首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plant, Salvinia natans L., was found to be very useful in the removal of Cu (II) from waste water. Maximum accumulation was noted within one day and maximum removal (about 90%) was recorded below 50 μg mL?1 of Cu (II). Copper was successfully removed from the waste water of Hindusthan Copper Limited (HCL), ICC, Ghatsila, Bihar, India.  相似文献   

2.
The aquatic vascular plant (Ceratophyllum demersum L.) was investigated as a potential biological filter for removal of Cd from wastewaters. Plants were grown in and harvested weekly from 0.10 M Hoagland nutrient solutions containing concentrations of Cd from 0.01 to 1.03 μg Cd mL?1. Tissue Cd was positively correlated to increased concentrations of Cd in solution. Concentration factors (CFs) of Cd in plants after one week were 13.3 for the 0.01 μg Cd mL?1 treatment; 451.4 for plants treated with 0.04 μg Cd mL?1, and 506.5 for plants treated with 1.03 μg Cd mL?1. Plants treated with 0.01 μg Cd mL?1 sustained tissue Cd concentrations almost 9-fold over those at week 1. However, after 5 weeks tissue Cd concentration in plants exposed to 1.03 μg Cd mL?1 had decreased 97% compared to the week 1 concentration. Growth measurements of dry weight, stem lengths, and lateral shoot growth were nagatively correlated to increased Cd treatments. Our results suggest that Coontail exposed to very low Cd concentrations (0.01 μg Cd mL?1) can take up and accumulate Cd. However, plants exposed to Cd at 0.04 μg Cd mL?1 or above did not accumulate Cd past one week.  相似文献   

3.
Phytoremediation is a remediation technique that involves the use of plants to extract, sequester, and/or detoxify pollutants through physical, chemical, and biological processes. The use of phytoremediation is expanding due to its cost-effectiveness compared with conventional methods. This study was conducted to investigate the effects of autumn and spring application of plant growth-promoting rhizobacteria (PGPR, 108 cfu mL?1 Bacillus megaterium var. phosphaticum sprayed at 250 mL plot?1) and phosphorus (P) fertilizer (0, 11, 22, 33, 44 kg P ha?1) on dry matter yield and heavy metal uptake by plants in soils contaminated with heavy metals. Field experiments were conducted using a randomized complete block design with four replications between 2004 and 2007. The results of the study indicated that P fertilization, but not PGPR application, significantly affected dry matter yield. Application of PGPR increased heavy metal availability in soils and the heavy metal uptake of meadow plants. The heavy metal content of the meadow plants resulting from PGPR application was 4–6 times higher for the spring application than the autumn application. Approximately 16, 30, 10, 10, and 3 growing seasons without PGPR are necessary to remove all lead (Pb), nickel (Ni), boron (B), manganese (Mn), and zinc (Zn), respectively, from polluted soil. The time required for Pb, Ni, B, Mn, and Zn removal could be further decreased to approximately 4, 6, 3, 3, and 1 growing seasons, respectively, with 33 kg phosphorus pentoxide (P2O5) ha?1 and 108 cfu mL?1 PGPR applications at rates of 250 mL plot?1 in the spring season.  相似文献   

4.
The aquatic vascular plant Eurasian watermilfoil (Myriophyllum spicatum L.) was investigated for its potential to take up Cd from nutrient-rich water in a short-term growth and harvest regime. Eurasian watermilfoil plants were grown in and harvested weekly from 0.10M Hoagland nutrient solutions containing concentrations of Cd from 0.04 to 7.63μg Cd mL?1. Dry weights of plants significantly decreas4ed when exposed to 7.63μg Cd mL?1. For both 0.04 and 1.03μg Cd mL?1 treatment the greatest concentration of Cd in plants occurred during the first two weeks. The greatest Cd concentration of Cd in plants for the 7.63μg Cd ML?1 treatment occurred during week one and decreased through week 2. Tissue P concentration in control plants increased over time but did not increase significantly over time when plants were exposed to 0.04 and 1.03μg Cd mL?1 levels. Tissue P concentration decreased over time when plants were exposed to 7.63μg Cd mL?1. Stem length, root dry weights, and root number significantly increased over time in control plants and in those exposed to the 0.04 and 1.03μg Cd mL?1 treatments. Plants treated with 7.63μg Cd mL?1 did not grow. These results suggest that Eurasian watermilfoil would be useful for absorbing Cd from nutrient-rich water when the solution concentration was in the range of 0.04 to 7.63μg Cd mL?1. However, in solutions having the highest concentration of Cd, the harvest regime would have to sustain plant vigor, avoid tissue Cd loss, and realize maximum uptake of Cd from solution.  相似文献   

5.
Aquatic macrophytes play a key role in nutrient cycling and in the dynamics of aquatic ecosystems. Many species have been evaluated in terms of their potential in phytoremediation processes in environments contaminated by metals. Considering this kind of application, we evaluated the potential for the bioaccumulation and biosorption of mercury by Salvinia biloba as a function of (i) different concentrations of mercury ions in the solution, (ii) the exposure time of live plants and dry biomass to the contaminant, and (iii) different pH’s, besides (iv) analyzing the effects of this metal on morphological and anatomical parameters. Bioaccumulation was evaluated by subjecting live plants to treatments with concentrations of 0.05, 0.1, and 0.2 μg.mL?1 of mercury in the solution and the control (0 μg.mL?1), at intervals of 3 days (0, 3, 6, 9, 12, and 15 days) at pH values of 5.5, 6.0, and 6.5. For biosorption, we used the dry biomass applying the same design, only changing the time intervals (0, 4, 8, 12, and 24 h). The bioaccumulated and biosorbed mercury was determined by atomic absorption spectroscopy. High values of mercury were bioaccumulated and biosorbed, and accordingly, as the concentration of mercury ions increases in the solution, the higher the value accumulated by both living plant and dry biomass. The time of exposure and the different pH values presented variation when associated with different concentrations in the bioaccumulation of mercury. Finally, few symptoms of toxicity in living plants were observed, evidencing the resistance of S. biloba to mercury and its potential use as a phytoremediation in water bodies contaminated by this metal.  相似文献   

6.
The side effects of fluazifop-butyl on soil fungal populations and oxygen uptake were studied by incubating soil samples with a range of fluazifop-butyl concentrations (0, 0.6, 3 and 6 μg g?1) over 8 weeks. Cellulose decomposition in soil was also studied in laboratory experiments with the herbicide which was either incorporated in soil or sprayed onto calico squares which were buried in soil. The mycelial dry weight of six fungal species under the effect of the herbicide was also examined. Fluazifop-butyl had no significant effect on total fungal propagule populations at 0.6 μg g?1. At 3 and 6 μg g?1, it caused temporary reduction in fungal populations observed after 1 and 2-wk of incubation. The herbicide had no significant effect on OZ uptake. The decay of calico buried in herbicide-treated soil was generally stimulated, while the decomposition of herbicide-treated calico, buried in untreated soil, was temporary delayed. The mycelial dry weight yields of Aspergillus favus (at 2 and 12 μg mL?1 of fluazifop-butyl) and Cunninghamella echinulata (at 12 μg mL?1) were significantly increased. At 24 μg mL?1 the mycelial dry weight of A. flavus and Alternaria alternata was significantly reduced.  相似文献   

7.
The effect of increasing concentrations of Cd and Zn in a sandy soil on spring wheat (Triticum vulgare L.) yields and the metal contents of the plants was examined in a pot experiment to establish critical levels of these metals in soil. The metals were added (individually and jointly) to the soil as sulfates in the following doses (in μg g?1, dry wt.): Cd — 2, 3, 5,10, 15, 25, and 50; Zn ?200, 300, 500, 1000, 1500, 2500, and 5000. Cadmium added to soil did not affect yields of wheat. The Zn dose of 1000 μg g?1 strongly reduced crop yields; at 1500 μg g? Zn dose wheat did not produce grain. The metal contents of wheat increased with increasing concentrations of Cd and Zn in soil up to 10.3 and 1587 μ g? of Cd and Zn in straw, respectively. The concentrations of both metals were higher in straw than in grain by factors of 3–7 and 1.5–2 for Zn and Cd, respectively. The relationships between Cd and Zn contents of the plants and soils were best expressed by exponential equations. High concentrations of Zn in soils (1042 and 1542 μg g?1) enhanced uptake of Cd by plants. The tested threshold concentrations of the metals in soils (3 μg g?1 for Cd and 200–300 μg g?1 for Zn) are safe for Zn but are too high for Cd in terms of protecting plants from excessive metal uptake. The critical Cd content of sandy soil should not exceed 1.5 μg g?.  相似文献   

8.
A field study was carried out to evaluate long-term heavy metal (HM) accumulation in the top 20 cm of a Tunisian clayey loam soil amended for (four years) with municipal solid waste compost (MSWC) at three levels (0, 40 and 80 t ha?1 year?1). HM uptake and translocation within wheat plants grown on these soils were also investigated. Compared to untreated soils, MSWC-amended soils showed significant increases in the content of all measured HM (Cd, Cr, Cu, Ni, Pb and Zn) in the last three years, especially for the 80 t ha?1 year?1 MSWC-amended plots. Wheat plants grown on MSWC-amended soils showed a general increase in metal uptake and translocation, especially for Cr and Ni. This HM uptake was about three fold greater for treatment 80 t h?1 as compared to plots amended at a rate of 40 t h?1. At times, the diluting effect resulting from enhanced growth rates of the plants with compost application resulted in lower concentrations in the plants grown (grain part) on treated plots. On the other hand, Cr and Ni were less mobile in the aerial part of wheat plants and were accumulated essentially in root tissues. Plant/soil transfer coefficients for MSWC-amended treatments were higher than threshold range reported in the literature, indicating that there was an important load/transfer of HM ions from soils to wheat plants.  相似文献   

9.
The effects of four concentrations (0.5, 1, 5 and 10 μg mL?1) of the heavy metals Hg, As, Pb, Cu, Cd, and Cr on some senescence variables of Cuscuta reflexa Roxb. were studied. All of the treatments, except 0.5 μg mL?1, decreased Hill reaction activity, chlorophyll and protein contents and dry matter percentage in biomass and increased tissue permeability over control data. The harmful effects of the metals were best visible at 10 μg mL?1. The general order of sensitivity was As > Cd > Pb > Hg > Cu > Cr (absolute metal concentration). The data suggest that Cuscuta reflexa shows tolerance to the heavy metals tested up to 0.5 μg mL?1.  相似文献   

10.
High Cd and Ni concentrations in sandy soils were built up in a field experiment, receiving an unusually metal-polluted sewage sludge between 1976 and 1980, at Bordeaux, France. The study evaluates the availability of metals and their after effects on maize at one point in time, the 8th year following termination of sludge application (1988). Plant parts (leaves, stalks, roots, grains) and soil samples were collected from plots which received 0 (Control), 50 (S1) and 300 Mg sludge DW ha?1 (S2) as cumulative inputs. Dry-matter yield, plant metal concentrations, total, and extractable metals in soils were determined. Metal inputs resulted in a marked increase in total and extractable metals in soils, except for extractable Mn and Cu with either 0.1 N Ca(NO3)2 or 0.1 N CaCl2. Total metal contents in the metal-loaded topsoils (0–20 cm depth) were very often lower, especially for Cd, Zn, and Ni, than the expected values. Explanation was partly given by the increases of metal contents below the plow layer, particularly for Cd at the low metal loading rate, and for Cd, Ni, and Cu at the high one (Gomez et al., 1992). In a control plot beside a highly metal- polluted plot, Cd, Zn, and Ni concentration in soil increased whereas the concentration of other metals was unchanged; lateral movement, especially with soil water, is plausible. Yield of leaves for plants from the S2 plot was reduced by 27%, but no toxicity symptoms developed on shoots. Yields of stalks for plants in both sludge-treated plots numerically were less than the controls but the decrease was not statistically significant. Cd and Ni concentrations increased in all plant parts with metal loading rate while Mn concentrations decreased. Leaf Cd concentration in plants from sludge-treated plots (i.e. 44 and 69 mg Cd kg?1 DM for S1 and S2) was above its upper critical level (i.e. dry matter yield reduced by 10%: 25μg Cd g?1 DM in corn leaves, Macnicol and Beckett, 1985). Yield reduction at the high metal-loading rate was probably due to 3 main factors: Mn deficiency in leaves, the accumulation of Ni especially in roots, and the increase of Cd in leaves. The amount of metal taken up by plants from the control plot ranked in the following order (mole ha?1): Fe(22)? Mn(7)>Zn (5.6)?Cu (0.7), Ni (0.6), Cd (0.4). For sludge-treated plots, the order was (values for S1 and S2 in mole ha ?1): Fe (16, 15)>Zn (7.9, 7.7)>Ni (4.3, 4.7)>Cd (1.9, 2.1)>Cu (1.0,1.2), Mn (1.5, 1.1). Zn and Cd had the greatest offtake percent from the soil to the above ground plant parts. Cd or Ni uptake by maize were correlated with extractable metals by unbuffered salts (i.e. 0.1 N Ca(NO3)2 and 0.1 N CaCl2). It is concluded that part of the sludge-borne Cd and Ni can remain bioavailable in this sandy soil for a long period of time (e.g. 8 yr) after the termination of metal-polluted sludge application.  相似文献   

11.
Chromium occurs naturally at trace levels in most soils and water, but disposal of industrial waste and sewage sludge containing chromium compounds has created a number of contaminated sites, which could pose a major environmental threat. This study was conducted to enumerate and isolate chromium-resistant microorganisms from sediments of evaporation ponds of a metal processing plant and determine their tolerance to other metals, metalloids and antibiotics. Enumeration of the microbiota of Cr-contaminated sediments and a clean background sample was conducted by means of the dilution-plate count method using media spiked with Cr(VI) at concentrations ranging from 10 to 1000 mg L?1. Twenty Cr(VI) tolerant bacterial isolates were selected and their resistance to other metals and metalloids, and to antibiotics was assessed using a plate diffusion technique. The number of colony-forming units (cfu) of the contaminated sediments declined with increasing concentrations from 10 to 100 mg L?1 Cr(VI), and more severely from 100 to 1000 mg L?1 Cr(VI). The background sample behaved similarly to 100 mg L?1 Cr(VI), but the cfu declined more rapidly thereafter, and no cfu were observed at 1000 mg L?1 Cr(VI). Metals and metalloids that inhibited growth (from the most to least inhibitory) were: Hg > Cd > Ag > Mo = As(III) at 50 μg mL?1. All 20 isolates were resistant to Co, Cu, Fe, Ni, Se(IV), Se(VI), Zn, Sn, As(V), Te and Sb at 50 μg mL?1 and Pb at 100 μg mL?1. Eighty-five percent of the isolates had multiple antibiotic resistance. In general, the more metal-tolerant bacteria were among the more resistant to antibiotics. It appears that the Cr-contaminated sediments may have enriched for bacterial strains with increased Cr(VI) tolerance.  相似文献   

12.
Salvinia minima has been reported as a cadmium and lead hyperaccumulator being the adsorption and intracellular accumulation the main uptake mechanisms. However, its physicochemical properties, the effect of metal concentration and the presence of organic and inorganic compounds on its hyperaccumulating capacity are still unknown. Furthermore, the specific adsorption and accumulation mechanisms occurring in the plant are not clear yet. Thus, based on a compartmentalization analysis, a bioadsorption (BAF) and an intracellular accumulation factor (IAF) were calculated in order to differentiate and quantify these two mechanisms. The use of kinetic models allowed predicting the specific type of uptake mechanisms involved. Healthy plants were exposed to five lead concentrations ranging from 0.80?±?0.0 to 28.40?±?0.22 mg Pb2+l?1 in batch systems. A synthetic wastewater, amended with propionic acid and magnesium sulfate, and deionized water were used as media. The BAF and IAF contributed to gain an in-depth insight into the hyperaccumulating lead capacity of S. minima. It is clear that such capacity is mainly due to adsorption (BAF 780–1980) most likely due to its exceptional physico-chemical characteristics such as a very high surface area (264 m2 g?1) and a high content of carboxylic groups (0.95 mmol H+g?1 dw). Chemisorption was predicted as the responsible mechanism according to the pseudo-second order adsorption model. Surprisingly, the ability of S. minima to accumulate the metal into the cells (IAF 57–1007) was not inhibited at concentrations as high as 28.40±0.22 mg Pb2+l?1.  相似文献   

13.
Aspergillus tubingensis and A. niger were isolated from the landfills of rock phosphate mines and tested for their efficacy to solubilize rock phosphate (RP), and improve plant growth and phosphate (P) uptake by plants grown in soil amended with RP. The results showed that they effectively solubilized RP in Pikovskaya's (PKV) liquid medium and released significantly higher amounts of P into the medium. A. tubingensis solubilized and released 380.8 μg P mL?1, A. niger showed better efficiency and produced 403.8 μg P mL?1. Field experiments with two consecutive crops in alkaline agricultural soil showed that inoculation of these fungi along with RP fertilization significantly increased yield and nutrient uptake of wheat and maize plants compared with control soil. P uptake by wheat and maize plants and the available P increased significantly in the RP-amended soil inoculated with fungi compared with control. These results suggest that the fertilizer value of RP can be increased, especially in alkaline soils, by inoculating P-solubilizing fungi.  相似文献   

14.
The uptake of Cu and Cd by the roots ofIris pseudacorus and its transport to rhizome and leaves were examined using solutions containing 0.5 and 5.0 mg L?1 of Cu and Cd. Heavy metal accumulation was measured while replacing the metal absorbed by the plants with daily introduction to restore the initial concentrations. The heavy metal accumulation by Iris p. was 1.01 g Cu and 0.69 g Cd kg?1 of fresh plant at the end of the tests for the solutions of 5.0 mg L?1 metal concentration, respectively.  相似文献   

15.
Lygeum spartum, Zygophyllum fabago and Piptatherum miliaceum are typical plant species that grow in mine tailings in semiarid Mediterranean areas. The aim of this work was to investigate metal uptake of these species growing on neutral mine tailings under controlled conditions and their response to fertilizer additions. A neutral mine tailing (pH of soil solution of 7.1–7.2) with high total metal concentrations (9,100 and 5,200 mg kg?1 Zn and Pb, respectively) from Southern Spain was used. Soluble Zn and Pb were low (0.5 and <0.1 mg l?1, respectively) but the major cations and anions reached relatively high levels (e.g. 2,600 and 1,400 mg l?1 Cl and Na). Fertilization caused a significant increase of the plant weight for the three species and decreased metal accumulation with the exception of Cd. Roots accumulated much higher metal concentrations for the three plants than shoots, except Cd in L. spartum. Shoot concentrations for the three plants were 3–14 mg kg?1 Cd, 150–300 mg kg?1 Zn, 4–11 mg kg?1 Cu, and 1–10 mg kg?1 As, and 6–110 mg kg?1 Pb. The results indicate that neutral pH mine tailings present a suitable substrate for establishment of these native plants species and fertilizer favors this establishment. Metal accumulation in plants is relatively low despite high total soil concentrations.  相似文献   

16.
The growth of clover (Trifolium repens ) and its uptake of N, P and Ni were studied following inoculation of soil with Rhizobium trifolii, and combinations of two Ni-adapted indigenous bacterial isolates (one of them was Brevibacillus brevis) and an arbuscular mycorrhizal (AM) fungus (Glomus mosseae). Plant growth was measured in a pot experiment containing soil spiked with 30 (Ni I), 90 (Ni II) or 270 (Ni III) mg kg−1 Ni-sulphate (corresponding to 11.7, 27.6 and 65.8 mg kg−1 available Ni on a dry soil basis). Single inoculation with the most Ni-tolerant bacterial isolate (Brevibacillus brevis) was particularly effective in increasing shoot and root biomass at the three levels of Ni contamination in comparison with the other indigenous bacterial inoculated or control plants. Single colonisation of G. mosseae enhanced by 3 fold (Ni I), by 2.4 fold (Ni II) and by 2.2 fold (Ni III) T. repens dry weight and P-content of the shoots increased by 9.8 fold (Ni I), by 9.9 fold (Ni II) and by 5.1 fold (Ni III) concomitantly with a reduction in Ni concentration in the shoot compared with non-treated plants. Coinoculation of G. mosseae and the Ni-tolerant bacterial strain (B. brevis) achieved the highest plant dry biomass (shoot and root) and N and P content and the lowest Ni shoot concentration. Dual inoculation with the most Ni-tolerant autochthonous microorganisms (B. brevis and G. mosseae) increased shoot and root plant biomass and subtantially reduced the specific absorption rate (defined as the amount of metal absorbed per unit of root biomass) for nickel in comparison with plants grown in soil inoculated only with G. mosseae. B. brevis increased nodule number that was highly depressed in Ni I added soil or supressed in Ni II and Ni III supplemented soil. These results suggest that selected bacterial inoculation improved the mycorrhizal benefit in nutrients uptake and in decreasing Ni toxicity. Inoculation of adapted beneficial microorganisms (as autochthonous B. brevis and G. mosseae) may be used as a tool to enhance plant performance in soil contaminated with Ni.  相似文献   

17.
This study evaluated the toxic effects of arsenic (As) on the growth, total antioxidant activity, total content of phenolic compounds, and content of photosynthetic pigments of Azolla filiculoides. The aquatic fern was propagated and exposed to Yoshida nutrient solution contaminated with sodium arsenate (Na2HAsO4??7H2O) at six concentrations (5, 10, 20, 30, 60, and 120???g?As?mL?1), including the control without As contamination. Azolla cultures were kept under environmental chamber conditions?26??C, 12?h photoperiod and 80% HR for 96?h. Increased As concentrations (>30???g?mL?1) significantly diminished growth of A. filiculoides and the total content of chlorophyll and total phenolic compounds, but significantly enhanced of total carotenoid?+?xanthophylls content. The concentrations of 5 and 10???g?As?mL?1 significantly stimulated the growth of A. filiculoides. This aquatic fern tolerates As concentrations lower than 30???g?mL?1, and its maximum As accumulation (28???g?g?1 dry weight) was achieved when exposed to 60???g As mL?1, but showing clear symptoms of As toxicity.  相似文献   

18.
Irrigation of arable land with contaminated sewage waters leads to the accumulation of trace metals in soils with subsequent phyto‐/zootoxic consequences. In this study, biochar derived from cotton sticks was used to amend an agricultural silt‐loam soil that had been previously irrigated with trace metal contaminated sewage waters. Metal accumulation and toxicity to spinach (Spinacia oleracea) and fenugreek (Trigonella corniculata) was investigated by measuring concentrations of Cd and Ni in plant tissues and various photosynthetic and biochemical activities of plants. Positive impacts of biochar on both spinach and fenugreek were observed in terms of biomass production that increased from 29% to 36% in case of spinach, while for fenugreek this increase was 32% to 36%. In the control treatment there was an increase in malondialdihyde, soluble sugar, and ascorbic acid contents, indicating heavy metal stress. Biochar applications increased soluble proteins and amino acids in plants and reduced the uptake of Cd from 5.42 mg kg?1 at control to 3.45 mg kg?1 at 5% biochar amended soil and Ni (13.8 mg kg?1 to 7.3 mg kg?1 at 5% biochar) by the spinach plants. In fenugreek, the Cd was reduced from 7.72 mg kg?1 to 3.88 mg kg?1 and reduction in Ni was from 15.45 mg kg?1 to 9.46 mg kg?1 at 5% biochar treated soil, reducing the possibility of transfer up the food chain. This study demonstrates that the use of biochar made from cotton‐sticks, as an amendment to arable soils that have received contaminated irrigation water, could improve plant growth and decrease Cd and Ni uptake to crops, alleviating some of the negative impacts of using sewage waters on arable land.  相似文献   

19.
A sensitive and rapid bioassay system using Ca-45 uptake by larvae of Mulinia lateralis as indicator is described. The values of Ca uptake per larva?1 versus elapsed time were linear and some of the Ca uptake rates, expressed as pg Ca larva?1 h?1, were 148.2 (no added heavy metal), 114.4 (20 µg kg?1 of added Hg), 89.7 (200 gg kg?1 of added Zn) and 20.5 (40 µg kg?1 of added Cu). Linearities were also obtained by plotting log of Ca uptake per larva?1 against heavy metal concentrations. A new terminology, xCa inf50 supt , was proposed which expressed the concentration of heavy metal, x, causing 50% depression of Ca uptake over the exposure time, t. For Cu, Hg, and Zn, the values of x Ca inf50 sup72h were 18.5, 26.5 and 176.0 µg kg?1 respectively, which were comparable to the published values of LC50. The effectiveness of Ca uptake depression on a weight basis was Cu > Hg > Zn, and the same sequence was also observed for larval mortalities.  相似文献   

20.
Groundnut plants exposed to excess nickel (Ni) produced visual symptoms of toxicity that intensified with increasing level and duration of metal supply. Decreased concentrations of pigments along with a marked increase in the activities of anti-oxidative enzymes such as superoxide dismutase, ascorbate peroxidase, and peroxidase suggest strong induction of oxidative stress due to excess Ni. The decreased activity of catalase may suggest interference of excess nickel in iron metabolism of plants. The appearance of metal specific toxicity is a likely result of damage predominantly due to enhanced generation of reactive oxygen species (ROS) at higher (300–400 μM) nickel supply. The threshold of toxicity (10% growth reduction) and toxicity (33% growth reduction) values of Ni in groundnut were 26 and 72 μg g?1 in leaves, 17 and 94 μg g?1 in stem and 45 and 240 μg g?1 in roots respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号