no significant difference in inorganic N accumulation patterns among soils that received different immature composts, while the N accumulation patterns observed for soils that received different mature composts depended on compost treatments. Soils amended with mature composts treated by frequent turning had higher N mineralization potentials (N0), mineralization rate constants (K), and initial potential rates (N0K) in comparison to soils with composts that had not been turned. Soils with mature composts treated by watering had a higher N0, lower K, and therefore similar N0K when compared to soils with composts that had not been watered. Soils that received mature composts treated by watering and frequent turning had higher N mineralization potentials and N0 to total organic N ratios than soil alone, which suggested that intensive management of composting would ensure positive N fertilizer values of dairy waste composts, if the appropriate composting duration is completed.  相似文献   

14.
The composting of wood fiber waste from the manufacture of newsprint is described, with a mixture of wood fiber waste:sewage sludge at a ratio of 1:1 giving best results in a trial of shoot growth of Pinus radiata. An alternative chemical nutrient amendment (initial C:N ratio of 60:1) gave a plant response which was not significantly different to that of sewage sludge. Over a five month period volume reductions of up to 39 percent were observed in the composts, providing potential savings in subsequent transport operations. Use of uncomposted materials or addition of fly- or screen-ash compost amendment (12.5 percent or 25 percent v /v) was inhibitory to plant growth. Concentrations of some heavy metals in Hobart city sewage (particularly of chromium) were high, precluding its long-term use as a soil nutrient supplement. In view of the high heavy metal content of sewage sludge and its high volume to nutrient ratio, it was concluded that composting with chemical amendment was the preferred option for future investigation. Such composts would require ash amendment (or lime equivalent) at concentrations lower than those used in this study to counter acidity produced during composting.  相似文献   

15.
The occurrence of bovine spongiform encephalopathy (BSE) in Canada has resulted in the implementation of regulations to remove specified risk material (SRM) from the food chain. SRM includes the distal ileum of all cattle, and the skull, brain, trigeminal ganglia, eyes, palatine tonsils, and spinal cord and dorsal root ganglia of cattle ≥30 months of age. Composting may be a viable alternative to rendering for SRM disposal. In our study, two bulking agents, barley straw and wood shavings, were composted with beef manure along with SRM in passively aerated, laboratory-scale composters. Both composts heated rapidly, exceeding 55°C after 3 days with oxygen declining in the early composting stage with wood-shaving compost, but returning to near-original levels after 5 days. During composting the two matrices differed (P <0.05) only in water content, TC and bulk density. In the final compost, water content, TC and C/N ratio were higher (P < 0.05), while EC was lower (P < 0.05) in the wood shavings as compared to the straw compost. Approximately 50% of SRM was decomposed after 15 days of composting, with 30% of SRM being decomposed within the first 5 days. Phospholipid fatty acid (PLFA) profiles were used to characterize the microbial communities and showed that Gram positive bacteria were predominant in compost at day 5, a point that coincided with a rapid increase in temperature. Gram negative bacteria and anaerobes declined at day 5 but populations recovered by day 15. Fungi appeared to be suppressed as temperatures exceeded 55°C and did not appear to recover over the remainder of the composting period, with the exception of the straw compost at day 15. On day 5, Actinomycetes increased in the straw compost, but declined in the wood shavings compost, with this group increasing in both types of compost at day 15. Although temporal changes were evident, compost matrices or depth within the composter did not obviously influence microbial communities. Decomposition of SRM also did not differ between compost matrices or with depth in the composters. These results suggest that SRM decompose rapidly during composting and that both mesophilic and thermophilic microbial communities play a role in its decomposition.  相似文献   

16.
Abstract

Changes in different chemical parameters of the mixtures of several organic residues during composting were studied in order to establish simple parameters that can be useful as indices of compost maturity. Circular chromatography test and the study of the colour in solid samples of compost cannot be considered sufficiently reliable for determining the degree of maturity in composts. Similarly, parameters such as ash, C/N ratio, CEC, total organic carbon (TOC), and total nitrogen (TN) must be ruled out. Other parameters such as water soluble carbon (WSC), water soluble carbohydrates, the C/N ratio of the water soluble extract, and the ratios WSC/TN and CEC/TOC, can be used as indices of compost maturity.  相似文献   

17.
Composting trials were undertaken in 1994 – 996 in Ste. Anne de Bellevue, Quebec, to study the feasibility of using crucifer or carrot residues with sawdust or straw for composting. Geotextile covers were tested for their influence on different parameters of the composting process. Two complete composting cycles from fall to summer were monitored. Measurements were taken for compost temperature, moisture, and leachate. Chemical analyses were performed on compost samples. Phytotoxicity tests were done with compost leachate samples. The results indicated that temperatures of covered compost (CC) decreased more slowly during late fall and early winter than non-covered compost (NC). In addition, CC did not freeze to as great a depth during the winter, and warmed earlier and faster than NC in the spring. The moisture content of CC was significantly lower than in NC at the end of both composting cycles. CC had a higher mineral content than NC in both cycles, and the levels of total N, P, K and NO3 were significantly higher for CC in the second cycle. The carbon/nitrogen (C/N) ratio of CC decreased earlier and reached a lower level at the end of the composting cycle. The quantity of leachate from CC was significantly reduced compared to NC in the second cycle. Compost leachate in both treatments showed a high level of phytotoxicity at the beginning of the composting cycle. However, there was no evidence that compost covers influenced the phytotoxicity in leachate throughout the composting cycle. The use of covers could translate into economic or environmental benefits for most composting operations.  相似文献   

18.
Improved predictive relationships between compost maturity and nitrogen (N) availability are needed. A total of 13 compost samples were collected from a single windrow over a 91 d period. Compost stability and maturity were assessed using both standard chemical analyses (total C and N, mineral N, total volatile solids) and other methods (CO2 evolution, commercial maturity kits, and neutral detergent fiber, and lignin). Compost N and carbon (C) were evaluated during a 130 d aerobic incubation in a sandy loam soil after each compost was applied at 200 mg total kg?1 soil. The effect of compost maturity on plant growth was evaluated by growing two ryegrass (Lolium perenne L.) crops and one barley (Hordeum vulgare L.) crop in succession in compost-amended soil under greenhouse conditions. Potential phytotoxicity from compost was assessed by growing tomato (Lypersicum esculentum L.) seedlings in compost-amended soil. Regression and correlation analyses were used to evaluate the relationship between compost maturity parameters, the rate and extent of net N and C mineralization, plant yield and N uptake, and phytotoxicity. Commonly used maturity parameters like total C, total N, and C:N ratio were poorly correlated with the rate and extent of mineralization, and with plant growth parameters. The N mineralization rate during the first 48 d of aerobic incubation was strongly correlated (r= ?0.82 to ?0.86) to compost fiber and lignin concentration, and to the Maturity Index (r=0.85). Trends in C mineralization were similar. There were few differences in C mineralization between composts after 48 d of aerobic incubation in soil. Ryegrass harvested 35 and 70 d after compost application was not strongly affected by compost maturity, and relatively immature composts were phytotoxic to tomato seedlings. Methods of characterizing compost maturity and stability that more realistically reflect the composting process are better predictors of N release and potential plant inhibition after incorporation into soil.  相似文献   

19.
Biowaste can be converted into compost by composting or by a combination of anaerobic digestion and composting. Currently, waste management systems are primarily focused on the increase of the turnover rate of waste streams whereas optimisation of product quality receives less attention. This results in low quality composts that can only be sold on bulk markets at low prices. A new market for quality compost could be potting mixes for horticultural container-grown crops to partially replace non-renewable peat and increase the disease suppressiveness of potting mixes. We report here on the effect of wetsieving biowaste prior to composting on compost quality and on disease suppressiveness against the plant pathogen Pythium ultimum of peat mixes amended with this compost. The increased organic matter and decreased salt content of the compost allow for significantly higher substitution rates of peat by compost. In this study up to 60% v/v compost peat replacement did not affect cucumber growth. However, disease suppressiveness of the potting mixes strongly increased from 31 to 94% when the compost amendment rate was increased from 20 to 60%. It was shown that general disease suppression for P. ultimum can only be effective when the basal respiration rate is sufficiently high to support microbial activity. In addition, organic matter of the compost should reach a sufficient stability level to turn from disease conducive to disease suppressive. Increasing the compost addition from 20 to 60% did not significantly affect plant yield, yield variation were due to differences in nutrient levels. It can be concluded that compost from wetsieved biowaste has high potential to replace peat in growing media for the professional market.  相似文献   

20.
A field experiment was carried out in northern Vietnam to investigate the effects of adding different additives [rice (Oriza sativa L.) straw only, or rice straw with added lime, superphosphate (SSP), urea or a mixture of selected microorganism species] on nitrogen (N) losses and nutrient concentrations in manure composts. The composts and fresh manure were applied to a three-crop per year sequence (maize–rice–rice) on a degraded soil (Plinthic Acrisol/Plinthaquult) to investigate the effects of manure type on crop yield, N uptake and fertilizer value. Total N losses during composting with SSP were 20% of initial total N, while with other additives they were 30–35%. With SSP as a compost additive, 65–85% of the initial ammonium-N (NH4-N) in the manure remained in the compost compared with 25% for microorganisms and 30% for lime. Nitrogen uptake efficiency (NUE) of fresh manure was lower than that of composted manure when applied to maize (Zea mays L.), but higher when applied to rice (Oriza sativa L.). The NUE of compost with SSP was generally higher than that of compost with straw only and lime. The mineral fertilizer equivalent (MFE) of manure types for maize decreased in the order: manure composted with SSP?>?manure composted with straw only and fresh manure?>?manure composted with lime. For rice, the corresponding order was: fresh manure?>?manure composted with SSP/microorganisms/urea?>?manure composted with lime/with straw alone. The MFE was higher when 5 tons manure ha?1 were applied than when 10 tons manure ha?1 were applied throughout the crop sequence. The residual effect of composted manures (determined in a fourth crop, with no manure applied) was generally 50% higher than that of fresh manure after one year of manure and compost application. Thus, addition of SSP during composting improved the field fertilizer value of composted pig manure the most.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号