首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Respiratory viruses may infect both small and large ruminant species, and can be transmitted among those of species. Present study reports presence and serological distribution of bovine respiratory viral infections in sheep and goats in Marmara region of Turkey. Total of 388 sera, 228 from sheep and 160 from goats collected from 4 provinces were analysed. Neutralising antibodies specific to BVDV, BHV-1, BRSV, PI-3, BAV-1 and BAV-3 were investigated. Among 388 serum samples 32.1% were positive for BVDV, 23.0% for BHV-1, 72.9% for BRSV, 13.2% for PI-3, 86.0% for BAV-1 and 93.0% for BAV-3. There were significant differences observed between seroprevalence rates detected in neighbouring provinces. Prevalence of BVDV specific antibodies was extremely higher (p = 0.0009) in sheep, however, BHV-1 (p = 0.0001) and PI-3 (p = 0.0038) were more prevalent in goats. BRSV antibody prevalence was closely related to data obtained from cattle. This study demonstrates that, like in cattle herds, BRSV and adenoviruses are the possible common reason of respiratory diseases in small ruminants in the region.  相似文献   

2.
In this study, viral pathogens associated with nine outbreaks of naturally occurring dairy calf pneumonia in Mashhad area of Khorasan Razavi province from September 2008 to May 2009 were assessed. Five diseased calves from each farm were chosen for examination. Acute and convalescent serum samples were taken from calves with signs of respiratory disease. Sera were analyzed for antibodies to bovine viral diarrhea virus (BVDV), bovine herpesvirus type 1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenza virus type 3 (PI-3V), and bovine adenovirus-3 (BAV-3) by indirect ELISA kits. Among 42 serum samples collected at sample 1, seroprevalence values for viruses BHV-1, BVDV, BRSV, PI-3V, and BAV-3 were 61.9% (26), 57.1% (24), 64.2% (27), 90% (38), and 61.9% (26), respectively. Seroconversion to BVDV, BRSV, PI-3V, and BAV-3 occurred in 11.9% (5), 16.6% (7), 26.1% (11), and 21.4% (9) of animals, and 52.3% (22) had generated antibodies against one or more viral infections at sample 2. In addition, no significant relationship between seroprevalence of BHV-1, BVDV, BRSV, PI-3V, and BAV-3 and dairy herd size was observed (P > 0.05). According to serological findings, BHV-1, BVDV, BRSV, PI-3V, and BAV-3 are common pathogens of the dairy calf pneumonia in dairy herds in Mashhad area of Khorasan Razavi province, Iran.  相似文献   

3.
Bovine respiratory disease complex is a very important health problem around the world. Present study describes serological distribution of bovine major respiratory viruses in non -vaccinated cattle population of Marmara region in north-western Turkey. Neutralising antibodies specific to bovine viral diarrhoea virus (BVDV), bovine herpesvirus 1 (BHV-1), bovine respiratory syncytial virus (BRSV), bovine parainfluenza virus 3 (PI-3), bovine adenovirus serotype 1 (BAV-1) and serotype 3 (BAV-3) were investigated. Among 584 serum samples collected from 39 establishments in 7 provinces, 41.4% were positive for BVDV, 17.1% for BHV-1, 73.0% for BRSV, 43.0% for PI-3, 89.5% for BAV-1 and 92.3% for BAV-3. There were significant differences observed between seroprevalence rates detected in neighbouring provinces. Serological prevalence of BVDV, BHV-1 and BRSV were extremely higher in large capacity dairy farms than of small capacity farms (p < 0.0001). This study demonstrates that herd capacity is a very important risk factor for respiratory viruses and, on the other hand bovine adenoviruses and BRSV are the common reason of respiratory diseases in the region.  相似文献   

4.
Sera from healthy goats were collected during October 1979 through October 1980. These sera were tested for bovine herpesvirus-1 (BHV-1), bovine viral diarrhea virus (BVDV), parainfluenza-3 (PI-3) virus, bovine adenoviruses (BAV) -3 and -7, and goat respiratory syncytial virus (GRSV) antibodies by microtitration virus-neutralization test. The number of herds with seropositive goats for each virus were: 5/38 (13.2%) for BHV-1; 9/38 (23.7%) for BVDV; 8/38 (21.1%) for PI-3 virus; 1/38 (2.6%) for BAV-3; 15/38 (39.5%) for BAV-7; and 26/34 (76.5%) for GRSV. Seropositive rates for each virus for the individual goats tested were: 6/502 (1.2%) for BHV-1; 9/498 (1.8%) for BVDV; 49/458 (10.75) for PI-3 virus; 1/487 (0.025) for BAV-3; 40/448 (8.9%) for BAV-7; and 166/332 (50.0%) for GRSV.  相似文献   

5.
Sera from healthy sheep were collected in January and March 1982 from flocks of sheep located in southwestern and southeastern Louisiana. These sera were tested for bovine herpesvirus-1 (BHV-1), bovine viral diarrhea virus (BVDV), parainfluenza-3 (PI-3) virus, and goat respiratory syncytial virus (GRSV) antibodies by microtitration virus-neutralization test. The sera were tested also for bovine leukemia virus (BLV) and bluetongue virus (BTV) antibodies by immunodiffusion tests. The number of flocks with seropositive sheep for each virus were: 2/8 (25%) for BVDV; 8/8 (100%) for PI-3 virus; 7/8 (87.5%) for GRSV; and 6/8 (75%) for BTV. Seropositive rates for each virus for the individual sheep tested were: 4/158 (2.5%) for BVDV; 117/158 (74.1%) for PI-3 virus; 77/158 (48.7%) for GRSV; and 21/158 (13.3%) for BTV. All sheep were seronegative for BHV-1 and BLV.  相似文献   

6.
In 961 calves up to an age of 6 months which were sent to the animal health center in Oldenburg between March 1987 and March 1990 for necropsy the results of determination of different viruses were calculated: BVD-, rota-, corona-, parainfluenza-3- (PI-3)-, bovine herpes-1 (BHV-1)- and bovine respiratory syncytial virus (BRSV). In 122 and 104 randomly collected health calves of 22 farms antibodies against BRSV and bovine adeno virus-types 5, 7 and 8 were determined. 50.1% of the necropsied calves were one and two weeks old. In this group in 40.2% rotavirus and in 19.0% coronavirus could be isolated. All over the calves the frequencies of isolated viruses were 13.3% for BVDV, 4.6% for BRSV, 3.2% for BHV-1, and 2.1% for PI-3. The percentages of positive findings for rota- and coronavirus increased up to 7 days after birth, and thereafter both decreased. The frequencies of BVDV and BRSV were higher in older groups. The frequency of PI-3 was low and remained constantly. Infections with rota-, corona- and with both viruses were accompanied by BVDV in 11.3, 5.3 and 14.3%, respectively. Against bovine adenoviruses and BRSV in the first 8 weeks and after 14 weeks of life in more than 70% of the calves antibodies were detected.  相似文献   

7.
The prevalence of bovine viral diarrhea virus (BVDV) infections was determined in a group of stocker calves suffering from acute respiratory disease. The calves were assembled after purchase from Tennessee auctions and transported to western Texas. Of the 120 calves, 105 (87.5%) were treated for respiratory disease. Sixteen calves died during the study (13.3%). The calves received a modified live virus BHV-1 vaccine on day 0 of the study. During the study, approximately 5 wk in duration, sera from the cattle, collected at weekly intervals, were tested for BVDV by cell culture. Sera were also tested for neutralizing antibodies to BVDV types 1 and 2, bovine herpesvirus-1 (BHV-1), parainfluenza-3 virus (PI-3V), and bovine respiratory syncytial virus (BRSV). The lungs from the 16 calves that died during the study were collected and examined by histopathology, and lung homogenates were inoculated onto cell cultures for virus isolation. There were no calves persistently infected with BVDV detected in the study, as no animals were viremic on day 0, nor were any animals viremic at the 2 subsequent serum collections. There were, however, 4 animals with BVDV type 1 noncytopathic (NCP) strains in the sera from subsequent collections. Viruses were isolated from 9 lungs: 7 with PI-3V, 1 with NCP BVDV type 1, and 1 with both BVHV-1 and BVDV. The predominant bacterial species isolated from these lungs was Pasteurella haemolytica serotype 1. There was serologic evidence of infection with BVDV types 1 and 2, PI-3V, and BRSV, as noted by seroconversion (> or = 4-fold rise in antibody titer) in day 0 to day 34 samples collected from the 104 survivors: 40/104 (38.5%) to BVDV type 1; 29/104 (27.9%) to BVDV type 2; 71/104 (68.3%) to PI-3V; and 81/104 (77.9%) to BRSV. In several cases, the BVDV type 2 antibody titers may have been due to crossreacting BVDV type 1 antibodies; however, in 7 calves the BVDV type 2 antibodies were higher, indicating BVDV type 2 infection. At the outset of the study, the 120 calves were at risk (susceptible to viral infections) on day 0 because they were seronegative to the viruses: 98/120 (81.7%), < 1:4 to BVDV type 1; 104/120 (86.7%) < 1:4 to BVDV type 2; 86/120 (71.7%) < 1:4 to PI-3V; 87/120 (72.5%) < 1:4 to BRSV; and 111/120 (92.5%) < 1:10 to BHV-1. The results of this study indicate that BVDV types 1 and 2 are involved in acute respiratory disease of calves with pneumonic pasteurellosis. The BVDV may be detected by virus isolation from sera and/or lung tissues and by serology. The BVDV infections occurred in conjunction with infections by other viruses associated with respiratory disease, namely, PI-3V and BRSV. These other viruses may occur singly or in combination with each other. Also, the study indicates that purchased calves may be highly susceptible, after weaning, to infections by BHV-1, BVDV types 1 and 2, PI-3V, and BRSV early in the marketing channel.  相似文献   

8.
Serum samples were collected at slaughter from 226 24-30-month-old American bison (Bison bison) bulls from Kansas, Minnesota, North Dakota, and Manitoba and assayed for antibodies to ovine herpesvirus type-2 (OHV-2), bovine viral diarrhea virus (BVDV), bovine herpesvirus type-1 (BHV-1), and bovine respiratory syncytial virus (BRSV). Antibodies were detected by serum neutralization for BVDV, BHV-1, and BRSV, while antibodies to OHV-2 were detected by competitive inhibition-ELISA (CI-ELISA). Detectable antibodies were found against all viruses: 10 of 226 (4.40%) against OHV-2, 125 of 226 (55.3%) against BVDV, 99 of 226 (43.8%) against BHV-1, and 208 of 226 (92.0%) against BRSV. Titers from 93.6% of the BVDV-positive animals, 79.8% of the BHV-1-positive animals, and 98.1% of the BRSV-positive animals were > or = 1.25. These data indicate that a low percentage of clinically normal bison are seropositive for OHV-2 while a high percentage of bison sampled are seropositive for BVDV, BHV-1, and BRSV.  相似文献   

9.
This study was performed to investigate the presence of bovine herpesvirus-1 (BHV-1), bovine leukemia virus (BLV) and bovine viral diarrhea virus (BVDV) infections in dromedary camels (Camelus dromaderius) kept in mixed herds with sheep and goats in Algeria, since the prevalence of BHV-1, BVDV, and BLV infections among dromedary camels in Algeria is unknown. Totally, 111 camel sera were collected from two provinces (Laghouat and Ghardaia) in Algeria. The sera were analyzed for BHV-1 specific antibodies, BVDV specific antibodies and BVDV antigen using the ELISA, and BLV nucleic acid using PCR. The seropositivity rate was 9.0% for BVDV-specific antibody, although 41.4% of camels tested were positive for BVDV antigen. Moreover, there was no evidence of BHV-1 and BLV infections. The results indicated that camels might represent an important source for BVDV infection in all ruminants, including cattle, sheep, and goats bred in mixed herds in Algeria, since they had a higher BVDV prevalence rates. Therefore, the prevention and control measures for BVDV infection should put in place in camel populations to limit the spread of BVDV infection to ruminant populations in Algeria.  相似文献   

10.
Serum samples were collected from early weaned fall calves shortly after the onset of respiratory tract disease. Antibody titers to infectious bovine rhinotracheitis (IBR) virus, parainfluenza type 3 (PI-3) virus, bovine viral diarrhea (BVD) virus, bovine adenovirus type 3 (BAV-3), and bovine respiratory syncytial virus (BRSV) were determined on paired (acute and convalescent) serums. Seroconversion rate (a fourfold or greater rise in antibody titer) for IBR virus was 4.3%, PI-3 virus--16.3%, BVD virus--9.6%, and BAV-3--2.2%. Seroconversion for BRSV was 45.4%. An increased rate of seroconversion for IBR, PI-3, and BVD viruses and BAV-3 was observed in the presence of BRSV seroconversion. These results suggest that BRSV may facilitate infection by other viruses. Results of virus isolation procedures from these calves were negative.  相似文献   

11.
An investigation based on 2 studies was carried out to assess the involvement of bovine virus diarrhoea virus (BVDV), bovine herpesvirus type 1 (BHV-1), and bovine respiratory syncytial virus (BRSV) in calf respiratory disease in dairy farms in Venezuela. In the first study, 8 farms were selected and paired serum samples from 42 calves with respiratory disease were tested by ELISA for antibodies to the 3 viruses. Seroconversion to BVDV, BHV-1, and BRSV was found to 5, 2, and 6 farms out of the 8, respectively. The proportion of calves that showed seroconversion to BVDV, BHV-1, and BRSV were 19%, 14%, and 26%, respectively. In the second study, another farm having previous serological evidence of BVDV infection was selected. The decline of maternal antibodies against BVDV was monitored in 20 calves and the half-life of maternal antibodies was 34 +/- 12 days presumably indicating an early natural infection with BVDV. Furthermore, sera free of BVDV antibodies that were collected in studies 1 and 2 and were assayed for the presence of BVDV by nested RT-PCR. Two BVDV strains were detected and compared to those of ruminant and porcine pestiviruses. Both strains were assigned to subgroup Ib of type I BVDV. This investigation provides information on BVDV genotypes circulating in Venezuela and may contribute to the establishment of official control programmes against the viruses studied.  相似文献   

12.
Six hundred and fifteen serum samples obtained from cows in five districts of Apure State, Venezuela, were tested by ELISA for antibodies to bovine virus diarrhoea virus (BVDV). The same samples were also ELISA-tested for antibodies to bovine herpesvirus type 1 (BHV-1) and bovine respiratory syncytial virus (BRSV). Additionally, the haemagglutination-inhibition (HI) test was used for detecting antibodies to parainfluenza virus type 3 (PIV-3). Overall, seroprevalence to BVDV was 36±7% (SE); seroprevalence varied by district (19–42%). BHV-1 seroprevalence was 67±4%; variation by district was similar to that of BVDV. However, the first 80 serum samples tested by BHV-1 ELISA all had a strong background reaction with the control antigen. Therefore, these sera were adsorbed to a homogenate of non-infected bovine kidney cell line (MDBK) and re-tested by ELISA. The non-specific reactivity was significantly reduced (p < 0.001 by Wilcoxon's signed-rank test). Compared to the virus-neutralisation (VN) test, the adsorbed BHV-1 ELISA showed 94% agreement and gave a κ value of 0.84, indicating that the adsorption did not interfere with test accuracy. Seroprevalence against BRSV was 85±3%, and showed differences across districts. Most of the cows (94±2%) were seropositive to PIV-3, and there were no significant differences among districts.  相似文献   

13.
Acidogenic diets were evaluated for their effects on lymphocyte proliferation in response to Staphylococcus aureus exotoxin B (SEB), and specific lymphocyte proliferation and serum-neutralizing antibody titers to four bovine respiratory viruses in vitro. Four Holstein steer calves, with an average weight of 213 +/- 42 kg, were fed a basal (control) diet consisting of 49% forage and 51% concentrate (DM basis), with 15% CP (on a DM basis). Three additional treatment diets were used: 1) the basal diet supplemented with 700 mL/d of butylene glycol (BG) to induce ketoacidosis by increasing blood beta-hydroxybutyate (BHBA); 2) the basal diet supplemented with 1.2 +/- 0.1 kg/d of anionic salts (AS; Soychor 16.7, West Central Soy, Ralston, IA) to induce a metabolic acidosis; and 3) the basal diet with all forage replaced by finely ground corn and soybean meal blended to provide 15% CP (HG), to induce lactic acidosis. The calves were fed each diet for 21 d in a 4 x 4 Latin square design. Blood samples were collected on d 18, 19, and 20 of each 21-d period and analyzed for pH; concentrations of BHBA; in vitro lymphocyte proliferation to SEB, bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), parainfluenza-3 (PI-3), and bovine herpesvirus-1 (BHV-1); and titers of serum-neutralizing antibodies against the four viruses. Following treatment, the average pH of the serum samples was 7.38 for calves fed the control diet, 7.37 for the BG treatment, and 7.36 for the HG treatment, and was decreased (P < 0.05) to 7.33 for the AS treatment. All acidogenic diets decreased lymphocyte response to SEB (P < 0.05). The lymphocyte proliferative response, however, of each virus showed a different pattern of interaction with the three acidogenic diets tested. The AS diet was associated with increased lymphocyte proliferative response to BVDV and BRSV (P < 0.01) and increased serum neutralization titers to BHV-1 (P < 0.05). In calves fed the BHBA-inducing diet (BG), an increase in lymphocyte proliferation to BRSV was observed (P < 0.05). A similar relationship to blood BHBA concentration was not observed with the lymphocyte proliferation to BVDV, PI-3, or BHV-1. Titers of serum-neutralizing antibody against PI3 (P < 0.05) and BHV-1 (P < 0.01) were negatively correlated with blood pH, and titers of serum neutralizing antibodies to BHV-1 were negatively correlated to elevated circulating concentrations of BHBA (P < 0.05).  相似文献   

14.
This study analysed sera from 390 llamas (Lama glama) from nine farms located in three different Argentine provinces: Buenos Aires, Cordoba and Jujuy. The samples were tested for antibodies against 8 virus known to infect cattle: bovine herpesvirus type 1 (BHV-1), bovine viral diarrhea virus (BVDV), bovine adenovirus (BAdV III), bovine enterovirus (BEV), bovine rotavirus (BRV), bluetongue virus (BTV), bovine leukaemia virus (BLV), and foot-and-mouth virus (FMDV) by conventional methods such as seroneutralization, immunoperoxidase staining, and agar gel immunodiffusion. The antibody prevalences detected in llamas were: BHV-1 in 0.77% (3/390), BVDV in 2.05% (8/390), BAdV III in 5.13% (20/390), BEV in 4.10% (16/390), BRV in 87.69% (342/390). No antibodies against BTV, BLV and VIAA (FMDV infection associated antigen) were detected.  相似文献   

15.
Respiratory diseases in calves are responsible for major economic losses in both beef and dairy production. Several viruses, such as bovine respiratory syncytial virus (BRSV), bovine herpes virus-1 (BoHV-1), bovine parainfluenza virus-3 (BPI-3V), bovine viral diarrhea virus (BVDV), and bovine adenoviruses (BAV), are detected in most clinical cases with respiratory signs. The aim of this study is to define seroprevalences of five major viral causes of bovine respiratory infections in cattle in central region of Iran (Esfahan province). The population targeted was 642 dairy cows (Holstein–Friesian) from 25 farms. Samples of blood serum from female cattle were examined. Sera were tested by commercial ELISA kits to detect antibody against BRSV, BoHV-1, BPI-3V, BVDV, and BAV-3. The results were analyzed by Chi-square test. In the present study, seroprevalences of BRSV, BoHV-1, PI3V, BVDV, and BAV-3 were 51.1%, 72%, 84.4%, 49.2%, and 55.6%, respectively. The present study shows that infections of bovine respiratory viruses are very common in cattle in Esfahan.  相似文献   

16.
This study analysed sera from 390 llamas (Lama glama) from nine farms located in three different Argentine provinces: Buenos Aires, Cordoba and Jujuy. The samples were tested for antibodies against 8 virus known to infect cattle: bovine herpesvirus type 1 (BHV-1), bovine viral diarrhea virus (BVDV), bovine adenovirus (BAdV III), bovine enterovirus (BEV), bovine rotavirus (BRV), bluetongue virus (BTV), bovine leukaemia virus (BLV), and foot-and-mouth virus (FMDV) by conventional methods such as seroneutralization, immunoperoxidase staining, and agar gel immunodiffusion. The antibody prevalences detected in llamas were: BHV-1 in 0.77 % (3/390), BVDV in 2.05 % (8/390), BAdV III in 5.13 % (20/390), BEV in 4.10 % (16/390), BRV in 87.69 % (342/390). No antibodies against BTV, BLV and VIAA (FMDV infection associated antigen) were detected.  相似文献   

17.
Pathogens causing bovine respiratory tract disease in Finland were investigated. Eighteen cattle herds with bovine respiratory disease were included. Five diseased calves from each farm were chosen for closer examination and tracheobronchial lavage. Blood samples were taken from the calves at the time of the investigation and from 86 calves 3-4 weeks later. In addition, 6-10 blood samples from animals of different ages were collected from each herd, resulting in 169 samples. Serum samples were tested for antibodies to bovine parainfluenza virus-3 (PIV-3), bovine respiratory syncytial virus (BRSV), bovine coronavirus (BCV), bovine adenovirus-3 (BAV-3) and bovine adenovirus-7 (BAV-7). About one third of the samples were also tested for antibodies to bovine virus diarrhoea virus (BVDV) with negative results. Bacteria were cultured from lavage fluid and in vitro susceptibility to selected antimicrobials was tested. According to serological findings, PIV-3, BAV-7, BAV-3, BCV and BRSV are common pathogens in Finnish cattle with respiratory problems. A titre rise especially for BAV-7 and BAV-3, the dual growth of Mycoplasma dispar and Pasteurella multocida, were typical findings in diseased calves. Pasteurella sp. strains showed no resistance to tested antimicrobials. Mycoplasma bovis and Mannheimia haemolytica were not found.  相似文献   

18.
OBJECTIVE: To determine the efficacy of a modified-live virus vaccine containing bovine herpes virus 1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenza virus 3, and bovine viral diarrhea virus (BVDV) types 1 and 2 to induce neutralizing antibodies and cell-mediated immunity in na?ve cattle and protect against BHV-1 challenge. ANIMALS: 17 calves. PROCEDURES: 8 calves were mock-vaccinated with saline (0.9% NaCl) solution (control calves), and 9 calves were vaccinated at 15 to 16 weeks of age. All calves were challenged with BHV-1 25 weeks after vaccination. Neutralizing antibodies and T-cell responsiveness were tested on the day of vaccination and periodically after vaccination and BHV-1 challenge. Specific T-cell responses were evaluated by comparing CD25 upregulation and intracellular interferon-gamma expression by 5-color flow cytometry. Titration of BHV-1 in nasal secretions was performed daily after challenge. Results-Vaccinated calves seroconverted by week 4 after vaccination. Antigen-specific cell-mediated immune responses, by CD25 expression index, were significantly higher in vaccinated calves than control calves. Compared with control calves, antigen-specific interferon-gamma expression was significantly higher in calves during weeks 4 to 8 after vaccination, declining by week 24. After BHV-1 challenge, both neutralizing antibodies and T-cell responses of vaccinated calves had anamnestic responses to BHV-1. Vaccinated calves shed virus in nasal secretions at significantly lower titers for a shorter period and had significantly lower rectal temperatures than control calves. CONCLUSION AND CLINICAL RELEVANCE: A single dose of vaccine effectively induced humoral and cellular immune responses against BHV-1, BRSV, and BVDV types 1 and 2 and protected calves after BHV-1 challenge for 6 months after vaccination.  相似文献   

19.
In order to establish the prevalence of viral infections of the bovine fetus in Argentina, a serological survey for antibodies against viral agents currently affecting cattle in this country was conducted. Antibodies against foot-and-mouth disease virus (FMDV), bovine herpesvirus-1 (BHV-1), bovine leukaemia virus (BLV), bovine rotavirus (BRV), bovine coronavirus (BCV), bovine viral diarrhoea virus (BVDV) and parainfluenza-3 (PI-3) were investigated in a total of 315 fetal serum samples. Conventional techniques were used: indirect immunofluorescence (FMDV, BHV-1, BVDv and BCV), radial immunodiffusion (BLV), ELISA (BRV) and haemagglutination inhibition (PI-3). Antibodies against BHV-1, BVDV and PI-3 were detected in samples from fetuses in the second and third trimester of gestation, with a prevalence of 1·21 per cent (two of 165), 2·03 per cent (four of 197) and 5·08 per cent (nine of 177), respectively. Either antibodies or non-antibody factors able to bind to BRV and Bcv antigens were detected with a prevalence of 2·44 per cent (five of 205) and 4·54 per cent (five of 110), respectively. In addition, 14·68 per cent of non-specific inhibitors of PI-3 mediated haemagglutination were found. No seropositives against FMDV and BLV were detected.  相似文献   

20.
Several laboratory studies assessed the duration of immunity of a quadrivalent vaccine (Rispoval™4, Pfizer Animal Health) against bovine respiratory diseases (BRD) caused by bovine herpes-virus type-1 (BHV-1), parainfluenza type-3 virus (PI3V), bovine viral-diarrhoea virus type 1 (BVDV), or bovine respiratory syncytial virus (BRSV). Calves between 7 weeks and 6 months of age were allocated to treatment and then were injected with two doses of either the vaccine or the placebo 3 weeks apart. Six to 12 months after the second injection, animals were challenged with BHV-1 (n = 16), PI3V (n = 31), BVDV (n = 16), or BRSV (n = 20) and the course of viral infection was monitored by serological, haematological (in the BVDV study only), clinical, and virological means for ≥2 weeks. Infection induced mild clinical signs of respiratory disease and elevated rectal temperature in both vaccinated and control animals and was followed by a dramatic rise in neutralising antibodies in all treatment groups. Titres reached higher levels in vaccinated calves than in control calves after challenge with BHV-1, BVDV, or BRSV. On day 3 after PI3V challenge, virus shedding was reduced from 3.64 log10 TCID50 in control animals to 2.59 log10 TCID50 in vaccinated animals. On days 6 and 8 after BRSV challenge, there were fewer vaccinated animals (n = 2/10 and 0/10, respectively) shedding the virus than control animals (n = 8/10 and 3/10, respectively). Moreover, after challenge, the mean duration of virus shedding was reduced from 3.8 days in control animals to 1 day in vaccinated animals in the BVDV study and from 3.4 days in control animals to 1.2 days in vaccinated animals in the BRSV study. The duration of immunity of ≥6 months for PI3V, BHV-1 and BVDV, and 12 months for BRSV, after vaccination with Rispoval™4, was associated mainly with enhanced post-challenge antibody response to all four viruses and reduction of the amount or duration of virus shedding or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号