首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
泾惠渠灌区畦长对夏玉米耗水特性和产量影响   总被引:1,自引:0,他引:1  
泾惠渠灌区中畦田规格参差不齐,灌区由于畦田过长而造成的灌溉水量浪费屡见不鲜,不仅没有形成高产而且极大的造成了水资源的浪费。通过大田与小区试验相结合,以当地农民习惯的灌溉方式为对照,设置3个灌溉畦长处理(80、120、240 m),每个处理设置3次重复,改水为80%。研究了灌溉畦长对夏玉米在生育期内的耗水特性和产量的影响,土壤水分分布与产量及其构成因素的关系等问题,选择出兼顾节水高产可行的最优畦长。研究结果表明:在生育期灌水后,80和120 m处理畦长内畦首、畦中和畦尾的土壤相对含水率较为均匀无显著差异,240 m处理畦长畦首、畦中和畦尾的土壤相对含水率产生显著性差异;80和120 m处理夏玉米在畦首、畦中和畦尾灌水均匀度较为平均且无显著差异,240 m畦长处理差异较为显著,且80 m畦长处理产量分布最为平均、平均水分利用效率最高产量为1.021 839万kg/hm2,水分利用效率为25.12 kg/(hm2·mm)。综合夏玉米产量及其分布、水分利用效率等因素,在泾惠渠灌区80 m的灌溉畦长是兼顾节水高产的最适宜畦长,该结论以期为泾惠渠灌区大田作物高产节水提供一定理论依据。  相似文献   

2.
冬小麦生物量和产量的AquaCrop模型预测   总被引:6,自引:0,他引:6  
以华北地区冬小麦为研究对象,将AquaCrop作物生长模型应用到滴灌、喷灌、漫灌中,对模型主要参数如气象、土壤、作物特性等进行调整,并对作物产量和生物量模拟的有效方法进行了研究。模拟结果表明,产量和收获时地上部分生物量的模拟值与实测值较为接近且略高于实测值,模型性能指数均高于0.95。产量模拟效果优于生物量,滴灌模拟效果最好。  相似文献   

3.
为了探索依据水面蒸发量确定灌溉定额的可行性,在防雨棚下测坑中进行了夏玉米灌溉试验。结果表明,从总耗水量看,畦灌略高于沟灌,而沟灌又略高于滴灌,但差别不是很大。畦灌条件下植株发育快,滴灌次之,沟灌最慢。畦灌和滴灌下产量均以中等灌溉定额处理最高,而沟灌下产量以最大灌溉定额处理最高。总体上,滴灌条件下水分利用效率高于其他2种灌溉方式。干旱条件下,畦灌下以E601蒸发皿蒸发量(PE)作为夏玉米灌溉定额,每次灌水60mm;滴灌下以2/3PE作为灌溉定额为宜,灌水定额为20mm。  相似文献   

4.
Furrow irrigation can be better managed if the management decision variables (irrigation time and amount; inflow rate and cutoff) can be determined ahead of time. In this study, these decision variables were forecast and optimized using 1 day ahead grass reference crop evapotranspiration (ET0) forecasts, based on the ARMA (1,1) time-series model, with a seasonal furrow irrigation model for both homogeneous and heterogeneous infiltration conditions. Heterogeneity in infiltration characteristics was restricted to variations along the furrow length as opposed to variations between furrows. The results obtained were compared with their counterparts using the observed ET0 for the same period during the 1992 cropping season. Seasonal performance (application efficiency, inflow, runoff and deep percolation volumes) and economic return to water (yield benefits minus seasonal water related and labor costs) were affected by infiltration conditions, while irrigation requirement and bean yield were unchanged. In a given infiltration case, seasonal performance, irrigation schedules, bean yield and economic return to water were comparable (lower than 4% difference) for the two ET0 conditions. For each ET0 condition, individual irrigation events resulted in different irrigation designs (inflow rate and cutoff time) except inflow rates with heterogeneous infiltration. Differences in inflow volume were less than 2% and 5%, respectively, for homogeneous infiltration and heterogeneous infiltration. For the conditions studied, furrow irrigation management decision variables can be forecast and optimized to better manage the irrigation system, because irrigation performance was the same for both (forecast and observed) ET0 cases. Received: 9 October 1999  相似文献   

5.
The design problem of furrow irrigation systems considering runoff and drainage water quality was formulated as an optimization problem, with maximization of net benefits as the objective. A power advance function with an empirically derived relationship between the furrow irrigation design variables and relative crop yield were used in the formulation. The generalized geometric programming technique was used to solve for the optimal values for the design variables that maximized the net benefits from a furrow irrigation system. The optimal efficiency for which the system must be designed under a given set of soil, crop, and economic conditions is not known in advance. In the design, the application efficiency was not specified a priori. It was an output from the optimal design. The analysis suggested that it might not be economical to design surface irrigation systems to achieve a high application efficiency that is specified a priori. In the absence of environmental degradation problems from irrigation, it may sometimes be profitable to design surface irrigation systems to operate at less than the standard application efficiency (55%–90%) that is routinely used in the design. Formulation of the design problem as an optimization problem would yield the optimal application efficiency that would maximize the net benefits to the farmer under any given set of conditions.  相似文献   

6.
畦灌灌水技术要素组合优化   总被引:7,自引:0,他引:7  
以杨凌区进行的畦灌大田试验为基础,采用WinSRFR软件对各试验点的灌水质量进行了模拟,并分析了畦长、田面坡度、入畦单宽流量和改口成数对灌水效率Ea、灌水均匀度Ed和储水效率Es的影响;在此基础上,结合均匀试验设计与多元回归分析的方法,构建了包含灌水效率Ea、灌水均匀度Ed和储水效率Es在内的单目标优化模型,以入畦单宽流量和灌水时间为变量,采用遗传算法对模型进行求解,提出了试验点不同计划灌水深度条件下畦灌灌水技术要素的优化组合,结果表明其可获得高的灌水质量,达到常规畦灌节水的目的。  相似文献   

7.
【目的】探究夏玉米根系分布、水分利用效率及产量对沟灌种植下不同秸秆覆盖方式的动态响应。【方法】在河套灌区开展不同耕作模式的小区试验,试验设常规垄覆膜沟灌(FM)、垄覆秸秆沟灌(FLJ)、沟覆秸秆沟灌(FGJ)、垄沟覆秸秆沟灌(FLGJ)4个处理。研究了夏玉米各土层的根长密度、作物耗水量、产量及其相关指标,【结果】沟灌种植模式下不同秸秆覆盖方式显著(P<0.05)影响夏玉米根系分布、产量和水分利用效率,通过沟覆秸秆沟灌可改善夏玉米根系分布,提高水分利用效率,达到高产。沟覆秸秆促进了垄上大于40 cm土层根系发育,根长密度较FM处理增加128.1%,显著提高沟里大于20 cm土层根长密度,促进对深层土壤水分养分吸收利用,提高产量。与FM处理相比,FGJ和FLGJ处理的水分利用效率显著提高了51.9%和54.3%,增产9.3%和9.0%,但FGJ处理的收获指数显著高于其他处理(P<0.05),为0.48。【结论】沟灌种植模式下沟覆秸秆FGJ处理改善深层根系分布效果较好,显著提高夏玉米水分利用效率及产量。  相似文献   

8.
Standard evaluation procedures, based on field measurements and statistical, hydraulic models, have been developed for assessing irrigation systems performance. However, given the diverse nature of the irrigation methods, it is not possible to use a unique evaluation procedure. Ideally, variables would be measured at every point throughout the field under study, but that is clearly impractical. Instead, measurements are taken of selected samples, or irrigation models are used to predict field-wide distributions of the variables. In this paper, irrigation models for trickle, sprinkler and furrow irrigation are used to assess how well the irrigation performance indicators generated by standard procedures match those generated by whole-field simulations. Six performance indicators were used: distribution uniformity, uniformity coefficient of Christiansen, application efficiency, deep percolation ratio, tail water ratio and requirement efficiency. The analysis was applied to systems typical of cotton crops in Southern Spain. The results show that the procedure used to determine performance indicators in trickle irrigation provides good estimates of the whole field performance. The procedure used in sprinkler irrigation is also acceptable, but yields variable results. Finally, the standard procedure used for furrow irrigation produces biased, highly variable results and overestimates distribution uniformity.  相似文献   

9.
土壤入渗特性和田面糙率的变异性对沟灌性能的影响   总被引:2,自引:0,他引:2  
以杨凌区粘壤土和砂壤土区域进行的大田沟灌试验为基础,在假定各灌水沟内部土壤入渗特性和糙率均一的条件下,重点分析各灌水沟之间土壤入渗参数和田面糙率的不同组合对沟灌水流运动过程和灌水质量的影响,结果表明土壤入渗特性的变异性对沟灌水流推进过程和灌水质量指标影响较大,在模拟时必须充分考虑;而田面糙率的变异性对沟灌水流推进过程和灌水质量指标影响较小,可采用田块糙率均值代替各灌水沟的糙率。经实例验证,水流推进过程相对误差为7.28%,灌水效率、灌水均匀度和储水效率模拟值与实测值误差分别为5.74%、6.18%和4.07%,结果表明其模拟效果较好。  相似文献   

10.
Surface irrigation analysis and design require the knowledge of the variation of the cumulative infiltration water Z (L) (per unit area) into the soil as a function of the infiltration time t (T). The purpose of this study is to evaluate water infiltration and storage under surface irrigation in an alluvial clay soil cultivated with grape yield, and to determine if partially wetted furrow irrigation has more efficient water storage and infiltration than traditional border irrigation. The two irrigation components considered were wet (WT) and dry (DT) treatments, at which water applied when available soil water reached 65% and 50%, and the traditional border irrigation control. Empirical power form equations were obtained for measured advance and recession times along the furrow length during the irrigation stages of advance, storage, depletion and recession. The infiltration (cumulative depth, Z and rate, I) was functioned to opportunity time (to) in minute for WT and DT treatments as: ZWT = 0.528 to0.6, ZDT = 1.2 to0.501, IWT = 19 to−0.4, and IDT = 36 to−0.498. The irrigation efficiency and soil water distribution have been evaluated using linear distribution and relative schedule depth. Coefficient of variation (CV) was 5.2 and 9.5% for WT and DT under furrow irrigation system comparing with 7.8% in border, respectively. Water was deeply percolated as 11.88 and 19.2% for wet and dry furrow treatments, respectively, compared with 12.8% for control, with no deficit in the irrigated area. Partially wetted furrow irrigation had greater water-efficiency and grape yield than both dry furrow and traditional border irrigations, where application efficiency achieved as 88.1% for wet furrow irrigation that achieved high grape fruit yield (30.71 Mg/ha) and water use efficiency 11.9 kg/m3.  相似文献   

11.
不同灌溉方式对制种玉米产量及水分利用效率的影响   总被引:1,自引:0,他引:1  
通过田间试验,研究了畦灌、常规沟灌、隔沟交替灌3种灌溉方式对制种玉米产量及水分利用效率的影响,结果表明,不同灌溉方式下,制种玉米产量为8.73~10.87 t/hm~2,耗水量为349.7~625.0 mm,WUE为1.40~3.01kg/m~3。隔沟交替灌溉方式耗水量最低,畦灌方式最高,常规沟灌居中。相同灌溉定额条件下,隔沟交替灌制种玉米产量较常规沟灌增减幅度在-2.43%~10.24%。常规沟灌方式若能保证作物需水关键期的灌溉,适度减少灌水不会造成制种玉米减产。产量构成要素结果表明,行粒数、出籽率、穗长、穗粗、秃尖长、千粒重产量构成要素对产量的累积贡献率达85.54%。在甘肃河西地区,制种玉米全生育期灌水8次(苗期1次,拔节期2次,抽穗期1次,灌浆期2次,乳熟期2次),灌溉定额2 250 m~3/hm~2的隔沟交替灌溉方式(T6处理)能稳定提高产量和水分利用效率。  相似文献   

12.
Performance terms measure how close an irrigation event is to an ideal one. For border and furrow irrigation to facilitate quantification of the performance terms use was made of the software tools and . Once determined, the values of the performance indices were plotted as a function of the system variables. In conclusion, it can be stated that the relationship between the performance indices and the system variable contains valuable information for the system design and management.  相似文献   

13.
沙漠绿洲区不同灌水方式条件下玉米灌溉制度研究   总被引:8,自引:1,他引:8  
在石羊河流域干旱缺水的民勤县连续进行了 4年田间试验 ,研究了大田地膜玉米畦灌、常规沟灌、交替隔沟灌溉和宽垄沟灌 4种灌水方式下的灌溉定额及其对产量和水分利用的影响 ,拟定了不同灌水方式下的灌溉制度 ,得出交替隔沟灌溉方式下灌水 7次 ,次灌水定额为 30 0 m3/hm2 ,灌水时间为拔节期、大喇叭口期、抽雄期、抽穗期、灌浆始、灌浆中、乳熟期的灌溉制度为该地区推荐采用的最优方案。  相似文献   

14.
膜下滴灌棉花田间需水规律研究   总被引:17,自引:0,他引:17  
以田间试验为基础对膜下滴灌棉花的田间需水规律进行了对比研究 ,从土壤 -作物 -大气连续体的角度对该技术下影响棉花耗水的主要因素进行了分析 ,找到了膜下滴灌比沟灌省水的依据 ,同时发现对棉花采用膜下滴灌技术可改善需水量在各生育阶段的合理分配 ,提高叶面积指数 LAI,从生理上提高了作物水分利用率及增产潜力  相似文献   

15.
微地形及沟断面形状变异性对沟灌性能影响的试验研究   总被引:1,自引:0,他引:1  
针对沟灌,研究了沟底起伏状况和沟横断面形状的空间变异性对灌水质量的影响。通过分析在河北吴桥开展的棉花沟灌试验数据,描述了灌水沟断面形状和沟底高程二因素的空间分布特征。采用田面平整精度Sd值作为评价沟底高程变化程度的指标,确定其对灌水均匀度和灌水效率的影响;采用断面形状参数p2描述灌水沟断面形状,以p2的标准差反映其空间变异性对地表水流运动和灌水质量的影响。结果表明,灌水均匀度和灌水效率均随沟底高程标准差的增大而减小;水流推进速度随断面形状参数p2标准差的增大而降低,灌水均匀度和灌水效率随p2标准差的增大而减小。因此,微地形和灌水沟断面空间变异性,对灌水均匀度和灌水效率均有显著的影响。  相似文献   

16.
A 4-year field experiment was conducted in a semi-arid area to evaluate the response of each furrow and alternate furrow irrigation in wheat-cotton system using irrigation waters of different qualities in a calcareous soil. Irrigation was applied to each and alternate furrow of bed-planted wheat followed by ridge-planted cotton for comparison with standard check-basin method of irrigation to both the crops. These methods of irrigation were evaluated under three water qualities namely good quality canal water (CW), poor quality tube well water (TW) and pre-sowing irrigation to each crop with CW and all subsequent irrigations with TW (CWpsi + TW). The pooled results over 4 years revealed that wheat grain yield was not affected significantly with quality of irrigation water, but significant yield reduction was observed in alternate bed irrigation under canal water and tube well water irrigations. In cotton, poor quality tube well water significantly reduced the seed cotton yield in all the three methods of planting. The pre-sowing irrigation with canal water and all subsequent irrigations with tube well water improved the seed cotton yield when compared with tube well water alone. However, this yield increase was significant only in alternate furrow irrigation, and the yield obtained was on a par with yield under alternate furrow in CW. When compared to check-basin irrigation, each furrow and alternate furrow irrigation resulted in a saving of 30 and 49% of irrigation water in bed-planted wheat, whereas the corresponding savings in ridge-planted cotton were 20 and 42%, respectively. Reduced use of irrigation water under alternate furrow, without any significant reduction in yield, resulted in 28.1, 23.9 and 43.2% higher water use efficiency in wheat under CW, TW and CWpsi + TW, respectively. The corresponding increase under cotton was 8.2, 2.1 and 19.5%. The implementation of alternate furrow irrigation improved the water use efficiency without any loss in yield, thus reduced use of irrigation water especially under poor quality irrigation water with pre-sowing irrigation with canal water reduced the deteriorating effects on yield and soil under these calcareous soils.  相似文献   

17.
针对沟(畦)灌技术要素实际存在的模糊性,本文采用模糊规划理论,建立了沟(畦)灌技术要素的模糊优化模型。该模型能广泛吸取专家经验,考虑对灌水的具体要求,又能充分体现科学的计算,对地面灌溉田间用水管理具有一定的指导意义。  相似文献   

18.
Empirical functions for dependent variables in cutback furrow irrigation   总被引:1,自引:0,他引:1  
Water scarcity and the high consumption of water resources in agriculture have strengthened the need to manage and optimize irrigation systems. Among surface irrigation systems, furrow irrigation with cutback is commonly used because of its potentially higher irrigation efficiency, lower costs and relative simplicity. The performance of this system is affected by various management and design variables, and hence different management scenarios should be evaluated before it is applied in practice. For this purpose, empirical functions for the performance evaluation indices are useful. This paper employs sensitivity, dimensional and regression analyses in the development of empirical functions for application efficiency, deep percolation, runoff and distribution uniformity. The proposed functions were evaluated using a numerical zero-inertia model and field measured data. Coefficients of determination for E a, D r, R r and U cc were calculated to be 0.90, 0.91, 0.90 and 0.84, respectively. These values indicate that the proposed functions enable the performance indices to be predicted satisfactorily. Values for the indices calculated using the developed dimensionless functions showed a very good agreement with both the outputs of the zero-inertia model and values calculated from measured field data. As the functions were general (not site and irrigation specific) and explicit, they could prove to be of practical significance in both conventional and optimal design and management of free-draining, graded furrow irrigation systems with cutback flows.
M. NavabianEmail:
  相似文献   

19.
隔沟交替灌溉在高原夏菜莴笋上的应用研究   总被引:4,自引:0,他引:4  
在甘肃河西走廊高海拔冷凉区以莴笋"太原笋"为试材,研究了常规沟灌(CFI)、固定隔沟灌溉(FFI)、隔沟交替灌溉(AFI)对莴笋生长、生理特性、产量及水分利用效率的影响。结果表明,隔沟交替灌溉(AFI)模式下莴笋的茎粗、茎重、产量、叶片净光合速率、蒸腾速率与常规沟灌(CFI)模式下无显著差异。AFI较CFI节水22.2%、水分利用率提高26.9%,实现了经济产量不降低。莴笋上应用隔沟交替灌溉技术具有较大的节水潜力。  相似文献   

20.
Effect of irrigation method and quantity on squash yield and quality   总被引:1,自引:0,他引:1  
Squash yield and quality under furrow and trickle irrigation methods and their responses to different irrigation quantities were evaluated in 2010 spring and fall growing seasons. A field experiment was conducted using squash (Cucurbita pepo L.) grown in northern Egypt at Shibin El Kom, Menofia. A randomized split-plot design was used with irrigation methods as main plots and different irrigation quantities randomly distributed within either furrow or trickle irrigation methods. Irrigation quantity was a fraction of crop evapotranspiration (ETc) as: 0.5, 0.75, 1.0, 1.25, and 1.5 ETc. Each treatment was repeated three times, two of five rows from each replicate were left for squash seed production. In well-watered conditions (1.0 ETc), seasonal water use by squash was 304 and 344 mm over 93 days in spring and 238 and 272 mm over 101 days in fall under trickle and furrow irrigation methods, respectively. Squash fruit yield and quality were significantly affected by season and both irrigation method and quantity. Fruit number and length were not affected by irrigation method and growing season, respectively. Interaction between season and irrigation quantity significantly affected leaf area index, total soluble solid (TSS), and fruit weight. Moreover, seed yield and quality were significantly affected by growing season and both irrigation method and quantity except harvest index, which was not affected by irrigation method. Significant differences for the interaction between season and irrigation method were only found for seed yield and 100 seeds weight. Except for harvest index, no significant difference was observed by interaction between season and irrigation quantity. Both fruit and seed yields were significantly affected in a linear relationship (r2 ≥ 0.91) by either deficit or surplus irrigation quantities under both irrigation methods. Adequate irrigation quantity under trickle irrigation, relative to that of furrow, enhanced squash yield and improved its quality in both growing seasons. Fall growing season was not appropriate for seed production due to obtaining many of empty seeds caused by low weather variables at the end of the season. The results from small experiment were extrapolated to large field to find out optimal irrigation scheduling under non-uniform of irrigation application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号