首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
R136 (HD 38268) is the central object of the 30 Doradus Nebula, a giant region of ionized hydrogen in the Large Magellanic Cloud. Observations of R136 at low and high spectral resolution with the International Ultraviolet Explorer reveal a peculiar hot object with a massive stellar wind. An outflow speed of 3500 kilometers per second and a temperature of approximately 60,000 K are indicated by the spectra. The bulk of the observed ultraviolet radiation must come from R136a, the brightest and bluest component of R136. Its absolute visual magnitude and observed temperature imply a luminosity about 10(8) times that of the sun. Most of the ionizations produced in 30 Doradus are provided by this peculiar object. If RI36a is a dense cluster of very hot stars, about 30 stars of classes O3 and WN3 exist in a region estimated to have a diameter of less than 0.1 parsec. This is inconsistent with the ultraviolet line spectrum and the evidence for optical variability. An alternative interpretation of the observations is that the radiation from R136a is dominated by a single superluminous object with the following approximate properties: luminosity and temperature as given above, a radius 100 times that of the sun, a mass 2500 times that of the sun, and a loss rate of 10(-3.5) solar masses per year. Model interior calculations for hydrogen-burning stars are consistent with these parameters. Such stars, however, are expected to be unstable, and this may account for the massive stellar wind.  相似文献   

2.
Photometry and spectroscopy of the object Cha Halpha 1, located in the Chamaeleon I star-forming cloud, show that it is a approximately 10(6)-year-old brown dwarf with spectral type M7.5 to M8 and 0.04 +/- 0.01 solar masses. Quiescent x-ray emission was detected in a 36-kilosecond observation with 31.4 +/- 7.7 x-ray photons, obtained with the Rontgen Satellite (ROSAT), with 9final sigma detection significance. This corresponds to an x-ray luminosity of 2.57 x 10(28) ergs per second and an x-ray to bolometric luminosity ratio of 10(-3.44). These are typical values for late M-type stars. Because the interior of brown dwarfs may be similar to that of convective late-type stars, which are well-known x-ray sources, x-ray emission from brown dwarfs may indicate magnetic activity.  相似文献   

3.
Radio waves from the sun were detected 50 years ago, but the microwave detection of other single solar-type stars has remained a challenge. Here, the discovery of four solar-type radio stars is reported. These "solar twin" G stars are radio sources up to 3000 times stronger than the quiet sun. The microwaves most likely originate from a large number of relativistic electrons, possibly produced along with coronal heating, a process that is not understood. Two of the stars are younger than the sun and rotate more rapidly; the dynamo process in the stellar interior is therefore presumably more vigorous, resulting in enhanced coronal activity. One of the detections, however, is an old, metal-deficient G dwarf.  相似文献   

4.
Radiometric measurements during the past decade from the Solar Maximum Mission and Nimbus 7 satellites have shown that the total solar irradiance varies in step with the sun's 11-year magnetic activity cycle. Stellar observations from the Lowell and Mount Wilson observatories now confirm and elaborate this discovery. These measurements show that older stars similar to the sun tend to become brighter as their magnetic activity level increases, just as the sun does during its 11-year activity cycle. Younger stars, however, tend to become fainter as their magnetic activity level increases. This contrasting behavior suggests that the balance between the competing phenomena that influence solar brightness variability has shifted during the sun's lifetime.  相似文献   

5.
High-resolution microwave observations are providing new insights into the nature of active regions and eruptions on the sun and nearby stars. The strength, evolution, and structure of magnetic fields in coronal loops can be determined by multiple-wavelength observations with the Very Large Array. Flare models can be tested with Very Large Array snapshot maps, which have angular resolutions of better than 1 second of arc in time periods as short as 10 seconds. Magnetic changes that precede solar eruptions on time scales of tens of minutes involve primarily emerging coronal loops and the interactions of two or more loops. Magnetic reconnection at the interface of two closed loops may accelerate electrons and trigger the release of microwave energy in the coronal parts of the magnetic loops. Nearby main-sequence stars of late spectral type emit slowly varying microwave radiation and stellar microwave bursts that show striking similarities to those of the sun.  相似文献   

6.
High-resolution spectra of nearby stars show absorption lines due to material in the local interstellar cloud. This cloud is deduced to be moving at 26 kilometers per second with respect to the sun, and in the same direction as the "interstellar wind" flowing through the solar system. Measurements by the Ulysses spacecraft show that neutral helium is drifting through the solar system at the same velocity, but neutral hydrogen appears to be moving at only 20 kilometers per second, a result confirmed by new measurements of the hydrogen emission line taken by the High-Resolution Spectrograph on the Hubble Space Telescope. These results indicate that neutral hydrogen atoms from the local interstellar cloud are preferentially decelerated at the heliospheric interface, most likely by charge-exchange with interstellar protons, while neutral helium is unaffected by the plasma. The magnitude of the observed deceleration implies an interstellar plasma density of 0.06 to 0.10 per cubic centimeter, which in turn implies that the heliospheric shock should be less than 100 astronomical units from the sun.  相似文献   

7.
Boss AP 《Science (New York, N.Y.)》1995,267(5196):360-362
The sensitivities of astrometric and radial velocity searches for extrasolar planets are strongly dependent on planetary masses and orbits. Because most nearby stars are less massive than the sun, the first detection is likely to be of a Jupiter-mass planet orbiting a low-mass star, with a possible theoretical expectation being that Jupiter-like planets will be found much closer [inside the Earth-sun separation of 1 astronomical unit (AU)] to these low-luminosity stars than Jupiter is to the sun (5.2 AU). However, radiative hydrodynamic models of protoplanetary disks around low-mass stars (of 0.1 to 1 solar mass) show that Jupiter-like planets should form at distances (approximately 4 to 5 AU) that are only weakly dependent on the stellar mass.  相似文献   

8.
Newman MJ  Rood RT 《Science (New York, N.Y.)》1977,198(4321):1035-1037
The roughly 25 percent increase in luminosity over the life of the sun shared by many different solar models is shown to be a very general result, independent of the uncertainties suggested by the solar neutrino experiment. Superficially, this leads to a conflict with the climatic history of the earth, and if basic concepts of stellar evolution are not fundamentally in error, compensating effects must have occurred, as first pointed out by Sagan and Mullen. One possible interpretation supported by recent detailed models of the earth's atmosphere is that the greenhouse effect was substantially more important than at present even as recently as 1 billion to 2 billion years ago.  相似文献   

9.
Because of instrumental sensitivity limits and stellar distances, the types of x-ray flares observable on stars have been intrinsically much more energetic than those on the sun. Such enormous events are a useful extrapolation of the solar phenomenon if the underlying assumption is correct that they form a continuous sequence involving similar physical processes as on the sun. The Advanced Satellite for Cosmology and Astrophysics (ASCA), with its greater sensitivity and high-energy response, is now able to test this hypothesis. Direct comparison with solar flares measured by the x-ray-monitoring Geostationary Operational Environmental Satellites (GOES) is possible. The detection of flares on Proxima Centauri that correspond to GOES M-class events on the sun are reported.  相似文献   

10.
Ulysses spacecraft radio and plasma wave observations indicate that some variations in the intensity and occurrence rate of electric and magnetic wave events are functions of heliographic latitude, distance from the sun, and phase of the solar cycle. At high heliographic latitudes, solartype Ill radio emissions did not descend to the local plasma frequency, in contrast to the emission frequencies of some bursts observed in the ecliptic. Short-duration bursts of electrostatic and electromagnetic waves were often found in association with depressions in magnetic field amplitude, known as magnetic holes. Extensive wave activity observed in magnetic clouds may exist because of unusually large electron-ion temperature ratios. The lower number of intense in situ wave events at high latitudes was likely due to the decreased variability of the high- latitude solar wind.  相似文献   

11.
Stars with individual luminosities more than a million times that of the sun are now being studied in a variety of contexts. Observational and theoretical ideas about the most luminous stars have changed greatly in the past few years. They can be observed spectroscopically even in nearby galaxies. They are not very stable; some have had violent outbursts in which large amounts of mass were lost. Because of their instabilities, these stars do not evolve to become red superglants as less luminous stars do. Theoretical scenarios for the evolution of these most massive stars depend on the effects of turbulence and mixing combined with high radition densities.  相似文献   

12.
Sunspots, dark magnetic regions occurring at low latitudes on the Sun's surface, are tracers of the magnetic field generated by the dynamo mechanism. Recent solar dynamo models, which use the helioseismically determined solar rotation, indicate that sunspots should form at high latitudes, contrary to observations. We present a dynamo model with the correct latitudinal distribution of sunspots and demonstrate that this requires a meridional flow of material that penetrates deeper than hitherto believed, into the stable layers below the convection zone. Such a deep material flow may have important implications for turbulent convection and elemental abundance in the Sun and similar stars.  相似文献   

13.
A simple model based on the changes in excess radiation from bright magnetic faculae and on changes in reduced radiation from dark spots is remarkably successful in matching the slow variations of total solar irradiance measured simultaneously by the ERB and ACRIM satellite radiometers between 1981 and 1984. This model was extended back to 1954 to reconstruct the modulation of irradiance by magnetic activity during the past three 11-year solar cycles. The model predicts that the sun is consistently brighter at activity maximum than at minimum. The 0.07 percent brightening at the peak of the last cycle in 1980 was more pronounced than the brightenings found for either of the two previous cycles, even though cycle 19, which peaked around 1957, had the largest sunspot number amplitude in the history of reliable sunspot records.  相似文献   

14.
Ground-based observations of the object IRAS 14348-1447, which was discovered with the Infrared Astronomical Satellite, show that it is an extremely luminous colliding galaxy system that emits more than 95 percent of its energy at far-infrared wavelengths. IRAS 14348-1447, which is receeding from the sun at 8 percent of the speed of light, has a bolometric luminosity more than 100 times larger than that of our galaxy, and is therefore as luminous as optical quasars. New optical, infrared, and spectroscopic measurements suggest that the dominant luminosity source is a dustenshrouded quasar. The fuel for the intense activity is an enormous supply of molecular gas. Carbon monoxide emission has been detected at a wavelength of 2.6 millimeters by means of a new, more sensitive receiver recently installed on the 12-meter telescope of the National Radio Astronomy Observatory. IRAS 14348-1447 is the most distant and luminous source of carbon monoxide line emission yet detected. The derived mass of interstellar molecular hydrogen is 6 x 10(10) solar masses. This value is approximately 20 times that of the molecular gas content of the Milky Way and is similar to the largest masses of atomic hydrogen found in galaxies. A large mass of molecular gas may be a prerequisite for the formation of quasars during strong galactic collisions.  相似文献   

15.
A brilliant new comet (1979 XI: Howard-Koomen-Michels) was discovered in data from the Naval Research Laboratory's orbiting SOLWIND coronagraph. An extensive sequence of pictures, telemetered from the P78-1 satellite, shows the coma, accompanied by a bright and well-developed tail, passing through the coronagraph's field of view at afew million kilometers from the sun. Preliminary orbital calculations based on the observed motion of the comet's head and morphology of the tail indicate that this previously unreported object is a sungrazing comet and may be one of the group of Kreutz sungrazers. It appears from the data that the perihelion distance was less than 1 solar radius, so that the cometary nucleus encountered dense regions of the sun's atmosphere, was completely vaporized, and did not reappear after the time of closest approach to the sun. After this time, however, cometary debris, scattered into the ambient solar wind, caused a brightening of the corona over one solar hemisphere and to heliocentric distances of 5 to 10 solar radii.  相似文献   

16.
Sunspots, flares, and the myriad time-varying "events" observable in the Sun-the only star whose surface we can examine in detail-are testimony that the Sun is a magnetically variable or active star. Its magnetic field, carried into interplanetary space by the solar wind, produces observable changes in Earth's magnetosphere and variations in the flux of galactic cosmic-ray particles incident upon Earth's upper atmosphere. Centuries of observation have enabled solar scientists to recognize that the Sun's magnetism exists and varies in a globally organized pattern that is somehow coupled to the Sun's rotation. Within the past decade O. C. Wilson demonstrated that analogs of solar activity exist and can be studied in many other dwarf stars. From the continuing study, knowledge of the precise rates of rotation of the stars under investigation is being gained for the first time. The results are expected to increase our understanding of the origin of solar activity and stellar activity in general.  相似文献   

17.
An experiment performed on a differentially rotating, density-stratified fluid shows that "spin-down" need not occur under the condition of stratification. Inasmuch as density stratification occurs in the interior of the sun, spin-down probably does not exist in the solar interior, and the observed solar oblateness may indicate that the sun contains a rapidly spinning core.  相似文献   

18.
Magnetic field measurements from the Ulysses space mission overthe south polar regions of the sun showed that the structure and properties of the three-dimensional heliosphere were determined by the fast solar wind flow and magnetic fields from the large coronal holes in the polar regions of the sun. This conclusion applies at the current, minimum phase of the 11-year solar activity cycle. Unexpectedly, the radial component of the magnetic field was independent of latitude. The high-latitude magnetic field deviated significantly from the expected Parker geometry, probably because of large amplitude transverse fluctuations. Low-frequency fluctuations had a high level of variance. The rate of occurrence of discontinuities also increased significantly at high latitudes.  相似文献   

19.
为提高太阳能的利用率,以AT89S52单片机为控制核心,采取极轴式跟踪方式,设计了一套以视日运动轨迹跟踪为主、光电跟踪进行跟踪校正的智能型双精度太阳跟踪系统,该系统通过采集时钟芯片信息计算当前太阳位置,实现视日运动轨迹跟踪;同时利用光电传感器采集的光强偏差控制步进电机,实现光电跟踪,校正轨迹偏差,保证聚光板与太阳光相垂直。试验表明,该太阳跟踪系统能在不同天气状况下对太阳进行较准确跟踪,能量接收效率提高20%以上,达到了充分利用太阳能的目的。  相似文献   

20.
The sun's differential rotation has a cyclic pattern of change that is tightly correlated with the sunspot, or magnetic activity, cycle. This pattern can be described as a torsional oscillation, in which the solar rotation is periodically sped up or slowed down in certain zones of latitude while elsewhere the rotation remains essentially steady. The zones of anomalous rotation move on the sun in wavelike fashion, keeping pace with and flanking the zones of magnetic activity. It is uncertain whether this torsional oscillation is a globally coherent ringing of the sun or whether it is a local pattern caused by and causing local changes in the magnetic fields. In either case, it may be an important link in the connection between the rotation and the cycle that is widely believed to exist but is not yet understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号